Advanced Bash-Scripting Guide

An in-depth exploration of
the art of shell scripting

Mendel Cooper

Advanced Bash-Scripting Guide: An in-depth exploration of the art of

shell scripting
Mendel Cooper

10
Publication date 10 Mar 2014
Abstract

Thistutorial assumes no previous knowledge of scripting or programming, yet progresses rapidly toward an interme-
diate/advanced level of instruction . . . all the while sneaking in little nuggets of UNIX® wisdom and lore. It serves
as atextbook, a manual for self-study, and as a reference and source of knowledge on shell scripting techniques. The
exercises and heavily-commented examplesinvite active reader participation, under thepremisethatt he only way
toreally learn scripting is to wite scripts.

Thisbook is suitable for classroom use as a genera introduction to programming concepts.

This document is herewith granted to the Public Domain. No copyri ght!

Dedication

For Anita, the source of all the magic

Table of Contents

Part 1. INEFOTUCTIONvetieiii ettt ettt e e et e et e e e e e e 1
1. Shell Programming!looeoi e ettt e een 3
2. Starting Off With @ SNarBangvveeiiiiiiii e 6

INVOKING ThE SCITPL ettt 10
Preliminary EXEICISES it 10

PAIT 2. BASICS .. eeetiieteiti ettt ettt e e s 11
3. SPECIAl CharBCLESeieeeeet et 13
4. Introduction to Variables and Parameterscoouuuiioiiiiiiiciiii e 24

Variable SUBSHITULIONiiiiii e e 24
Variable ASSIONMENTiii e 24
Bash Variables Are UNLYPEdoiiiiiiiiiii et 24
SpecCial Variable TYPES ...t 25
B QUOLING ..ttt ettt 32
QUOLING VAITAIDIES ... e 32
=S o= 0] oo TP PPT T PPPPPTP 35
6. EXIt @N0 EXIT SEAIUSvueiiiitiee ettt ettt ettt et e e e e e e naans 39
A L= TP UPPPTT 42
TESE CONSIIUCES ...ttt ettt et et e e e e e eeeas 42
Fil@ TESE OPEIBIOIS eeeeeti ettt ettt ettt e e et e e e e e e e enaens 51
Other CompPariSON OPEIEIOISceeurueieiiiieeeeti ettt et et et e e e e e eani e eenenns 55
Nested i f/then Condition TESEScc.uuiiiiiii e 61
Testing Your Knowledge Of TESEScuuuiiiiiiieiiii e 61
8. Operations and REGed TOPICSvuuiieriiieiiii ettt ettt e s 62
1007C = 0] £ TP PTUPT 62
NUMENTCEl CONSLANES ...t e e 63
The Double-Parentheses CONSIITUCTuuuiiiiiiiieeiiiie e 65
OPErator PrECEOBNCEevvi ittt ettt et e eeneans 66

Part 3. Beyond the BaSICSuuuiiiiiiiei ittt 69

9. Another LOOK @t VariableSccoouuiiiiiii e 71
INternal Variablescoouuiiii e 71
Typing variables: declare or tyPeSatoocviiiiiii e 72

ANother Use for deClareooouue i 74
SRANDOM: generate random INEEOENcocveertuuunieeeeeeeeeiiti e e e eeeeaibii e e e aeaeeaees 75
10. Manipulating Variablesiiiiiieiii e e 89
MaNIPUIBEING SEFNGS .. ceeevie ettt ettt e e e e e eenens 89
Manipulating StringS USING @WKcccuuueiiiiiie et 98
FUIther REFEIENCEi it 99
Parameter SUDSHITULIONc.uuiiiiii e e 99

11. LoOPS N BranChiESuiiiiiii et 111
[0 o S PPN 111
INESEEA LOOPS ...ttt ettt ettt ettt e et e et e et et e e e et e e e na s 111
LOOP CONIOL ..ttt e et e e et eeenaa s 112
Testing and BranChingoooieiiii e 112

12. Command SUDSHTULTIONiieiiiii i 113

13, ArthMELiC EXPANSIONcciitieiiiii ettt e et e et e e e et e e e e e eeee 120

1. RECESS TIMI ceuiiii ettt ettt e e et e et e e et e e et e e et e e et e et eeanaae 121

Part 4. COMMENGSeevuieiti ettt ettt et e et ettt et et e et e e e e et e e e eba s 122
15. Internal Commands and BUITTINScoouuiiiiiiie e 136

JOD Control COMMEBNGScevvueieiii e e e e 138

16. External Filters, Programs and COmMMandSoeeeuiiiinieiiieii e eee e e 140

BaSiC COMMEBINGScevvuiiiiiiie ettt ettt e et e e e e e e 140

Advanced Bash-Scripting Guide

ComPIEX COMIMANGSuuieiieiii e e e e e e e e e e e e et e e et e e e e eateeaanaaannaes 142
Time / Date COMMANGSceevtiieieiii et e eeaa e e eanens 142

Text Processing COMMEBNGSccouuiiiinieiiieee e e e e e e e e e e e e e e e e e e eeaens 142

File and Archiving ComMandSc.veiiiiiiiiiieii e e e e 143
Communications COMMENGSccuuuuieiiiiiiee et et e e e e e et e e et e e et eeeaennns 144
Termina Control COMMANASevveviieieiii e e e e eeae e eeees 145
MaEh COMMANGSceeeei e e e e e s 145
MisCellanNeoUS COMMANGSccvvviieeiiiie e e 145

17. System and Administrative ComMmMaNScceuuiiiiiieiiiieeii e e e e eane e 147
ANAlYZiNG @ SYSEEM SCHIPL ...ovviiii e e e e e e e e e aes 149

[ST AN 1V 1= o I I o] xS 151
18. REQUIAI EXPIrESSIONS ...uuiiiiieiiiieeiieeite et e e et e e st e et e e et e e et e e et e e sta e eateeateeetneeranaees 154
A Brief Introduction to Regular EXPreSSIONSccuuieiiieiiineieiiieeiieeei e eaieeeneesnnes 154
L1 o] o] 011 o P 156

19. HEIe DOCUMEIESeueeieiie ettt ettt et et et e e et e et e et e e e e e e e e e a e en e en e e nennnes 158
[(5 =TS 11 0T 170

0 V(@ I 2 = s] = o 1o PSPPI 174
L0 LS T 0T = o 177
Redirecting Code BIOCKSoiuuiiiiiicii e 181

YN o o1 1 o] = PPN 186

20, SUBSNEIIS .. e e aae 189
22, RESICIEA SNEIIS ...t et e e e a e 195
23. ProCess SUBSHITULIONoeiiiiiieeiis e et e e e e 197
P2 N o 1o~ SRS 203
Complex Functions and Function Complexitiescoovevuieeiiiieiiin e, 208
LOCE Vai@lES ... 213
Local variables and reCUrSION.ccuuieiiiiiiieiiiiie e 216

Recursion Without Local Variablesoviiiiiiiiiiiiiis e 219

2D, A BSES ettt aaaan 223
26. LISt CONSITUCES ...ivvvtieeieti ettt e et ettt e et e e et e e et e e et e e e e et e e e e et e e eeeannes 226
A N £ - YT PPN 230
28. INGITECt REFEIENCES ... iiiiii e e et e e e e e e e eaaenns 263
A o LAV A 2 To I o o TP 268
o oS PR 268

o oY 271

30. NEtWOork Programimingc..eeeuieii e e e e e e e e e et e e et e et eeaaneeeanaes 278
31. Of Zeros @ant NUIISeieeii e e e e eaees 281
G I T oo o 1 oo PP 285
1C2C T @ 011 o] 1=t 297
7 N €0 (o= PP 300
35. SCripting With SEYIE ..ove e e 311
Unofficial Shell Scripting StyleSheetcvvviii e, 311

36, IMHISCEITBNY ..ttt e e ettt e et e e e e aaaas 315
Interactive and non-interactive shells and SCriptSccovvvvieiiiiiiin e, 315

S 1c AV =0 TP 316
Tests and Comparisons: AITEINAIVESoveiiieiiiieiie e e 323
Recursion: a script calling itSalfooiiiii i 323
00 o g g To LS v] o £ P 326
OPLMIZBEIONSiiicii et e e e e e e e e e e e e et e e et e e et e e et e ranaees 341

YN SS o 0= o [T o PPN 345
Ideas for more POWErful SCHPLSccuuiiiiiciie e 345

LAY/ o 1= N 357

SECUNLY ISSUBS ..vuiiiiiiieii e e et e e e e e e e e e e e e e et e e et e et e e et e eaannas 359
Infected ShEll SCriPLS ...cvuiii e 359

Advanced Bash-Scripting Guide

Hiding Shell SCript SOUICE ... ccvviiiii e e 360

Writing Secure Shell SCriptsovvviiii e 360

POrability ISSUESivviiiii i e e e e e e 360

N == S T) (= PP 361

Shell Scripting Under WINAOWSoviieiiiiicii e e e 362

37. Bash, VErSIONS 2, 3, @N0 4oiiiiiiiiei e 364

(28 S Y= = T o PSP 364

Bash, VEISION 3 ...t 369

Bash, VEISION 3.1 ..o 372

Bash, VEISION 3.2 ...oiiiiiiiiiiie et 373

Bash, VEISION 4 ..ot 373

Bash, VEISION 4.1 ..o 381

Bash, VEISION 4.2 ..o 382

S T 0o 070 == P TSPP 387
F 11 o= N o (= PR 387
ADOUL the AULNOT ...t e e e e aa s 387
WHhEre t0 GO FOr HEIP ..oovniii e e e 388
Tools Used t0 Produce ThiS BOOKc.uuuiiiiiiiieiiiiiiei i eeaenns 388

[= 00 T = SO SPPRTPPN 388

Software and PriMtWAIEooiiiiieeie e 388

L@ = o[PP 389

[ESel =110 1= PP 390

23] o] oo r="o] /R PP 392
Y 00T g] o101 1= o RSt 1 £ 394
B. REFEIENCE CardSovvuiiiiiiiiiee ettt e e e et e e et e et aaan s 634
C. A Sed and AWK MICIO-PIIMEN ...ouiiiiiiiiie e e e e e e eaans 639
S o 639
NP 643

D. Parsing and Managing PathNamesScouuiiiiiiiiiiii e e e e e 647
E. Exit Codes With Special MEANINGScviviiiiii e e e e eaas 651
F. A Detailed Introduction to [/O and 1/O RedIreCtioncccuiiiiiiiiniiiiiiiieecie e 653
G. ComMANd-LiNE OPLIONSccuuiiiiieiii e e e e e e e e e e e e e e e et e e et e e et e e eaneeannaees 655
Standard Command-Line OPLIONScvuuiiiiiieiii e e e e e e e e e e e e e e aanaes 655

Bash Command-Ling OPtioNSccuuiiiiiiiiii e e e e e e e e 656

L TR T oo | T =N 658
[. Important SyStEM DIrECLOMESuiiii i eiieee e e e e e e e e e e e e e e e e e e et e e eanaeees 659
J. An Introduction to Programmable COMPIELioNccoeuiiiiiiiiiiciir e 661
S oo 2 1o o [OSSP 664
[o TE o YA o 411001 o 668
M. Sample . bashrc and. bash_profil e Fles.....cccoiiiiiiiiiii e, 670
N. Converting DOS Batch Files to Shell SCriptScvvviiiiiiiiiic e, 689
(O I = o =~ PP 693
F N 4= Y41 1o S] o 693

R AT RN aTo TS o T o) 695

e (=Y E= Lo g T 1T (o Y P 706
Q. Download and MITTON SITESu.iiiiieii e e e e e e e e e e et e e e ean s 710
L o TN o T 1= 711
ST o o)/ o o | 712
LIS O T o USSP 714
g0 1= S SOPRTPPN 717

List of Tables

8.1. OPEralOr PrECEOBNCEcvtuieiiiti ettt ettt ettt e et e e et e s 66
15,1, JOD THENEITIENS oeeneeeeit ettt 139
331 BASH OPLIONS ...ttt e e e e e e e eee 298
36.1. Numbers representing colors in ESCapE SEQUENCESuueierrineeiiiieeeeiiiaeeeeri e eeeniaeeeens 332
B.1. Special Shell Variallescouuiiiii 634
B.2. TEST Operators: Binary COMPAISONoceeuuuieiiitieeetiiiia et e e et e e et e e et e eene s 634
B.3. TEST OpEralOrS: FIlES ... et 635
B.4. Parameter SUbStitution and EXPanSIONeeieiuneiiiiiieeeiiia et e et e e et eeeeni e eeees 636
B.5. SING OPEIALHIONS ... ettt ettt et e e e e e e e e eaa e eeaans 636
B.6. MiSCEIlANEOUS CONSIIUCEScceeviiieiiiii ettt ettt et et e e eni e eeeaas 638
C.1. BSIC SEU OPEIGIOIS ... eeetteeeeti ettt ettt e ettt et e e et et e ettt e et et e e e e et e e e enba e e e enaans 639
C.2. EXamPpIes Of SO OPEIELOISceiitieeiiei ettt e e et e e e e e e b s 641
E.L RESEIVEA EXIT COUBSceeiiiiieiiiiii ettt ettt ettt e ettt e e et eeeebi e eees 651
N.1. Batch file keywords / variables / operators, and their shell equivalentscccoeeveeiinnnnnn. 689
N.2. DOS commands and their UNIX eqUIVBIENESooevuiiiiiiiiieiiii e 690
P.1. REVISION HISIOMY ...eeiiiiiii ettt ettt e e e enanns 707

List of Examples

2.1. cleanup: A script to clean up 10g files in Var/logcooeuiiiiiiiiiiei e 6
2.2. cleanup: An improved ClEaN-UP SCHPLc.uuuiiiiiie ettt e e 6
2.3. cleanup: An enhanced and generalized version of aove SCripts.c.vvivieiiiieiiiiiiieeieeeis 7
3.1. Code blocks and [/O reAIFECHIONcceuueieieii et
3.2. Saving the output of acode block 10 afileccouviiiiiiii e
3.3. Running aloop in the Dackgroundccouiiiiiiii e 15
3.4. Backup of all files changed in 18St dayovieeiiiiiiiii e
4.1. Variable assignment and SUDSHTULTIONcoouuiiiiiiiiiciii e
4.2. Plain Variable ASSIGNMENToouuiiiiiiiee ettt
4.3. Variable Assignment, plain and faNCYcoovvuniiiiiiiiiii e
A4, INEEYEY OF SING? .eettieieeti ettt ettt et ettt ettt e et et e et e et et e ettt e e e et e e e e ebanaes 24
4.5, POSITIONAl PArAMELEScouuiiiiiii ettt ettt e e e e 27
4.6. wh, whois domain NAME 10OKUDueiiniiiiie e 29
A7 USING SNITE ettt ettt 30
5.1. EChOiNg WEIrd Vari@hlesc.ouuiiiiiii ittt 34
5.2. ESCAPEA CRAraCLEN'Sceiviieeieiii ettt ettt ettt e e
5.3. DEECHING KEY-PIESSES ciiiiiiee ettt ettt e et et e e e eeaans
B.1. XIt [EXIT STBIUS ...eevvieeeeii ettt 40
6.2. Negating a condition USING |uuiiiiii et e eeeens 40
7.1 WhEE IS TIULN? e ettt e ettt e e e et e e e et e eene 43
7.2. Equivalence of test, / usr/bin/test,[]J,and/ usr/bi n/ [.o 47
7.3. ArthmMELiC TESES USING (1)) «evvnreeerrnieeimti ettt e et e et e et e et e e e e 50
7.4. Testing for BroKen INKScoooiiiiiii e e e e 53
7.5. Arithmetic and String COMPAITSONScceuuuneieiii ettt e e 57
7.6. Testing whether a string iS NUIL ... oo e 58
A 110 T PP TPPTUPTPRN 59
8.1. Greatest COMIMON TIVISOFccuuuueiiiii ettt ettt e e et e et e e e et e e e e ene e eeens
8.2. UsSiNg Arthmetic OPEraioNScceieriieiiiiiie ettt e e
8.3. Compound Condition TeStS USING && AN || ...evvvvvniiiiiiieiiiiiee e
8.4. Representation of NUMENCal CONSLANESciiiitieiiiii e e 63
8.5. C-style manipulation of VariabIesoiiiiiiiiii 65
9.1. $IFS aNd WHItESPBEEcevvvii ettt ettt e e e e eeaaaeaas
9.2, TMEH INPUL ... eeetee ettt ettt et e et et e et et e e e enb e e e enanas
9.3. ONCE MOrE, tIMEA INPUL ...ttt e et e e e e e eeens
S N 11 o [= Lo PSPPI
0.5, AM T FOOE? ottt
9.6. arglist: Listing arguments with $* and $@ceeeeeieeiiiiii
9.7. Inconsistent $* and $@DENAVIONieeeeieeeee e
9.8. $* and S@WHEN Bl FS IS BIMPLY ..evvvrrrriiiiiiiiiiiiiiiiiiiiiiiiieteeeeeteeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
9.9. UNErSCore Variablecoouuuuiiiiii e
9.10. Using declare to type VarTallesccouuuiiiiii e 73
9.11. Generating random NUMIDEYS ... e et 75
9.12. Picking arandom card from @ deCKcoouuuniiiiiiiieiii e 77
9.13. Brownian Motion SIMUIBETONcouuuiiiiiiie ittt e e 78
9.14. RANCOM DEIWEEN VAIUBScouiiiiieii ettt ettt e et et e e b 81
9.15. Ralling a single die With RANDOMiiiiiiiiiiii et 84
9.16. ReSEediNg RANDOM ...ttt et et ettt e e e e e et e e bbb aaaeaaaeeees 86
9.17. Pseudorandom NUMDEXS, USING @WKieeiiiie e e e e et e et eeen e eees 87
10.1. Inserting a blank line between paragraphsin atext fileccooovviiiii i, 89
10.2. Generating an 8-character “random” StHNGccoovuuiiiiiiiiee e 1
10.3. Converting graphic file formats, with filename changeccoooii i, 94

Vi

Advanced Bash-Scripting Guide

10.4. Converting streaming audio fillES 10 000vvuevvniiiiiiiii e 95
O o U 1T 0o [1= (o] o (N 96
10.6. Alternate ways of extracting and locating SUDSITINGSevviiiiiiieiii e 98
10.7. Using parameter substitution and €rror MESSAJEScvvvreiiinieiieeiiiieeiie e e e e eiee e eeaneens 102
10.8. Parameter substitution and “USAgE” MESSAPESuuuvvvurerrneriieeiieeeieeeteeeeteeateeeteesanaeenes 103
10.9. Length of avariableiiiiniii e 104
10.10. Pattern matching in parameter SUBSLItULIONcoeviiiiiiiiii e, 105
10.11. Renaming fil€ EXIENSIONS.uuiiiii i e e e e e e e e e e e e eaens 106
10.12. Using pattern matching to parse arbitrary StringScc.uvevuiiiiiieeiii e e 107
10.13. Matching patterns at prefix or suffix of StrNGcoooviieiiiii e, 109
S T 0o L= g o o1
11.2. for loop with two parametersin each [list] elementccooevviiiiiiiiiin i,
11.3. Fileinfo: operating on afile list contained in avariablecccooiviiiiiinie
11.4. Operating on a parameterized file list ..o,
11.5. Operating on files with @ for 100Dcouviiiiiiii e,
11.6. Missingin [1ist] iNafor l0OP ..cccuuveiiiieiiiiciie e
11.7. Generating the [| i st] inafor loop with command substitutionccocoeeviieiinnnn,
11.8. A grep replacement for binary fil€Soovuiiiiii i
11.9. Listing all users 0N the SYSIEMiiiiii e
11.10. Checking all the binaries in a directory for authorshipccoooeviiiiiiiicin e,
11.11. Listing the symbolic links in @ direCtoryccooeviiiiiiiiiiii e,
11.12. Symboalic linksin adirectory, saved to afilecccooeiiiiiiiiiiii e,
0 TN = 1Y/ = (o g o o P
11.14. Using efax in batch MOdEcoouiiiiiii e e
11.15. SIMPIE WHIlE 100D ..cvuiciiice e e e e e eaas
11.16. ANOthEr WHIlE 100D .. .cevniiiici e e e s
11.17. while loop with multiple CONAItioNSccuiiiiii e
11.18. C-style syntax in @aWhil€ 100Dcvuuiiiii e e
0 TR 1] oo P
2O =S o N oo o 111
11.21. Effects of break and continUe in @l00Pcovviiiiiieiiiicii e
11.22. Breaking out of multiple 100p [&VEISccouiiiiiii e
11.23. Continuing at a higher [00p 1eVEloviiii e,
11.24. Using continue N in an actual taskccoveiiiiiiiiici e
T O £ g To [o T TP
11.26. Creating MENUS USING CASE .vuuevvunerrtnereteesteeetneeetnaessnesstnaestnaestnaesenaessnaeesteesnaesnns
11.27. Using command substitution to generate the case variablecccoevvviiiiiiiiiincienes
11.28. SIMple String MatChingoiuiiii e e e eaa s
11.29. Checking for alphabetiC INPULoiiiiiii e
11.30. Creating MEenUS USING SEIECEcviniiii e e e e e
11.31. Creating menus using Select in afunClionc.cccoviiiiiiiiii e
N IS (1o Lo IR =or T o) 1 o N 116
12.2. Generating a variable from @aloopcooviiiiiiiii e 116
T T 0o [T To = 117 o =1 1 118
15.1. A script that spawns multiple instances of itSelfcooeiiiiiii i, 137
15.2. Printf i @CtON ..o
15.3. Variable assignment, USING FAAocvuuiiiiiieiiii e e e e e e e e et e e e
15.4. What happens when read has no variableccoooiiiiiiiii e,
15.5. MUlti-lin@ INPUE T0 TEAAviiii i e e
15.6. DEtecting the arTOW KEYSciveeii it e e e e e e aen
15.7. Using read with file redir€Ctionccooiiiiii i
15.8. Problems reading from @ Pipeoviiiiiiiei e
15.9. Changing the current Working dir€Ctoryc.ooveiiiiiiiiiiiie e
15.10. Letting let do arithmetiC.covuiiiiiii e e e

Vii

Advanced Bash-Scripting Guide

15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.
15.18.
15.19.
15.20.
15.21.
15.22.
15.23.
15.24.

15.25

15.26.

15.27

Using eval to select am
Echoing the command-|
Forcing a log-off
A version of rotl3

“Including” a data file

Effects of exec

Showing the effect Of evalcooviiii

ONG VANADIES ...vviie e
INE PATAIMELE'S ...uuiii e e e e e e e e e e aae e

Using set with positional ParamELEr'Scovvuiiiiiieiiie e e e e
Reversing the positional Parameterscccuuieiiiieiiiie e
Reassigning the positional ParameEterScveiiieiiiieiiii e e e e
“UNSEiNG” @ Varialeviii e
Using export to pass a variable to an embedded awk scriptccoovviiiiiiiiiin e,
Using getopts to read the options/arguments passed t0 a SCriptcoocvvveviiieiiineeiinnnnn.

A (useless) script that SOUrCeS ItSElfiviiiii e

A SCript that eXEC'S ITSEIT L.oeii

. A script that kills itself

Waiting for a process to finish before proceedingccooveviiieiiiiieie e,

16.1. Using Is to create a table of contents for burning a CDR diSKcccvvveviiiiiiniiiiineii,

16.2.

Hello or Good-bye

16.3. Badname, eliminate file namesin current directory containing bad characters and white-

S 070 SRR
16.4. Deleting afile by itsSinode NUMDEYcoiiiiiii e
16.5. Logfile: Using xargs to monitor SyStemM [0gcccuvviiiiieiiiiiiii e
16.6. Copying files in current directory t0 anothercooviiiiiiiii e
16.7. Killing ProCESSES DY NAMIEivviiii et e e e e
16.8. Word frequency analySiS USING XaITS ...ueeuueruneerieeaiieeeineeetessiseesnnessneesineesnneesnnnaes

16.9.

16.10.
16.11.
16.12.
16.13.
16.14.
16.15.
16.16.
16.17.
16.18.
16.19.
16.20.
16.21.
16.22.
16.23.
16.24.
16.25.
16.26.
16.27.
16.28.
16.29.
16.30.
16.31.
16.32.
16.33.
16.34.
16.35.
16.36.

Using eXprc.cc.eueeee.
Using date
Date caculations

Printing out the From li

Looking up definitions

du: DOS to UNIX text

Generating “ Crypto-Qu
Formatted file listing. .

An “improved” strings

basename and dirname

WOrd FreqUENCY ANAIYSIS ..u.iiue ittt e et e e e e e e e e e e e e e e et e e et e e e eanaas
WHhICh fIlES @8 SCIPIS? vt e e e s
Generating 10-digit random NUMDEYScouiiiiiicie e e e
Using tail to monitor the SyStemM 10govviiiiiiie e

nesin stored email MESSAYESccevveiiiiiiiiieeiieeee e e,

Emulating grep iN @ SCHPL ..ovvee i e e e e e e e e e e e e
CrossWOrd PUZZIE SOIVERueiii e e e e e eaes

in Webster's 1913 DiCtionarycccveevniiiiiieiiieecie e

Checking words in alist for Validitycooviiiiiiiiiiii e
toupper: Transforms afile to all UPPErCase.covvvvviiiiiii i,
lowercase: Changes all filenames in working directory to lowercase.c..ccoeeevvnnenns

FIlE CONVEISION. viieiiieieeee e

rotl3: UltraeWeak ENCIYPLION. ..vuiie i e e e e e e eaa s

OLE” PUZZIESceieiei e

Using column to format a directory liStingoeevviiiiiieiiiiccie e
Nl: A SElf-NUMBENNG SCIIPL. .ovvniii e e
manview: Viewing formatted Manpagescccuiveiiieiiiieiiieee e
UsiNg CPIio t0 MOVE @ AITECLONY T8 . uuuviiciii e e e
Unpacking an rPM arChiVcouueiiii e e e e e e e e e e e aaeees
Stripping comments from C program fileScovviiiiiiiiii e
Exploring / usr/ XLLIR6/ DI N oo

(070 111077010 [N

Using cmp to compare two files within a script.ccoooiviiiiiii e,

Advanced Bash-Scripting Guide

16.37. A script that copies itself IN SECHONScvvuiiiii e
16.38. Checking file INtEOIILYuiiii i e e e e e
16.39. Uudecoding encoded filEScvuiiii i
16.40. Finding out where to report @ SPaMIMErociiiiiiii e e e
16.41. Analyzing @ SPam OMAINc.uueiiieiii e e e e e e e e e e e et e e et e e et e e e e eanaas
16.42. GELtiNG @ SLOCK QUOLEuiiiii e e e e e et e e e e e e e eaens
16.43. UPAting FCAniiiiiii et e e e e e e e e r e aae
7 B £ o 1= o TN
16.45. A script that MailS ItSalf ...
16.46. Generating Prime NUMDBENSuuiiiii i e e e e e e
16.47. Monthly Payment 0N @ MOMQagEovvunieiiieiii e e e e e e e e e e e e e e aanaees
16.48. BESE CONVEISION ...eevtiieeiiiiieeeeti e e e ettt e e e eett s e e eett s e e eett e e e eett e eeeettaeeeettaeeaesenaaaeees
16.49. Invoking bc using a here doCUMENLccuiiiiiieiie e e e e e
16.50. CalCUIAtiNG Pl . oovniiiiii e
16.51. Converting a decimal number to hexadecimalccoiiiiiiiiiii i
Ry = (o 1 o T
16.53. Calculating the hypotenuse of atrianglecccuviiiiiiiii e
16.54. Using seq to generate |00p argUMENESc.uuiiiieiiiieieiiee et ee e ee e e eea e e et e eeanaeeaneens
T I 1 (= g O TU o | PRSPPI
16.56. Using getopt to parse command-lin€ OptioNSccoovviiiiiiiiiiiiec e,
16.57. A script that COPIES ItSEIT ...
16.58. EXEICISING A0 ...ovniiiiieiie e e e e e e e aaa
16.59. Capturing KEYSITOKESuiiiiiiiii e e e e e e e e e e eee
16.60. Preparing a bootable SD card for the Raspberry Picoooviiiiiiiiiii i
16.61. Securely deleting @ fileoiiiiii
16.62. FIlENAME QENEIAON ...vuiiiii ettt e e e e e e e e e e e e e e e et e e e et e e ran e e et
16.63. Converting Meters t0 MIIESc.uiiiii i e e e e e
7 B £ o o PP
17.1. SEtting @ NEW PASSWOITciiiiiiiiieiii e e ee e e e e e e e e e et e e et e e ean e e st e eaneeannaees
17.2. Setting an €rase CharaCterciiiiiiii e e e e e e e aaas
17.3. secret password: Turning off terminal €ChOiNgcooeviiiiiiiii e
R Q=Y o=y (= (= 1 o
17.5. Checking a remote server for identdccoeuieiiiiiiiie e
17.6. pidof helps Kill @ PrOCESS ... ccvueii e e e e
17.7. Checking @ CD IMBOE «.uu vvtiiii et e e e e e e e e e e e e e e et e e et e e e e e et e e e aaneeaanaaes
17.8. Creating afilesystem in afil@cooviiiiiii e
17.9. Adding anew hard driVecouniiiii e
17.10. Using umask to hide an output file from prying eyescccocviveiiiiiiii i,
17.11. Backlight: changes the brightness of the (laptop) screen backlightccoeeeen,
17.12. killall, from/ et e/ rc. d/ i Nit. d o 149
19.1. broadcast: Sends message to everyone 10gged iNcouuieiiiieiiii i 158
19.2. dummyfile: Creates a 2-line dummy fileoiiiiiiiiii e 159
19.3. MUlti-liN€ MESSAPE USING CAL ..vvuiiiieiiie eaeaas 160
19.4. Multi-line message, With tahs SUPPressedovviiiiiii i 161
19.5. Here document with replaceable parametersovevvieiiii i 161
19.6. Upload a file pair to Sunsite incoming dir€CtONYoevviiiiiiiieiie e e 162
19.7. Parameter substitution turned Offoiiiiiiiii 163
19.8. A script that generates another SCriptcoovniiii i 164
19.9. Here documents and fUNCLIONScooiiuiiiiiiii e 165
19.10. “AnoNYMOUS’ HEIre DOCUMENT ...ivuitieieieieiee i e e e e e e e ae e 166
19.11. Commenting out ablock Of COOEc.uuiiiiiii e 166
19.12. A Self-dOCUMENTING SCIIPE ..uuiieieeii e e e e e e e e e et e e et e e e e aaeeeens 167
19.13. Prepending a lineto @ file ...couv i 171
19.14. Parsing amaillioXccouuiiiiiiiiii e 172

Advanced Bash-Scripting Guide

20.1. Redirecting St di N USING EXEC ...u.ivuuiiiiicei e ee e e e e e e e e e e e et e e et e et e e aaeeeens 177
20.2. Redirecting St dOUL USING EXEC ...cvvuiiiiiieii e e e e e e e e e e e e e e et eeaa e eees 178
20.3. Redirecting both st di n and st dout in the same script with execc.ccceviiiiiiiinnnns 179
20.4. Avoiding @ SUBSNEILcoii i 180
20.5. Redirected While 100Doiiiiiii e e e 181
20.6. Alternate form of redirected Whil€ 100Pccovuiiiiiiii e 182
20.7. RedireCted UNtil OOivveiiiie e e e e e e e e e et e e e et e e et e e eanaeee 183
ORI R L= [T ox (= I {0 oo 183
20.9. Redirected for loop (both st di n and st dout redirected)coeveiiiiiiiiiiiiiiniiecs 184
20.10. Redirected If/then tESEceue i 185
20.11. Data file names.data for above eXampleScoviiiiiii e 185
b0 I R 0T o] oo = Y= o P 186
21.1. Variable scope in @ SUBShEllcooiniii i 190
20,2, LISt USEN ProfilES ..uiiiiiiiiiiiiii ettt 192
21.3. Running parallel processes in SUDShEllS ..o, 193
22.1. Running a SCript in restricted MOGEuuiiiiiiiiii e e e e e 195
23.1. Code block redirection Without TOrKiNgccuviiiiiiiii e 199
23.2. Redirecting the output of process substitution into aloop.cccceeveiiiiiiiiieeiiiieee e, 200
S TS] o T 0 o o) P 203
24.2. FuNction Taking ParamEterSccuiiiiiiiiiii e e e e e e e e aaaas 208
24.3. Functions and command-line args passed to the SCriptcooeviiiiiii i 209
24.4. Passing an indirect reference to afunCtioncooeiiii i 210
24.5. Dereferencing a parameter passed t0 afunClioNcccvviiiii i 210
24.6. Again, dereferencing a parameter passed to afunctionccoeeeviiiiiiieiin i 211
24.7. Maximum Of tWO NUMDBETSuiiiiiiii e

24.8. Converting nUmMbers to ROMaN NUMEIAlScuueiiiiiiii e e

24.9. Testing large return values in @ funCtioncoooiiiiiiiiiiiii e,

24.10. Comparing tWo [arge iNTEgENSvuiiii e e e e e e e

24.11. Real NamMe frOM USEIMAIMIEiiiiii i eeeiii ettt e et e e e et e e et s e e et e e e eaa e eeneanns 212
24.12. Local variable VISIDHITYccouiiiiii e 214
24.13. Demonstration of a simple recursive fuNCtioNc.cooiiiiiiiiiie e 217
24.14. Another SIMple deMONSIIAEiONcivuiiiie e e e e e e e e eaa s 217
24.15. Recursion, using alocal variablec.couiiiiiiii 218
24.16. The FIDONACCH SEQUENCE ... cvvuieiii e e e e e et e e e e e e e e e e e e e e e et e e et e e e e ean s 219
24.17. The TOWESS Of HABNOI ..vuuiiiiiiie et e e et e e et e e e eaa e e e ennns 220
25.1. AliaseS WIthin @ SCIIPE c.uuiie i e e e e e e e e e e eeaaas 223
25.2. unalias: Setting and UNSELtiNG aN @li8Socvvniiiiiiiii e 224
26.1. Using an and list to test for command-line argumentsccooeeiiieiiiieiie e, 226
26.2. Another command-line arg test using an and listccooeeiiiiiiiiiciin e 227
26.3. Using or listsin combination with an and listcccoiiiiiiiiiini e 227
27.1. SIMPIE AITAY USAGE «.vuueevueieiieeii e et e ettt e e te e et e e e e e et e e et e e et e e st e e et eeaaeeat e eetneeeanaeeees 230
27.2. FOrMAEIING 8 POBM L..iitiiii e et e e et e e e e e e e e e et e e et e e et e e et eeaa e ean e eatnaestnaeeennaes 232
27.3. VariousS aIray OPEIAHONSuueieuueeiiieiiieeeie e e s e e st e e st e et e e st e e et e e et eeaneeatnaestnaeranaeeees 233
27.4. StIING OPEratioNS ON @ITAYS ...vuuevvuneirteeeteeeteesttteestaeestaeestreeaaeeataestaesaaestnaerannaesnnaees 234
27.5. Loading the contents of a SCript iNt0 @ @rTayc..uveviiieiiiiiciie e e 236
27.6. Some specCial PropertieS Of @rTAYS ..vuvvvn i e e 237
27.7. Of empty arrays and empty ElemMENtSccouiiiiiiiiiii e 238
27.8. INILAlIZING @ITAYS .vuuiieii e et e e e e e e e e e e e et e e et e e et e e et e e eean s 242
27.9. Copying and CONCALENALING @ITAYSuueveeeiiieeeieeei e et e e e e et e e e e e s e e et e e e eataeranaaees 244
27.10. MOre 0N CONCALENAING GITAYSuueveuneerieerieeeie ettt e eeetaeest e eet e et e esttaeeateeateestnaerenaaees 245
27.11. The BUBDIE SOOItvuiieei et e e et e e e era e eeees 248
27.12. Embedded arrays and indireCt refEreNCESccuuiiiiiiiiie e e 250
27.13. The Sieve Of EratOStNENEScvuiiiiiiiii e e et e e e e eees 252
27.14. The Sieve of Eratosthenes, OptimiZedoovuiiiiiiiiiii e 254

Advanced Bash-Scripting Guide

27.15. Emulating a puSh-0OWN SEACKuuiiiiiiii e e e e e e e e e e e e e eens 255
27.16. Complex array application: Exploring a weird mathematical Series.........ccoocevvveviieeennnnnn. 257
27.17. Simulating a two-dimensional array, then tilting itcooieiii i, 259
28.1. Indirect Variahle REFEIENCESiiiiiii i e e e 263
28.2. Passing an indirect referenCe t0 @WKco.uiiiiiieiiiiiei e e e e 265
29.1. Using / dev/ t cp for troubleShootinguiviiiiiii e e 270
e B - g To 1 00 o 270
29.3. Finding the process associated With @ PIDccooiiiiiiiiiii e 274
29.4. ON-liNE CONNECE SEALUS ...evvviieiiiii et et e e e e et e e e et e e e e et e e e eate s e e e entn s eeeenes 276
30.1. Print the SErver @NVIFONMENTuuuiiiiii et e et e et e e e e e e et e e e e e eeeenns 278
30.2. TP @UMESSES ..ottt 279
3L.1. HidiNg the COOKIE A ...cuuuiiiiiieii et e e e e e e e e e et e e e aens 282
31.2. Setting up aswapfile USING / dEV/ ZEI O ..cvvvniiii e 282
31.3. Creating @ raMOiSKuuiiiiieiii e e e e e e e e e e a e raas 283
G I N o 0o o Vo o A 285
AV 1= = T oo =YY (o (o 285
32.3. test24: another BUGQY SCHIPL ...vvvniei e e e e e e e e e e e e aa e eeas 286
32.4. Testing a condition With @n @SSErtc.uiiiiiiiiiiii e e e e e 288
Gy S I =0 o 1 0o = A= P 289
32.6. Cleaning up after CONErOl-Cuiiiiiieiiii e e e e e e e e e et e e e e e eanees 290
32.7. A Simple Implementation of a ProgresS Barc.vevvuieiiiiieiiieeii e e e 291
32.8. TraCing @ Variahle ... ccoue i 292
32.9. Running multiple processes (0N an SMP BOX)ooiiiiiiiiiiic e 293
34.1. Numerical and string comparison are Not equIValentc..oeeviiiiiii i, 302
34.2. SUDSHENl PItfallS ..vuneiiei e 306
34.3. Piping the output of echOto areadcoovviiiiiii e 306
I 1= T = o o= N 317
36.2. A dightly more complex Shell WIapPErcoovvniiiiiieie e e 317
36.3. A generic shell wrapper that writesto alogfilecoocoiiiiiiiiiii e, 318
36.4. A shell wrapper around an @WK SCIIPEcvveeiiieii e e e e e 319
36.5. A shell wrapper around another awk SCriptcooviiiiiiiiii e 320
36.6. Perl embedded in @ Bash SCHPLiiiiiiiiie e 321
36.7. Bash and Perl scripts combIiNedocoviiiiiiiii e 321
36.8. Python embedded in @ Bash SCIHPEccvuiiiiii i e e 322
36.9. A SCHPt that SPEAKS ...uiviiiiii e e 322
36.10. A (useless) script that recursively callSitSalfoovviiiii i 323
36.11. A (useful) script that recursively callSitSelfooovviiiiiii 324
36.12. Another (useful) script that recursively callsitselfoooiiiiiiiii 325
36.13. A “colorized” address databaseoovveuiiieiiiiii e 326
LI S B T Yo = oo)N 328
TSI ST (v oo haTe [ero Ko = o I (=>4 AP 332
oI T AN 0= o 0 - 1 < 333
36.17. A PrOgrESS Bl ..ouiiiiiiiiiiit e 349
36.18. REUIN VAIUE tHICKENY ..uiiiiiiiiiee et e e e e e e e e e e e e e e et e e e e e e aaeeaens 351
36.19. Even more return ValuE trICKENYiiue e e e e e e aens 352
36.20. Passing and rEtUNING @ITAYS ...uvvuueeieeieeeiieeaneeste e st s e sae e e e eat e e eae e st e s aeeeanneesenns 353
36.21. FUN WIth @NBOIAIMSiiiiiii e e e e e e e e e e et e et e et e e et e eeanaees 355
36.22. Widgets invoked from a Shell SCriptoiiviiiiicii e 358
T T =~ B) (= PP 361
A IS 1o T =0 o= = Lo o TN 364
37.2. Indirect variable references - the NEBW Wayccouiiiiiiiiiii e 364
37.3. Simple database application, using indirect variable referencingc.ccceeevviiviiieiineennn. 365
37.4. Using arrays and other miscellaneous trickery to deal four random hands from a deck of

(07 10 PSPPI 366

Xi

Advanced Bash-Scripting Guide

37.5. A Simple address databhaseoeviiiieiii i 373
37.6. A somewhat more elaborate address databaseocuvviiviiiiiiiiiii e 374
T B == 110 47 - o = (= TP 375
37.8. ReadiNg N CharaClersoiiiiiiiii e e e e e e e e eaa s 382
37.9. Using a here document to set avariablec.ooiiiiiiii i 382
37.10. Piping iNPUL t0 @ TEAM ... ccvuiiii e e e e e e e e e e e et e eaen 384
37.11. NEQatiVe araly iINAICEScvvuiiiii eaens 384
37.12. Negative parameter in String-extraction CONSIIUCEc.uviviiiiiiiieeiii e 385
A.1l mailformat; Formatting an €-mail MESSA0Ecvvuiiiiiiiiiii e e e e e 394
A.2. rn: A simple-minded file renaming ULtyccoooiiiiii i 395
A.3. blank-rename: Renames filenames containing blanksccocciieiii i 396
A.4. encryptedpw: Uploading to an ftp site, using alocally encrypted passwordcc.uveeeen.. 396
A.5. copy-cd: Copying adata CDcccuuiiiiiiiiiiie e e 397
Y R 0] 1= A= =SSP 398
A.7. days-between: Days between tWO datesocvvuiiiiiiiiii e 400
YN AV - g To = W [1 =1 VN 403
A9, SOUNUEX COMVEISION .uuiiiiiiiieeeitii e e tett s e e eeat s e e eeataeeeettn s e eeeetn s e eeestn s eeeestn s eaeestnaaeeestnaaaeees 403
YN (O a0 N o) I = PSP 406
A.11. Datafile for Game OF LiTe ...o.uuuiiiiiiii e eaees 414
A.12. behead: Removing mail and news message headersc.ccoveviiiiiii i, 414
A.13. password: Generating random 8-character Passwordsccveeiiiieiiiieeiin e 415
A.14. fifo: Making daily backups, using Nnamed PIPESccvvvieiiiiiiii e 416
A.15. Generating prime numbers using the modulo Operatorcccoceviveiiiiieiiieeii e, 417
A.16. tree: Displaying @ dir€CtONY trE8ciuuu i e e e e e e e e e e ees 418
A.17. tree2: Alternate dir€Ctory tre8 SCIIPE «.vu.evivniiii e e e e e e eaaes 419
A.18. string functions: C-style String fUNCLIONSoiiiiiiiiii e 421
A.19. Directory inforMationcouuieiiiieiiii e e e e e e e e e e e e e e e e e e e aans 427
A.20. Library of hash fUNCLIONSuiiiiiiii e e e 437
A.21. Colorizing text using hash fUNCLONSc.uiiiiiiii e 440
A.22. More 0n hash FUNCLIONScooiuiiiiiii e 442
A.23. Mounting USB keychain Storage deviCeSviviiiiiiiiiiiii e 444
A.24, Converting t0 HTIVIL ...ouuiiiiiiii e e e e e e e e e e e et e e e e eaes 47
A.25. PresarvVing WEDIOUScvuiiiii it e e e e e e e e e e e e e e a e aen 450
A.26. Protecting literal SIHNQSoovuiiiiieii e e e e et e e e e e e eeen 451
A.27. UNProtecting literal SIINGSiiii i e e e e e e e e aan s 454
A.28. Spammer [AentifiCaioNcouiiiiiiiiiii e e 456
AL29. SPAMMEE HUNL ..o e e e e e e et e e e e 497
A.30. MBKING WOEL BASIEN £0 USE ..uvuiiieiiiieei et e e e e e e e e e e e e e e et e e et e e st e e e st e e aanaaeanees 502
AN IR AN o0 o (o 1= 11 o =] o 511
A.32. Nightly backup to @fireWir€ HDccovuiiiiiiiii e e 512
A.33. An expanded Cd COMMANGcuuiiiiiiiii e e e e e e e e e e e aanas 519
JANRC7: N AN o W g (o= o RS (0 0 IR o 1 o) P 534
A.35. Locating split paragraphs in atext filecoooiiiiiiiiii e 536
YN T 0= o (o o o A PP 537
A.37. StANAAIA DEVIBLIONiieiii et e et e ettt s e et e e et e e et a e aaee 538
A.38. A pad file generator for shareware authorscocooieiiiiiii e, 540
A.39. A AN PAgE BUITOT ..ovuiiiii e e 545
A.40. Petals Around the ROSEccuuiiiiiiii e 548
A.41. Quacky: a Perquackey-type WOrd QaIMEcovuiiiiieiiieee e e e e e e e e e e e e e eees 551
N 1 o o TP 560
A.43. A command-ling StOPWELCHccuuiiii i 565
A.44. An dl-purpose shell scripting homework assignment solutioncccoeeviiiiiiiiiieciinns 568
A.45, The KNIGNE'S TOUE ..civtiiiii et e e e e e e e e e et e e et e e et e e st e eaanaaes 570
YR Y=o oo (U= - 581

Xii

Advanced Bash-Scripting Guide

AT, FIfIEEN PUZZIE ..ot e e e e e 583
A.48. The Towers of Hanoi, graphiC VEIrSIONccouiiiiiiiiiii e e e e e e 586
A.49. The Towers of Hanoi, alternate graphiC VErSIONccccuiveiiiiiiiiiiiii e 590
A.50. An aternate version of the getopt-simple.sh SCriptoevviiiiiiii e, 594
A.51. The version of the UseGetOpt.sh example used in the Tab Expansion appendiX 597
A.52. Cycling through all the possible color backgroundscccoiiiiiiiiini e 598
A.53. MOIrSe COUE PraCliCeuueiiiiii i ei et e e e et e e e e e e eaanns 599
A.54. Baseb4 encoding/deCodiNgoevuuiiiiieiiii e 602
A.55. Inserting text in afile USING SEOcivniii e 605
A.56. The Gronsfeld CIPheriiii e e e e e e e e ees 606
A.57. BiNGO NUMDET GENEIALOTu.iiiiieiiiieiii e e e e e e e e e e e e e e e e e et e et e eaneeeen 608
A58, BASICS REVIEWEDuvviiiiii e e e e e e e et e e e s e e e e e e e e e e e 611
A.59. Testing execution times of Various COMMENGSccevuieiiiiiiiiiee e e e e e 630
A.60. Associative arrays vs. conventional arrays (EXeCUtioN tIMES)c.vvvvvveviiieiiineeeiiieeieeenen. 631
C.1. Counting LETEr OCCUITENCEScvvtieeiieeeiieeet e et e e et e e et e e et e e et e e et e e st eeat e e et e eetnaeranaens 644
J.1. Completion script for USEGELOPL.SNuuiiiiiciii e e 662
M.L Sample . BAaShr C file ..o 670
M.2. . bash _Profil @ file . 687
N.1. VIEWDATA.BAT: DOS BaCh Fil€cceeiiiieiiiee e 691
N.2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT ... 692
T.1. A script that generates an ASCH table ...o.veiieiiii e 714
T.2. ANOther ASCI tahl@ SCIIPE c.vuiiii e e e e e e e e aans 715
T.3. A third ASCII table SCript, USING AWKcuuiiiiieiiiieei e e e e e s e e e e e e aanees 715

Xiii

Part Part 1. Introduction

Script: Awriting; a written document. [Obs.]

--Webster's Dictionary, 1913 ed.

The shell is a command interpreter. More than just the insulating layer between the operating system kernel and the
user, it's also a fairly powerful programming language. A shell program, called a script, is an easy-to-use tool for
building applications by “gluing together” system calls, tools, utilities, and compiled binaries. Virtually the entire
repertoire of UNIX commands, utilities, and toolsis available for invocation by a shell script. If that were not enough,
internal shell commands, such as testing and loop constructs, lend additional power and flexibility to scripts. Shell
scripts are especially well suited for administrative system tasks and other routine repetitive tasks not requiring the
bells and whistles of afull-blown tightly structured programming language.

Table of Contents

1. Shell Programming!l oo e et eene 3
2. Starting Off With @ SNarBangooeieiiiiiiii e 6
INVOKING ThE SCITPL «.eeee et e e et e e et eeeena e e e 10
Preliminary EXEICISESttt 10

Chapter 1. Shell Programming!

No programming language is perfect. There is not even a single best language; there are only languages
well suited or perhaps poorly suited for particular purposes.

--Herbert Mayer

A working knowledge of shell scripting is essential to anyone wishing to become reasonably proficient at
system administration, even if they do not anticipate ever having to actually write ascript. Consider that as
aLinux machine boots up, it executesthe shell scriptsin/ et ¢/ r c. d to restore the system configuration
and set up services. A detailed understanding of these startup scriptsisimportant for analyzing the behavior
of asystem, and possibly modifying it.

The craft of scripting isnot hard to master, since scripts can be built in bite-sized sections and thereis only
afairly small set of shell-specific operators and options Ltolearn. The syntax is simple -- even austere --
similar to that of invoking and chaining together utilities at the command line, and there are only a few
“rules’ governing their use. Most short scripts work right the first time, and debugging even the longer
onesis straightforward.

In the early days of personal computing, the BASIC language enabled
anyone reasonably computer proficient to write programs on an early
generation of microcomputers. Decades | ater, the Bash scripting
language enables anyone with a rudimentary knowledge of Linux or
UNIX to do the same on modern machines.

We now have miniaturized single-board computers with amazing
capabilities, such as the Raspberry Pi [http://www.raspberrypi.org/].
Bash scripting provides away to explore the capabilities of these
fascinating devices.

A shell script is a quick-and-dirty method of prototyping a complex application. Getting even a limited
subset of the functionality to work in a script is often a useful first stage in project development. In this
way, the structure of the application can be tested and tinkered with, and the major pitfalls found before
proceeding to the final coding in C, C++, Java, Perl, or Python.

Shell scripting hearkens back to the classic UNIX philosophy of breaking complex projects into simpler
subtasks, of chaining together components and utilities. Many consider this a better, or at least more aes-
thetically pleasing approach to problem solving than using one of the new generation of high-powered all-
in-one languages, such as Perl, which attempt to be all thingsto all people, but at the cost of forcing you
to alter your thinking processesto fit the tool.

According to Herbert Mayer, “a useful language needs arrays, pointers, and a generic mechanism for
building data structures.” By these criteria, shell scripting falls somewhat short of being “useful.” Or,
perhapsnaot. . . .

These are referred to as builtins, features internal to the shell.

http://www.raspberrypi.org/
http://www.raspberrypi.org/

Shell Programming!

When not to use shell scripts
» Resource-intensive tasks, especially where speed is afactor (sorting, hashing, recursion 2)

 Procedures involving heavy-duty math operations, especially floating point arithmetic, arbitrary
precision calculations, or complex numbers (use C++ or FORTRAN instead)

 Cross-platform portability required (use C or Java instead)

» Complex applications, where structured programming is a necessity (type-checking of variables,
function prototypes, etc.)

e Mission-critical applications upon which you are betting the future of the company

« Situations where security isimportant, where you need to guarantee the integrity of your system
and protect against intrusion, cracking, and vandalism

» Project consists of subcomponents with interlocking dependencies

» Extensivefile operations required (Bash is limited to serial file access, and that only in a partic-
ularly clumsy and inefficient line-by-line fashion.)

* Need native support for multi-dimensiona arrays

* Need data structures, such as linked lists or trees

» Need to generate / manipulate graphics or GUIs

» Need direct access to system hardware or external peripherals
» Need port or socket I/0

» Need to use libraries or interface with legacy code

 Proprietary, closed-source applications (Shell scripts put the source code right out in the open
for al the world to see.)

If any of the above applies, consider amore powerful scripting language-- perhaps Perl, Tcl, Python,
Ruby -- or possibly a compiled language such as C, C++, or Java. Even then, prototyping the
application as a shell script might still be a useful development step.

Wewill be using Bash, an acronym 3for« Bourne-Again shell” and apun on Stephen Bourne'snow classic
Bourne shell. Bash has become adefacto standard for shell scripting on most flavors of UNIX. Most of the
principles this book covers apply equally well to scripting with other shells, such as the Korn Shell, from
which Bash derives some of its features, % and the C Shell and its variants. (Notethat C Shell programming
is not recommended due to certain inherent problems, as pointed out in an October, 1993 Usenet post
[http://Iwww.fags.org/fags/unix-fag/shell/csh-whynot/] by Tom Christiansen.)

What follows is atutorial on shell scripting. It relies heavily on examples to illustrate various features of
the shell. The example scripts work -- they've been tested, insofar as possible -- and some of them are

2AIthough recursion is possible in ashell script, it tends to be slow and its implementation is often an ugly kludge.

3An acronymis an ersatz word formed by pasting together the initial letters of the words into a tongue-tripping phrase. This morally corrupt and
pernicious practice deserves appropriately severe punishment. Public flogging suggests itself.

M any of the features of ksh88, and even afew from the updated ksh93 have been merged into Bash.

http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/
http://www.faqs.org/faqs/unix-faq/shell/csh-whynot/

Shell Programming!

even useful in real life. The reader can play with the actual working code of the examples in the source
archive (scri pt nanme. sh or scri pt nane. bash), 5 give them execute permission (chnod u+r x
scri pt nane), then run them to see what happens. Should the source archive [http://bash.deta.in/abs-
guide-latest.tar.bz2] not be available, then cut-and-paste from the HTML [http://www.tldp.org/L DP/abs/
abs-guide.html.tar.gz] or pdf [http://bash.deta.in/abs-guide.pdf] rendered versions. Be aware that some of
the scripts presented here introduce features before they are explained, and this may require the reader to
temporarily skip ahead for enlightenment.

Unless otherwise noted, the author [mailto:thegrendel .abs@gmail.com] of this book wrote the example
scripts that follow.

His countenance was bold and bashed not.

--Edmund Spenser

5By convention, user-written shell scriptsthat are Bourne shell compliant generally takeanamewith a. sh extension. System scripts, such asthose
foundin/ et c/ rc. d, do not necessarily conform to this nomenclature.

http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://www.tldp.org/LDP/abs/abs-guide.html.tar.gz
http://bash.deta.in/abs-guide.pdf
http://bash.deta.in/abs-guide.pdf
mailto:thegrendel.abs@gmail.com
mailto:thegrendel.abs@gmail.com

Chapter 2. Starting Off With a Sha-
Bang

Shell programming isa 1950s juke box . . .
--Larry Wall

In the simplest case, a script is nothing more than alist of system commands stored in afile. At the very
least, this saves the effort of retyping that particular sequence of commands each time it isinvoked.

Example 2.1. cleanup: A script to clean up log filesin /var/log

C eanup
Run as root, of course.

cd /var/log

cat /dev/null > nessages

cat /dev/null > wtnp

echo "Log files cleaned up."

There is nothing unusual here, only a set of commands that could just as easily have been invoked one
by one from the command-line on the console or in a terminal window. The advantages of placing the

commands in a script go far beyond not having to retype them time and again. The script becomes a
program -- atool -- and it can easily be modified or customized for a particular application.

Example 2.2. cleanup: An improved clean-up script

#! / bi n/ bash
Proper header for a Bash script.

C eanup, version 2

Run as root, of course.
Insert code here to print error nessage and exit if not root.

LOG Dl R=/var/ | og
Variabl es are better than hard-coded val ues.
cd $LOG DI R

cat /dev/null > messages

cat /dev/null > wtnp

echo "Logs cl eaned up."

exit # The right and proper nmethod of "exiting" froma script.
A bare "exit" (no paraneter) returns the exit status

#+ of the precedi ng comrand.

Now that's beginning to look like areal script. But we can go even farther . . .

Starting Off With a Sha-Bang

Example 2.3. cleanup: An enhanced and generalized version of above scripts.

#1/ bi n/ bash
C eanup, version 3

\Warning
H oo
This script uses quite a nunmber of features that will be expl ained

#+ |l ater on.
By the time you' ve finished the first half of the book
#+ there should be nothing nmysterious about it.

LOG Dl R=/var/ | og

ROOT_Ul D=0 # Only users with $U D 0 have root privileges.
LI NES=50 # Default nunber of |ines saved.
E XCD=86 # Can't change directory?

E _NOTROOT=87 # Non-root exit error

Run as root, of course.

if ["$U D' -ne "$ROOT_UI D']

t hen
echo "Must be root to run this script.”
exit $E_NOTROOT

f

if [-n"$1"]
Test whether command-line argunent is present (non-enpty).
t hen

i nes=$1
el se

[ines=$LINES # Default, if not specified on comrand-Iine.
f

Stephane Chazel as suggests the foll ow ng,
#+ as a better way of checking commuand-|ine argunents,

#+ but this is still a bit advanced for this stage of the tutorial
#

E WRONGARGS=85 # Non-numerical argunent (bad argument format).
#

case "$1" in

") 1ines=50;;

[10-9]) echo "Usage: "basenanme $0° |ines-to-cleanup”;

exit $E_WVRONGARGS; ;

*) lines=%$1;

esac

#

#* Ski p ahead to "Loops" chapter to deci pher all this.

cd $LOG DIR

Starting Off With a Sha-Bang

if ["pwd != "$LOGDIR] #or if ["$PW' != "$LOG DIR']
Not in /var/log?
t hen
echo "Can't change to $LOG DR "
exit $E_XCD

fi # Doublecheck if in right directory before messing with log file.

Far nore efficient is:

#

cd /var/log || {

echo "Cannot change to necessary directory." >&

exit $E_XCD;

#}

tail -n $lines nmessages > nesg.tenp # Save | ast section of nessage log file.
nv mesg.tenp nessages # Rename it as systemlog file.

cat /dev/null > messages
#* No | onger needed, as the above nethod is safer.

cat /dev/null >wnmp # ': >wnmp' and '> wnp' have the sanme effect.
echo "Log files cleaned up.”

Note that there are other log files in /var/log not affected

#+ by this script.

exit O
A zero return value fromthe script upon exit indicates success
#+ to the shell.

Since you may not wish to wipe out the entire system log, this version of the script keeps the last section
of the message log intact. Y ou will constantly discover ways of fine-tuning previously written scripts for
increased effectiveness.

* % %

The sha-bang (#!) 1 at the head of ascript tells your system that thisfileis a set of commands to be fed
to the command interpreter indicated. The#! isactually atwo-byte 2 magic number, aspecial marker that
designates afiletype, or in this case an executable shell script (type man nagi ¢ for more details on this
fascinating topic). Immediately following the sha-bang is a path name. This is the path to the program
that interprets the commandsin the script, whether it be ashell, a programming language, or a utility. This
command interpreter then executes the commands in the script, starting at the top (the line following the
sha-bang line), and ignoring comments. 3

More commonly seen in the literature as she-bang or sh-bang. This derives from the concatenation of the tokens sharp (#) and bang (!).
2someflavorsof UNIX (those based on 4.2 BSD) allegedly take afour-byte magic number, requiring ablank after the! --#! / bi n/ sh. According
to Sven Mascheck [http://www.in-ulm.de/~mascheck/various/shebang/#detail 5] this is probably a myth.

3The #! linein ashell script will be the first thing the command interpreter (sh or bash) sees. Since this line begins with a#, it will be correctly
interpreted as a comment when the command interpreter finally executes the script. The line has already served its purpose - calling the command
interpreter.

If, in fact, the script includes an extra # line, then bash will interpret it as a comment.

8

http://www.in-ulm.de/~mascheck/various/shebang/#details
http://www.in-ulm.de/~mascheck/various/shebang/#details
http://www.in-ulm.de/~mascheck/various/shebang/#details

Starting Off With a Sha-Bang

#!'/ bin/sh

#!/ bi n/ bash
#1/ usr/ bi n/ perl
#!'/usr/bin/tcl
#!/bin/sed -f
#!/bin/ ank -f

Each of the above script header linescallsadifferent command interpreter, beit/ bi n/ sh, thedefault shell
(bash inaLinux system) or otherwise. 4Us ng#! / bi n/ sh, thedefault Bourne shell in most commercial
variants of UNIX, makes the script portable to non-Linux machines, though you sacrifice Bash-specific
features. The script will, however, conform to the POSIX 5 sh standard.

Note that the path given at the “sha-bang” must be correct, otherwise an error message -- usually “Com-
mand not found.” -- will be the only result of running the script. 6

#! can be omitted if the script consistsonly of aset of generic system commands, using no internal shell di-
rectives. The second exampl e, above, requirestheinitial #!, sincethevariableassignment line, | i nes=50,
uses a shell-specific construct. " Note again that #! / bi n/ sh invokesthe default shell interpreter, which

defaultsto/ bi n/ bash on aLinux machine.
Tip

This tutorial encourages a modular approach to constructing a script. Make note of and collect
“boilerplate’ code snippets that might be useful in future scripts. Eventually you will build quite
an extensive library of nifty routines. As an example, the following script prolog tests whether
the script has been invoked with the correct number of parameters.

#!/ bi n/ bash

echo "Part 1 of script."
a=1

#! / bi n/ bash
This does *not* | aunch a new script.

echo "Part 2 of script."
echo $a # Value of $a stays at 1.
“*This allows some cute tricks.

#!/bin/rm
Sel f-del eting script.

Not hi ng nmuch seenms to happen when you run this... except that the file di sappears.
WHATEVER=85
echo "This line will never print (betcha!)."

exit $WHATEVER # Doesn't matter. The script will not exit here.
Try an echo $? after script termnation.
You'll get a 0, not a 85.

Also, try starting a READVE filewith a#! / bi n/ nor e, and making it executable. Theresult isa self-listing documentation file. (A here document

using cat is possibly a better alternative -- see Example 19.3, “Multi-line message using cat”).

SPortable Operating System I nterface, an attempt to standardize UNIX-like OSes. The POSIX specifications are listed on the Open Group site

[http://www.opengroup.org/onlinepubs/007904975/toc.htm].

%To avoid this possibility, a script may begin with a #!/bin/env bash sha-bang line. This may be useful on UNIX machines where bash is not

located in/ bi n

"If Bash is your default shell, then the #! isn't necessary at the beginning of a script. However, if launching a script from a different shell, such

as tesh, then you will need the #.

http://www.opengroup.org/onlinepubs/007904975/toc.htm
http://www.opengroup.org/onlinepubs/007904975/toc.htm

Starting Off With a Sha-Bang

E_VRONG_ARGS=85
script_paraneters="-a -h -m-z"
-a =all, -h = help, etc.

if [$# -ne $Nunber_of _expected_args]

t hen
echo "Usage: " basenane $0° $script_paraneters”
“basenane $0° is the script's fil enane.
exit $E_WRONG ARGS

fi

Many times, you will write a script that carries out one particular task. The first script in this
chapter is an example. Later, it might occur to you to generalize the script to do other, similar
tasks. Replacing the literal (“hard-wired”) constants by variablesis a step in that direction, asis
replacing repetitive code blocks by functions.

Invoking the script

Having writtenthe script, you caninvokeitby sh scri pt narre,soralternativelybash scri pt nane.
(Not recommended is using sh <scri pt nane, since this effectively disables reading from st di n
within the script.) Much more convenient isto make the script itself directly executable with a chmod.

Either: chnod 555 scri pt nane (gives everyone read/execute permission) o
or chnod +rx scri pt nanme (gives everyone read/execute permission)
chnmod u+rx scri pt nane (givesonly the script owner read/execute permission)

Having made the script executable, you may now testit by . / scri pt nane. 1004 it begins with a*“ sha-
bang” line, invoking the script calls the correct command interpreter to run it.

Asafina step, after testing and debugging, you would likely want to moveitto/ usr /| ocal / bi n (as
root, of course), to make the script available to yourself and all other users as a systemwide executable.
The script could then be invoked by simply typing scriptname [ENTER] from the command-line.

Preliminary Exercises

1. System administrators often write scriptsto automate common tasks. Give several instanceswhere such
scripts would be useful.

2. Write a script that upon invocation shows the time and date, lists all logged-in users, and gives the
system uptime. The script then saves thisinformation to alogfile.

Scaution: invoking aBash script by sh - scri pt namne turns off Bash-specific extensions, and the script may therefore fail to execute.

°A script needs read, as well as execute permission for it to run, since the shell needs to be able to read it.

10Why not simply invoke the script with scr i pt nane? If the directory you arein ($PWD) iswhere scr i pt nane islocated, why doesn't this
work? This fails because, for security reasons, the current directory (. /) is not by default included in a user's $PATH. It is therefore necessary to
explicitly invoke the script in the current directory witha. / scri pt nane.

10

Part Part 2. Basics

Table of Contents

3. SPECIAI CRBIECTEIS ...ttt ettt 13
4. Introduction to Variables and Parameersc.uuiiiiiiiiieiii e 24
Variable SUBSEITULIONueiiiii e eeeas 24
Variable ASSIONMENT ...ttt 24
Bash Variabhles Are UNLYPEUoiiiiiiiiii et 24
SpecCial Variable TYPES ... et e e 25
B QUOLING ettt ettt ettt ettt r e 32
QUOLING VAITAIDIES ... e 32
=S o= 0] oo E PSP PPPPTT 35
6. EXIt @N0 EXIT SEAIUSieeeitieeieei ettt ettt e e et e e et e 39
A L= TP PPTTPPPPT 42
TESE CONSIIUCES ...ttt ettt et e e e e e et e e e e e e neeaaaeens 42
Fil@ TESL OPEIBLOIS ... eeeett ettt ettt ettt e e et et ear e e e et e e enaans 51
Other ComPAriSON OPEIAIOISceeeeieeeiii ettt et e ettt e e et e et e e e e e enea s 55
Nested i f/then Condition TESISuuiiiiiii e e 61
Testing Your KNOwledge Of TESESc.vuiiiiiiiiie it 61
8. Operations and REGEd TOPICSiiereiieiiiiie ettt 62
1007 = 0] £ TSP 62
NUMENTICEl CONSLANES ... ettt et e e et e e b 63
The Double-Parentheses CONSITUCTuiiiiiiiieeiii e 65
OPErator PrECEOENCEevti ittt ettt ettt a b eenaans 66

12

Chapter 3. Special Characters

What makes a character special? If it has a meaning beyond its literal meaning, a meta-meaning, then we
refer to it as a special character. Along with commands and keywords, special characters are building
blocks of Bash scripts.

Special Characters Found In Scriptsand Elsewhere

#

n&, &

partial quoting [double quote]. "STRING" preserves (from interpreta-
tion) most of the specia characterswithin STRING. See Chapter 5, Quoting.

full quoting [single quote]. 'STRING' preserves all special characters
within STRING. This is a stronger form of quoting than "STRING". See
Chapter 5, Quoting.

, comma operator. The comma operator Hinks together a series of arith-
metic operations. All are evaluated, but only the last oneis returned.

let "t2 = ((a=9, 15/ 3))"
Set "a = 9" and "t2 = 15 / 3"

The comma operator can also concatenate strings.

for file in /{,usr/}bin/*calc

n Find all executable files ending in "calc"
#+ in /bin and /usr/bin directories.
do

if [-x "$file"]
t hen
echo $file
fi
done

/bin/ipcalc

[usr/bin/kcal c

/usr/ bin/oidcal c
/[usr/ bin/oocal c

An operator is an agent that carries out an operatiol .S?meex ples are the comm ithmetic opergtors, + - * /. In Bagh, therg is some oyerlap
between the concepts of operator and keyword. B hanﬂmyou, hEeory W hSton P F o poi nti ng FRIS TR

. L ower case conversion in parameter substitution (added in version 4 of
Bash). 13

\ escape [backslash]. A quoting mechanism for single characters.

Special Characters

\ X escapesthe character X. This hasthe effect of “quoting” X, equivalent to
'X'. The\ may be used to quote " and ', so they are expressed literally.

See Chapter 5, Quoting for an in-depth explanation of escaped characters.

/ Filename path separator [forward slash]. Separates the components of
afilename (asin/ hone/ bozo/ pr oj ect s/ Makefi | e).

Thisisalso the division arithmetic operator.

command substitution. The ‘command’ construct makes available the
output of command for assignment to avariable. Thisisalso known as back-
quotes or backticks.

3

$, 3@
$?

0 command group.

(a=hel l 0; echo $a)
I mportant

A listing of commands within par ent heses starts a subshell.

Variables inside parentheses, within the subshell, are not visible to
the rest of the script. The parent process, the script, cannot read
variables created in the child process, the subshell.

a=123
(a=321;)

echo "a = $a" # a = 123
"a" within parentheses acts like a local variable.

array initialization.

Array=(el ement1l el ement 2 el enent 3)

14
{xxx,yyy,zzz,...}

{a.z}

Special Characters

{\ pathname. Mostly used in find constructs. Thisis not a shell builtin.

Definition: A pathname is a filename that includes the com-
plete path. As an example, / honme/ bozo/ Not es/ Thur s-
day/ schedul e. t xt . Thisis sometimesreferred to asthe absolute
path.

Note

The “;” ends the - exec option of a find command seguence. It
needs to be escaped to protect it from interpretation by the shell.

[]
[
[]

[]

9 ...]
()

>E>>8 >><<>

<< redirection used in a here document.
<<< redirection used in a here string.
<, >
\<, \>
|
>|
I
& Run job in background. A command followed by an & will run in the
background.
bash$ sleep 10 &
[1] 850
[1]+ Done sl eep 10

Within a script, commands and even |oops may run in the background.

Example 3.3. Running a loop in the background

#!/ bi n/ bash

backgr oung | oop. sh

for i in123456782910 # First |oop.
do

.

Special Characters

&&

for i in 11 12 13 14 15 16 17 18 19 20 # Second | oop
do

echo -n "$i "
done

echo # This 'echo' sonetimes will not display.

The expected output fromthe script:
12345678910
11 12 13 14 15 16 17 18 19 20

H* H H*

Soneti mes, though, you get:

11 12 13 14 15 16 17 18 19 20
123456789 10 bozo $

(The second 'echo’ doesn't execute. \Wy?)

HHHH

Qccasional Iy al so:
123456789 10 11 12 13 14 15 16 17 18 19 20
(The first 'echo' doesn't execute. Wy?)

H* H H*

Very rarely sonething |ike:
11 12 131234567 89 10 14 15 16 17 18 19 20
The foreground | oop preenpts the background one.

exit O

Nasinmuddi n Ansari suggests addi ng sleep 1
#+ after the echo -n "$i " inlines 6 and 14,
#+ for some real fun.

Caution

A command run in the background within a script may cause the
script to hang, waiting for a keystroke. Fortunately, thereisarem-
edy for this.

option, prefix. Option flag for acommand or filter. Prefix for an operator.
Prefix for adefault parameter in parameter substitution.

COWAND -[Optionl][Option2][...]
Is -al

sort -dfu $filename

if [$filel -ot $file2]

then # "

echo "File $filel is older than $file2."
fi

if ["$a" -eq "$b"]

16

Special Characters

then # "
echo "$a is equal to $b."
fi
if ["$c" -eq 24 -a "$d" -eq 47]
then # " "

echo "$c equals 24 and $d equals 47."
fi

par an2=${ par ant: - $DEFAULTVAL}
AN

The double-dash - - prefixes long (verbatim) options to commands.
sort --ignore-|eadi ng-bl anks

Used with a Bash builtin, it means the end of options to that particular com-
mand.

Tip
This provides a handy means of removing fileswhose names begin

with a dash.

bash$ |Is -I
-rwr--r-- 1 bozo bozo 0 Nov 25 12: 29 -badnane

bash$ rm -- -badnane

bash$ |Is -I
total O

The double-dash is also used in conjunction with set.

set -- $vari abl e (asin Example 15.18, “Reassigning the positional
parameters’)

previous working directory. A cd - command changes to the previous
working directory. This uses the $OLDPWD environmental variable.

Caution

Do not confuse the “-" used in this sense with the “-" redirection
operator just discussed. Theinterpretation of the“-" dependsonthe
context in which it appears.

Minus. Minussign in an arithmetic operation.

Equals. Assignment operator

17

Special Characters

%

Control Characters

a=28
echo $a # 28

In adifferent context, the “=" is a string comparison operator.
Plus. Addition arithmetic operator.
In adifferent context, the + is a Regular Expression operator.

Option. Option flag for acommand or filter.

Certain commands and builtins use the + to enabl e certain options and the -
to disable them. In parameter substitution, the + prefixesan alternate value
that a variable expands to.

modulo. Modulo (remainder of a division) arithmetic operation.

let "z =5 %3"
echo $z # 2

In adifferent context, the % is a pattern matching operator.

homedirectory[tilde]. Thiscorrespondstothe$HOME internal variable.
~bozo isbozo's home directory, and Is ~bozo lists the contents of it. ~/ is
the current user's home directory, and Is ~/ lists the contents of it.

bash$ echo ~bozo
/ hone/ bozo

bash$ echo ~
/ hone/ bozo

bash$ echo ~/
/ hone/ bozo/

bash$ echo ~:
/ hone/ bozo:

bash$ echo ~nonexi st ent-user
~nonexi st ent - user

current workingdirectory. Thiscorrespondsto the $PWD internal vari-
able.

previousworkingdirectory. Thiscorrespondsto the$SOLDPWD interna
variable.

regular expression match. This operator was introduced with version 3
of Bash.

Uppercase conversion in parameter substitution (added in version 4 of
Bash).

change the behavior of theterminal or text display. A control charac-
terisaCONTROL + key combination (pressed simultaneously). A control

18

Special Characters

character may also be written in octal or hexadecimal notation, following
an escape.

Control characters are not normally useful inside a script.
s OXI-A

Moves cursor to beginning of line of text (on the command-line).
s Ctl-B

Backspace (nondestructive).

ctl-C

Br eak. Terminate a foreground job.

Ctl-D
Log out from a shell (similar to exit).
EOF (end-of-file). This also terminatesinput from st di n.

When typing text on the console or in an xtermwindow, Ct | - Derasesthe
character under the cursor. When there are no characters present, Ct | -
D logs out of the session, as expected. In an xterm window, this has the
effect of closing the window.

« OtI-E
Moves cursor to end of line of text (on the command-line).
s CtI-F

Moves cursor forward one character position (on the command-line).

al-G

BEL . On some old-time teletype terminals, thiswould actually ring abell.
In an xterm it might beep.

cl-H

Rubout (destructive backspace). Erases charactersthe cursor backs over
while backspacing.

#!/ bi n/ bash
Enbedding Ctl-Hin a string.

a=""H'H' # Two Ctl-H s -- backspaces

19

Special Characters

ctl-V ctl-H using vi/vim

echo "abcdef" # abcdef

echo

echo -n "abcdef$a " # abcd f

Space at end ~ N Backspaces tw ce.

echo

echo -n "abcdef $a" # abcdef

No space at end N Doesn't backspace (why?).

Results may not be quite as expec
echo; echo

Const anti n Hagenei er suggests trying:
a=$'\ 010\ 010

a=$%$'\ b\ b’

a=$'\ x08\ x08'

But, this does not change the results.

H R

BREHHHHR AR AR AR
Now, try this.
rubout =" "H"H H"\H*\H' #5 x ¢l-H

echo -n "12345678"
sl eep 2
echo -n "$rubout"”
sl eep 2

Cl-1

Hori zontal tab.

cl-J

Newl i ne (linefeed). In ascript, may also be expressed in octal notation
--\012' or in hexadecimal -- '\x0a.

al-K
Vertical tab.

When typing text on the console or in an xterm window, Ct | - K erases
from the character under the cursor to end of line. Within a script, Ct | -
K may behave differently, asin Lee Lee Maschmeyer's example, below.

ctl-L

For nf eed (clear the terminal screen). In a terminal, this has the same
effect as the clear command. When sent to aprinter, aCt | - L causes an
advance to end of the paper sheet.

cl-M

20

Special Characters

Carriage return

#!/ bi n/ bash
Thank you, Lee Maschneyer, for this exanple.

read -n 1 -s -p\
$' Control -M | eaves cursor at beginning of this line. Press FEr
OF course, '0d" is the hex equivalent of Contro
echo >&2 # The '-s' makes anything typed silent,
#+ so it is necessary to go to new line explicitly

read -n 1 -s -p $ Control-J | eaves cursor on next line. \x0a
'0a is the hex equivalent of Control-J, linefe

echo >&2

fizzzzd

read -n 1 -s -p $ And Control - K\ xObgoes strai ght down.'
echo >&2 # Control-Kis vertical tab

A better exanple of the effect of a vertical tab is:

var=$'\x0aThis is the bottomI|ine\x0ObThis is the top Iine\x0e

echo "$var"
This works the same way as the above exanpl e. However:
echo "$var" | col

This causes the right end of the line to be higher than ttr
1t also explains why we started and ended with a line feec
#+ to avoid a garbl ed screen.
As Lee Maschmeyer expl ains:
In the [first vertical tab exanple] . . . the vertical tak
#+ makes the printing go straight down wi thout a carriage ret
This is true only on devices, such as the Linux console,
#+ that can't go "backward."
The real purpose of VI is to go straight UP, not down.
1t can be used to print superscripts on a printer
The col utility can be used to enul ate the proper behavi or
exit O

« CtI-N
Erases aline of text recalled from history buffer 8 (on the command-line).

« CI-0

I ssues a newline (on the command-line).

. Ql-P

8Bash storesalist of commands previously issued from the command-linein abuffer, or memory space, for recall with the builtin history commands.

21

Special Characters

Recalls last command from history buffer (on the command-line).
al-Q

Resume (XON).

Thisresumesst di n inaterminal.

al-R

Backwards search for text in history buffer (on the command-line).
cl-s

Suspend (XOFF).

Thisfreezesst di n inaterminal. (Use Ctl-Q to restore input.)
-7

Reverses the position of the character the cursor is on with the previous
character (on the command-line).

al-uU

Erase a line of input, from the cursor backward to beginning of line. In
some settings, Ct | - U erases the entire line of input, regardless of cursor
position.

cl-v

When inputting text, Ct | - V permitsinserting control characters. For ex-
ample, the following two are equivalent:

echo -e "\ x0a'
echo <Ctl-V><Ctl -J>

Ct | - Visprimarily useful from within atext editor.

al-wW

When typing text on the console or in an xterm window, Ct | - Weras-
es from the character under the cursor backwards to the first instance of
whitespace. In some settings, Ct | - Werases backwards to first non-al-
phanumeric character.

al-X

In certain word processing programs, Cuts highlighted text and copies to
clipboard.

-y
Pastes back text previously erased (withCt | - Uor Ct | - W.

al-z

22

Special Characters

Pauses a foreground job.
Substitute operation in certain word processing applications.
EOF (end-of-file) character in the MSDOS filesystem.

Whitespace functions as a separ ator between commands and/or variables. White-
space consists of either spaces, tabs, blank lines, or any combination thereof.
91n some contexts, such as variable assi gnment, whitespaceisnot permitted,
and results in asyntax error.

Blank lines have no effect on the action of a script, and are therefore useful
for visually separating functional sections.

$IFS, the special variable separating fields of input to certain commands. It
defaults to whitespace.

Definition: A field is a discrete chunk of data expressed as a
string of consecutive characters. Separating each field from adjacent
fields is either whitespace or some other designated character (often
determined by the $IFS). In some contexts, a field may be called a
record.

To preserve whitespace within a string or in avariable, use quoting.

UNIX filterscan target and operate on whitespace using the POSI X character
class[:spacel].

%A linefeed (newline) is also awhitespace character. This explains why a blank line, consisting only of alinefeed, is considered whitespace.

23

Chapter 4. Introduction to Variables
and Parameters

Variables are how programming and scripting languages represent data. A variable is nothing more than
alabel, a name assigned to alocation or set of locations in computer memory holding an item of data.

Variables appear in arithmetic operations and manipulation of quantities, and in string parsing.

Variable Substitution

The name of avariable is a placeholder for its value, the data it holds. Referencing (retrieving) its value
is called variable substitution.

$

Variable Assignment

Bash Variables Are Untyped

Unlike many other programming languages, Bash does not segregate its variables by “type.” Essentially,
Bash variables are character strings, but, depending on context, Bash permits arithmetic operations and
comparisons on variables. The determining factor is whether the value of a variable contains only digits.

Example 4.4. Integer or string?

#1/ bi n/ bash
int-or-string.sh

a=2334 # | nteger.
let "a += 1"
echo "a = $a " # a = 2335
echo # Integer, still.
b=${a/ 23/ BB} # Substitute "BB" for "23".
This transforms $b into a string.
echo "b = $b" # b = BB35
declare -i b # Declaring it an integer doesn't help.
echo "b = $b" # b = BB35
let "b += 1" # BB35 + 1
echo "b = $b" #b =1
echo # Bash sets the "integer value" of a string to O.

24

Introduction to Vari-
ables and Parameters

c=BB34

echo "¢ = $c" # c = BB34

d=%${ c/ BB/ 23} # Substitute "23" for "BB"
This makes $d an integer

echo "d = $d" # d = 2334

let "d += 1" # 2334 + 1

echo "d = $d" # d = 2335

echo

What about null vari abl es?

e="" # O e="" ... O e=

echo "e = $e" # e =

let "e += 1" # Arithmetic operations allowed on a null variabl e?
echo "e = $e" #e=1

echo # Null variable transfornmed into an integer.

\What about undecl ared vari abl es?

echo "f = $f" #f =

let "f += 1" # Arithmetic operations all owed?

echo "f = $f" #f =1

echo # Undecl ared variable transformed into an integer.
#

However

let "f /= $undecl _var" # Divide by zero?

let: f /=: syntax error: operand expected (error token is " ")
Syntax error! Variable $undecl _var is not set to zero here!

#

But still

let "f /= 0"

let: f /= 0: division by O (error token is "0")
Expected behavi or.

Bash (usually) sets the "integer value" of null to zero
#+ when performng an arithmetic operation.

But, don't try this at hone, folks!

1t's undocunented and probably non-portabl e behavior.

Conclusion: Variables in Bash are untyped,
#+ with all attendant consequences.

exit $?

Untyped variables are both a blessing and a curse. They permit more flexibility in scripting and make it
easier to grind out lines of code (and give you enough rope to hang yourself!). However, they likewise
permit subtle errorsto creep in and encourage sloppy programming habits.

To lighten the burden of keeping track of variable typesin a script, Bash does permit declaring variables.

Special Variable Types

Local vari abl es

25

Introduction to Vari-
ables and Parameters

Variables visible only within a code block or function (see also local
variablesin functions)

Envi ronnent al vari abl es
Variables that affect the behavior of the shell and user interface

Note

In a more general context, each process has an “environ-
ment”, that is, a group of variables that the process may
reference. In this sense, the shell behaves like any other
process.

Every time a shell starts, it creates shell variables that cor-
respond to its own environmental variables. Updating or
adding new environmental variables causes the shell to up-
dateits environment, and all the shell's child processes (the
commands it executes) inherit this environment.

Caution

The space dlotted to the environment is limited. Creating
too many environmental variables or ones that use up ex-
cessive space may cause problems.

bash$ eval "“seq 10000 | sed -e 's/.*/export var&=Z77Z,

bash$ du
bash: /usr/bin/du: Argunent list too |ong

Note: this“error” hasbeen fixed, asof kernel version 2.6.23.

(Thank you, Stéphane Chazelasfor the clarification, and for
providing the above example.)

If a script sets environmental variables, they need to be “exported,”
that is, reported to the environment local to the script. This is the
function of the export command.

Note

A script can export variablesonly to child processes, that is,
only to commands or processes which that particular script
initiates. A script invoked from the command-linecannot
export variables back to the command-line environment.
Child processes cannot export variables back to the parent
processes that spawned them.

Definition: A child processis a subprocess launched
by another process, its parent.

Posi tional paraneters

26

Introduction to Vari-
ables and Parameters

Arguments passed to the script from the command line 2: %0, $1,
$2,$3 ...

$0 is the name of the script itself, $1 is the first argument, $2 the
second, $3 the third, and so forth. 3 After $9, the arguments must
be enclosed in brackets, for example, ${ 10}, ${ 11}, ${ 12} .

The special variables$* and $@ denote all the positional parameters.

Example 4.5. Positional Parameters
#!/ bi n/ bash

Call this script with at | east 10 paraneters, for exanpl
./scriptname 1 2 3456 7 8 9 10
M NPARAMS=10

echo

echo "The nanme of this script is \"$0\"."

Adds ./ for current directory

echo "The nane of this script is \" basenanme $0°\"."
Strips out path nanme info (see 'basenane')

echo

if [-n"$1"] # Tested variable is quoted.
t hen

echo "Parameter #1 is $1" # Need quotes to escape #
fi

if [-n"$2"]
t hen

echo "Paraneter #2 is $2"
fi

if [-n "$3"]
t hen

echo "Paranmeter #3 is $3"
fi

...

°Note that functions also take positional parameters.
3The process calling the script sets the $0 parameter. By convention, this parameter is the name of the script. See the manpage (manual page)
for execv.

From the command-line, however, $0 is the name of the shell.

bash$ echo $0
bash

tcsh% echo $0
tcsh

27

Introduction to Vari-
ables and Parameters

if [-n"${10}"] # Paraneters > $9 nust be enclosed in |{
t hen

echo "Paraneter #10 is ${10}"

fi

echo "----------- i "
echo "Al'l the command-|ine paraneters are: "$*""

if [$# -1t "$M NPARAVS"]
t hen

echo

echo "This script needs at | east $M NPARAMS command- | i ne
fi

echo
exit O

Bracket notation for positional parameters leads to a fairly smple
way of referencing the last argument passed to a script on the com-
mand-line. This also requires indirect referencing.

ar gs=$# # Nunber of args passed.
| ast ar g=${! ar gs}
Note: This is an *indirect reference* to $args ...

O | ast ar g=%${! #} (Thanks, Chris Mbns
This is an *indirect reference* to the $# vari abl e.
Note that |astarg=${!$#} doesn't work.

Some scripts can perform different operations, depending on which
name they are invoked with. For this to work, the script needs to
check $0, the name it was invoked by. 4 There must also exist sym-
balic linksto all the alternate names of the script. See Example 16.2,
“Hello or Good-bye”.

Tip

If a script expects acommand-line parameter but isinvoked
without one, thismay causeanull variable assignment, gen-
erally an undesirable result. One way to prevent thisis to
append an extra character to both sides of the assignment
statement using the expected positional parameter.

variablel =$1_ # Rather than variabl el=%$1
This will prevent an error, even if positional paranetel

41 the the scri pt is sourced or symlinked, then thiswill not work. It is safer to check $BASH_Source.

28

Introduction to Vari-
ables and Parameters

critical _argunmentOl=$vari abl el_

The extra character can be stripped off later, like so.
vari abl el=${variablel_/_/}

Side effects only if $variablel_ begins with an undersce
This uses one of the parameter substitution tenplates di
(Leaving out the replacenent pattern results in a deleti

A nore straightforward way of dealing with this is
#+ to sinply test whether expected positional paraneters |
if [-z $1]
t hen
exit $E_M SSI NG_PCS_PARAM
fi

However, as Fabian Kreutz points out,

#+ the above nethod may have unexpected side-effects.
A better method is paraneter substitution:

${1: - $Def aul t Val }

See the "Paraneter Substition” section

#+ in the "Variabl es Revisited" chapter.

Example 4.6. wh, whois domain name lookup

#!/ bi n/ bash
ex18. sh

Does a 'whoi s domai n-nane' | ookup on any of 3 alternate

ri pe.net, cw net, radb.net

Place this script -- renamed "wh' -- in /usr/local/bin
Requires synbolic |inks:

1n -s fusr/local/bin/wh /[usr/local/bin/wh-ripe

1n -s [fusr/local/bin/wh /usr/local/bin/wh-apnic

1n -s /usr/local/bin/wh /usr/local/bin/wh-tucows
E_NOARGS=75

if [-z "$1"]

t hen

echo "Usage: "basenane $0° [donai n-nane]"
exit $E_NOARGS
fi

Check script name and call proper server.

case " basenane $0° in # O: case ${O##*/} in
"wh") whoi s $1@hoi s.tucows. coni;
"wh-ripe") whois $1@hois.ripe.net;;
"wh-apni c") whois $1@hois. apnic. net;;

29

Introduction to Vari-
ables and Parameters

"wh-cw') whois $1@hois. cw. net;;
*) echo "Usage: " basenanme $0° [domai n-nane]’
esac

exit $?

The shift command reassigns the positional parameters, in effect
shifting them to the | eft one notch.

$1 <---$2, $2 <--- $3, $3 <--- $4, etc.

The old $1 disappears, but $0 (the script name) does not change. If
you use alarge number of positional parametersto ascript, shift lets
you access those past 10, although { bracket} notation also permits
this.

Example 4.7. Using shift

#! / bi n/ bash
shft.sh: Using 'shift' to step through all the position:

Nanme this script something like shft.sh,

#+ and invoke it with sone paraneters.

#+ For exanpl e:

sh shft.sh a b ¢ def 83 barndoor

until [-z "$1"] # Until all paranmeters used up .
do

echo -n "$1 "

shift
done

echo # Extra |inefeed.

But, what happens to the "used-up" paraneters?

echo "$2"

Not hi ng echoes!

When $2 shifts into $1 (and there is no $3 to shift int
#+ then $2 remmins enpty.

So, it is not a parameter *copy*, but a *nove*.

exit

See al so the echo-params.sh script for a "shiftless"
#+ alternative method of stepping through the positional |

The shift command can take a numerical parameter indicating how
many positions to shift.

#!/ bi n/ bash
shift-past.sh

30

Introduction to Vari-
ables and Parameters

shift 3 # Shift 3 positions.
n=3; shift $n
Has the sane effect.

echo "$1"

exit O

$ sh shift-past.sh 1 2 3 45
4

However, as El eni Fragkiadaki, points out,
#+ attenpting a 'shift' past the number of
positional paraneters ($#) returns an exit status of 1,

3+
+

#+ and the positional paraneters thensel ves do not change.
This neans possibly getting stuck in an endl ess | oop.
For exanple:
until [-z "$1"]
do
echo -n "$1 "
shift 20 # |If less than 20 pos parans,
done #+ then | oop never ends!
#
When in doubt, add a sanity check.
shift 20 || break
NNNNANNNNN
Note

The shift command works in a similar fashion on parame-
ters passed to afunction. See Example 36.18, “ Return value
trickery”.

31

Chapter 5. Quoting

Quoting meansjust that, bracketing a string in quotes. This has the effect of protecting special characters
inthe string from reinterpretation or expansion by the shell or shell script. (A character is“ specia” if it has
an interpretation other than itsliteral meaning. For example, the asterisk * representsawild card character
in globbing and Regular Expressions).

bash$ Is -1 [W]*

STWPWAT - - 1 bozo bozo 324 Apr 2 15:05 VI EWDATA. BAT
STWPWAT - - 1 bozo bozo 507 May 4 14:25 vartrace. sh
STWPWAT - - 1 bozo bozo 539 Apr 14 17:11 vi ewdata. sh

bash$ Is -1 "'[W]*'

I's: [W]*: No such file or directory

In everyday speech or writing, when we“ quote” aphrase, we set it apart and giveit special meaning.
In a Bash script, when we quote a string, we set it apart and protect its literal meaning.

Certain programs and utilities reinterpret or expand special characters in a quoted string. An important
use of quoting is protecting acommand-line parameter from the shell, but still |etting the calling program
expand it.

bash$ grep '[Ff]irst' *.txt
filel.txt:This is the first line of filel.txt.
file2.txt:This is the First line of file2.txt.

Note that theunquotedgrep [Ff]irst *.txt worksunder the Bash shell. !
Quoting can also suppress echo's “ appetite” for newlines.

bash$ echo $(Is -1)
total 8 -rwrwr-- 1 bo bo 13 Aug 21 12:57 t.sh -rwrwr-- 1 bo bo 78 Aug 21 12:57

bash$ echo "$(Is -I)"

total 8

-rwrwr-- 1 bo bo 13 Aug 21 12:57 t.sh
-rwrwr-- 1 bo bo 78 Aug 21 12:57 u.sh

Quoting Variables

When referencing avariable, it is generally advisable to enclose its name in double quotes. This prevents
reinterpretation of all special characters within the quoted string -- except $, * (backquote), and \ (escape).
2 Keeping $ as aspecial character within double quotes permits referencing a quoted variable (" $var i -

:Unlessthere isafilenamedf i r st inthecurrent working directory. Y et another reason to quote. (Thank you, Harald Koenig, for pointing this out.

32

Quoting

abl e"), that is, replacing the variable with its value (see Example 4.1, “Variable assignment and substi-

tution”, above).

Use double quotes to prevent word splitting. 3 An argument enclosed in double quotes presents itself as
asingleword, evenif it contains whitespace separators.

Li st="one two three"

for a in $List
do

echo "$a"
done
one
two
three

echo

for ain "$List"
do # A A

Splits the variable in parts at whitespace.

Preserves whitespace in a single variable.

Encapsulating “!” within double quotes gives an error when used from the command line. Thisisinterpreted as a history command. Within a script,
though, this problem does not occur, since the Bash history mechanism is disabled then.

Of more concern is the apparently inconsistent behavior of \ within double quotes, and especially following an echo -e command.

bash$ echo
hel | o!
bash$ echo
hel | o\'!

bash$ echo
>

bash$ echo
>

bash$ echo
a

bash$ echo
\a

bash$ echo
Xty
bash$ echo
x\ty

bash$ echo
xty

bash$ echo
X y

hel I o\'!

"hello\!"

e
\a

" g

x\ty

"X\ ty"

-e x\ty

-e "x\ty"

Double quotes following an echo sometimes escape\ . Moreover, the - e option to echo causes the “\t” to be interpreted as a tab.

gThank you, Wayne Pollock, for pointing this out, and Geoff Lee and Daniel Barclay for explaining it.)
“Word splitting,” in this context, means dividing a character string into separate and discrete arguments.

33

Quoting

echo "%$a"
done
one two three

A more elaborate example:

vari abl el="a variabl e containing five words"
COWAND This is $variabl el # Executes COVMAND with 7 arguments:
"This" "is" "a" "variable" "containing" "five" "words"

COWAND "This is $variablel" # Executes COWAND with 1 argument:
"This is a variable containing five words"

vari abl e2= # Enpty.

COWAND $vari abl e2 $vari abl e2 $vari abl e2

Executes COVMAND with no argunents.
COWAND " $vari abl e2" "$vari abl e2" "$vari abl e2"

Executes COVMAND with 3 enpty argunents.
COWAND " $vari abl e2 $vari abl e2 $vari abl e2"

Executes COVMAND with 1 argument (2 spaces).

Thanks, Stéphane Chazel as.
Tip

Enclosing the arguments to an echo statement in double quotes is necessary only when word
splitting or preservation of whitespace is an issue.

Example5.1. Echoing Weird Variables

#1/ bi n/ bash
weirdvars.sh: Echoing weird vari abl es.

echo

var="" (J\\{}\$\""
echo $var #'(1\{}%
echo "$var" #(]\V{}1$" Doesn't neke a difference.

echo
| FS="\"

echo $var

#'(] {19 \ converted to space. Wy?
echo "$var" #(]\V{}1$"

Exanpl es above supplied by Stephane Chazel as.

echo

var2="\\\\\""

echo $var2 # "
echo "S$var2" #\\"

Quoting

echo

But ... var2="\\\\"" is illegal. Wy?
var 3="\\\\"'

echo "$var 3" # \\\\

Strong quoting works, though.

hkhkhkkhkhkhhkhkhhhhhhkhhhkhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhdhdhdhhddhrddrrdrxdk

As the first exanple above shows, nesting quotes is permtted.

echo "$(echo """)" # "
N N

At tines this cones in useful.

var1="Two bits"
echo "\$varl = "$var1"" # $varl = Two bits
N N

Or, as Chris Hiestand points out

if [["$(du "$My_Filel")" -gt "$(du "$SMy_File2")" 1]
N N N N N N N N

t hen

fi

hkhkhkkhkhkhhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhdddhhddrddhrrdrxd*x

Single quotes (' ") operate similarly to double quotes, but do not permit referencing variables, since the
specia meaning of $is turned off. Within single quotes, every special character except ' gets interpreted
literally. Consider single quotes (“full quoting”) to be a stricter method of quoting than double quotes
(“partia quoting”).

Note

Since even the escape character (\) gets a literal interpretation within single quotes, trying to
enclose a single quote within single quotes will not yield the expected result.

echo "Why can't | wite 's between single quotes”
echo

The roundabout nethod.
echo "Way can'\'"'"t | wite s between single quotes'

#o[eneees | e |l |

Three single-quoted strings, with escaped and quoted single quotes between.

This exanple courtesy of Stéphane Chazel as.

Escaping

Escaping is a method of quoting single characters. The escape (\) preceding a character tells the shell to
interpret that character literally.

35

Quoting

Caution

With certain commands and utilities, such as echo and sed, escaping a character may have the

opposite effect - it can toggle on a specia meaning for that character.

Special meanings of certain escaped characters

used with echo and sed

\n
\r
\t
\v
\b
\a

\Oxx

\$
\\

Note

The behavior of \ depends on whether it is escaped, strong-quoted, weak-quoted, or appearing

within command substitution or a here document.

Sinple escaping and quoting
echo \z # z
echo \\z # \z
echo '\ z' # \z
echo "\\z' # \\z
echo "\z" # \z
echo "\\z" # \z
Command substitution
echo “echo \z° # z
echo “echo \\z° # z
echo “echo \\\z® #\z
echo “echo \\\\Zz° #\z
echo “echo \\\\\\zZ° #\z
echo “echo \\\\\\\z" # \\z
echo “echo "\z"° #\z
echo “echo "\\z"" #\z
Here docunent
cat <<ECF
\z
ECF #\z
cat <<ECF
\\ Z
ECF #\z 36

These exanpl es supplied by Stéphane Chazel as.

Quoting

echo "$vari abl e"

WIl not work - gives an error nessage:

test.sh: : comand not found

A "naked" escape cannot safely be assigned to a variable.

#

\What actually happens here is that the "\" escapes the new ine and

#+ the effect is vari abl ezecho "$vari abl e"
#+ i nvalid vari abl e assi gnnent
vari abl e=\

23ski doo

echo "$vari abl e" # 23ski doo

This works, since the second |ine
#+ is a valid variabl e assignnent.

vari abl e=\
\ A escape foll owed by space
echo "$vari abl e" # space

vari abl e=\'\
echo "$vari abl e" #\

vari abl e=\\\

echo "$vari abl e"

WIl not work - gives an error nessage:

test.sh: \: conmand not found

#

First escape escapes second one, but the third one is |left "naked",
#+ with sanme result as first instance, above.

vari abl e=\\\\

echo "$vari abl e" #\\
Second and fourth escapes escaped.
This is o.k.

Escaping a space can prevent word splitting in a command's argument list.

file_list="/bin/cat /bin/gzip /bin/nore /usr/bin/less /usr/bin/emcs-20.7"
List of files as argunent(s) to a comand.

Add two files to the list, and list all.
I's -1 /usr/X11R6/ bi n/ xsetroot /sbin/dump $file_list

What happens if we escape a couple of spaces?

I's -1 /usr/X11R6/ bi n/ xsetroot\ /sbin/dunp\ $file_list

Error: the first three files concatenated into a single argunment to 'Is -1
because the two escaped spaces prevent argunment (word) splitting.

The escape also provides a means of writing a multi-line command. Normally, each separate line consti-
tutes a different command, but an escape at the end of aline escapes the newline character, and the com-
mand sequence continues on to the next line.

37

Quoting

(cd /source/directory & tar cf - .) | \

(cd /dest/directory && tar xpvf -)

Repeating Alan Cox's directory tree copy command,
but split into two lines for increased legibility.

As an alternative:

tar cf - -C /source/directory .
tar xpvf - -C /dest/directory
See note bel ow.

(Thanks, Stéphane Chazel as.)

Note

If ascript line ends with a |, a pipe character, then a\, an escape, is not strictly necessary. It is,
however, good programming practice to always escape the end of aline of code that continues
to the following line.

echo "foo
bar"
#f oo

#bar
echo

echo 'foo

bar'’ # No difference yet.
#f oo

#bar

echo

echo f oo\

bar # New i ne escaped.

#f oobar

echo

echo "f oo\

bar " # Same here, as \ still interpreted as escape wthin weak quotes.
#f oobar

echo

echo ' f oo\

bar'’ # Escape character \ taken literally because of strong quoting.
#f oo\

#bar

Exanpl es suggested by St éphane Chazel as.

38

Chapter 6. Exit and Exit Status

... there are dark cornersin the Bourne shell, and people use al of them.
--Chet Ramey

The exit command terminates a script, just asin a C program. It can also return a value, which is
available to the script's parent process.

Every command returns an exit status (sometimes referred to as a return status or exit code). A
successful command returns a 0, while an unsuccessful one returns a non-zero value that usually can be

interpreted as an error code. Well-behaved UNIX commands, programs, and utilities return a0 exit code
upon successful completion, though there are some exceptions.

Likewise, functions within a script and the script itself return an exit status. The last command executed
in the function or script determines the exit status. Within ascript, anexi t nnn command may be used
to deliver an nnn exit status to the shell (nnn must be an integer in the 0 - 255 range).

Note

When a script ends with an exit that has no parameter, the exit status of the script isthe exit status
of the last command executed in the script (previous to the exit).

#!/ bi n/ bash

COVVAND 1

COVWAND_LAST

WII exit with status of |ast command.

exit

The equivalent of abare exit is exit $? or even just omitting the exit.

#!/ bi n/ bash

COMVAND_1

COMVAND_LAST

WIIl exit with status of last conmand.
exit $?

#1/ bi n/ bash

COMVANDL

39

Exit and Exit Status

COMVAND_LAST

WIIl exit with status of |ast conmand.

$7? reads the exit status of the last command executed. After afunction returns, $? givesthe exit status
of the last command executed in the function. Thisis Bash'sway of giving functions a“return value.” *

Following the execution of a pipe, a$? givesthe exit status of the last command executed.

After a script terminates, a $? from the command-line gives the exit status of the script, that is, the last
command executed in the script, which is, by convention, O on success or an integer in the range 1 - 255
on error.

Example6.1. exit / exit status

#!/ bi n/ bash

echo hello

echo $? # Exit status O returned because comuand executed successful ly.
| skdf # Unrecogni zed comuand.

echo $? # Non-zero exit status returned -- conmand failed to execute.
echo

exit 113 # WII return 113 to shell.
To verify this, type "echo $?" after script term nates.

By convention, an 'exit 0' indicates success,
#+ while a non-zero exit value nmeans an error or anomal ous condition.
See the "Exit Codes Wth Special Meanings" appendi Xx.

$?isespecialy useful for testing the result of acommand in a script (see Example 16.35, “Using cmp to
compare two files within a script.” and Example 16.20, “ Checking wordsin alist for validity™).

Note

The'!, the logical not qualifier, reverses the outcome of atest or command, and this affects its
exit status.

Example 6.2. Negating a condition using !

true # The "true" builtin

echo "exit status of \"true\" = $?" #0

I true

echo "exit status of \"! true\" = $?" # 1

Note that the "!" needs a space between it and the conmand.

1In those instances when there is no return terminating the function.

40

Exit and Exit Status

I'true | eads to a "command not found" error

#

The '!' operator prefixing a command i nvokes the Bash history mechani sm
true

I'true

No error this tine, but no negation either.
It just repeats the previous comand (true).

===
Preceding a _pipe_ with ! inverts the exit status returned.
I's | bogus_command # bash: bogus_conmand: command not found
echo $? # 127

I I's | bogus_comand # bash: bogus_conmand: command not found
echo $? # 0

Note that the ! does not change the execution of the pipe.

Only the exit status changes.

Thanks, Stéphane Chazel as and Kri st opher Newsone.

Caution

Certain exit status codes have reserved meanings and should not be user-specified in a script.

41

Chapter 7. Tests

Test

Constructs

Every reasonably complete programming language can test for a condition, then act according to the result
of thetest. Bash hasthetest command, various bracket and parenthesis operators, and theif/then construct.

An if/then construct tests whether the exit status of alist of commands is 0 (since O means “success”

by UNIX convention), and if so, executes one or more commands.

There exists adedicated command called [(left bracket specia character). It isasynonym for test, and

a builtin for efficiency reasons. This command considers its arguments as comparison expressions or
file tests and returns an exit status corresponding to the result of the comparison (O for true, 1 for false).

Withversion 2.02, Bash introduced the[][...]] extended test command, which performs comparisonsina

manner more familiar to programmers from other languages. Note that [[is akeyword, not acommand.

Bashsees[[$a -1t $b]] asasingle element, which returns an exit status.

The ((...)) and let ... constructs return an exit status, according to whether the arithmetic expressions
they evaluate expand to a non-zero value. These arithmetic-expansion constructs may therefore be used

to perform arithmetic comparisons.

((0&& 1))

echo $? # 1 * kK
And so ...

let "num= ((0 & 1))"
echo $num # O

But
let "num=((0 & 1))"
echo $? # 1 * kK

((200 || 11))

echo $? #0 *x ok

...

let "num= ((200 || 11))"
echo $num # 1

let "num= ((200 || 11))"
echo $? #0 *x ok

((200 | 11))

echo $?

...

let "num= ((200 | 11))"
echo $num

let "num= ((200 | 11))"

Logi cal AND

Logical OR

Bitw se OR
#0 * % %

203

42

Tests

echo $? # 0 * Kk x

The "let" construct returns the same exit status
#+ as the doubl e-parentheses arithnetic expansion

Caution

Again, note that the exit status of an arithmetic expression is not an error value.

var=-2 && ((var+=2))
echo $? # 1

var=-2 && ((var+=2)) && echo $var
WIIl not echo $var

An if can test any command, not just conditions enclosed within brackets.

if cnp ab & /dev/null # Suppress output.
then echo "Files a and b are identical."

el se echo "Files a and b differ."

fi

The very useful "if-grep" construct:
if grep -q Bash file
then echo "File contains at | east one occurrence of Bash."

fi

wor d=Li nux
| etter_sequence=inu

if echo "$word" | grep -q "$letter_sequence”
The "-q" option to grep suppresses output.
t hen

echo "$l etter_sequence found in $word"
el se

echo "$letter_sequence not found in $word"
fi

i f COMVAND WHOSE EXI T_STATUS |'S 0 UNLESS ERROR OCCURRED
t hen echo "Command succeeded. "
el se echo "Command failed."

fi

» Theselast two examples courtesy of Séphane Chazelas.
Example 7.1. What istruth?

#!/ bi n/ bash

Tip:
|If you're unsure how a certain condition m ght eval uate,
#+ test it in an if-test.

43

Tests

echo

echo "Testing \"0O\""

if [0] # zero
t hen
echo "0 is true."
el se # O else ..
echo "0 is false.”
fi # 0 is true.
echo

echo "Testing \"1\""

if [1] # one
t hen
echo "1 is true."
el se
echo "1 is false.”
fi # 1 is true.
echo

echo "Testing \"-1\""

if [-1] # m nus one
t hen

echo "-1 is true."
el se

echo "-1 is false."
fi # -1 is true
echo

echo "Testing \"NULL\""

if [] # NULL (enpty condition)
t hen
echo "NULL is true."
el se
echo "NULL is false."
fi # NULL is fal se.
echo

echo "Testing \"xyz\
if [xyz] # string
t hen
echo "Random string is true."
el se
echo "Random string is false."
fi # Random string is true.

echo

echo "Testing \"\$xyz\

Tests

if [$xyz] # Tests if $xyz is null, but..
#it's only an uninitialized vari able.

t hen
echo "Uninitialized variable is true."
el se
echo "Uninitialized variable is false."
fi # Uninitialized variable is fal se
echo

echo "Testing \"-n \$xyz\

if [-n "$xyz"] # More pedantically correct.
t hen
echo "Uninitialized variable is true."
el se
echo "Uninitialized variable is false.”
fi # Uninitialized variable is fal se
echo
Xyz= # Initialized, but set to null value

echo "Testing \"-n \$xyz\
if [-n"$xyz"]

t hen
echo "Null variable is true."
el se
echo "Null variable is false.”
fi # Null variable is fal se.
echo

When is "fal se" true?

echo "Testing \"fal se\

if ["false"] # 1t seenms that "false"” is just a string ..
t hen
echo "\"false\" is true." #+ and it tests true.
el se
echo "\"false\" is false."
fi # "false" is true.
echo
echo "Testing \"\$false\"" # Again, uninitialized variable.
if ["$false"]
t hen
echo "\"\$false\" is true."
el se
echo "\"\$false\" is false."
fi # "$false" is fal se

45

Tests

Now, we get the expected result.
What woul d happen if we tested the uninitialized variable "$true"?
echo

exit O

Exercise. Explain the behavior of Example 7.1, “What is truth?’, above.

if [condition-true]
t hen

comand 1

comand 2

else # O else ...
Adds default code block executing if original condition tests fal se.
conmand 3
conmrand 4

fi
Note

When if and then are on same linein a condition test, a semicolon must terminate the if statement.
Both if and then are keywords. Keywords (or commands) begin statements, and before a new
statement on the same line begins, the old one must terminate.

if [-x "$filenane"]; then
Elseif and dif

eif el i f isacontractionfor elseif. The effect isto nest an inner if/then construct within an outer one.

if [conditionl]
t hen
commandl
command2
command3
elif [condition2]
Sane as else if
t hen
command4
command5
el se
def aul t - command
fi

Thei f test condition-trueconstructistheexactequivalentofi f [condition-true].
Asit happens, the left bracket, [, isatoken ! which invokes the test command. The closi ng right bracket,
], in anif/test should not therefore be strictly necessary, however newer versions of Bash requireit.

IA tokenis asymbol or short string with a special meaning attached to it (a meta-meaning). In Bash, certain tokens, such as[and . (dot-command),
may expand to keywords and commands.

46

Tests

Note

The test command is a Bash builtin which tests file types and compares strings. Therefore, in a
Bash script, test doesnot call theexternal / usr / bi n/ t est binary, whichispart of the sh-utils
package. Likewise, [doesnot call / usr/ bi n/ [, whichislinkedto/ usr/ bi n/test.

bash$ type test

test is a shell builtin
bash$ type '[°

[is a shell builtin
bash$ type '"[[’

[[is a shell keyword
bash$ type ']]"'

]] is a shell keyword
bash$ type ']’

bash: type:]: not found

If, for some reason, you wishto use/ usr/ bi n/ t est in aBash script, then specify it by full
pathname.

Example 7.2. Equivalence of test, / usr/ bi n/ test,[],and/ usr/ bin/ [
#!/ bi n/ bash
echo

if test -z "$1"
t hen
echo "No command-1|ine argunments.”
el se
echo "First command-line argunment is $1."
f

echo
if /usr/bin/test -z "$1" # Equivalent to "test" builtin.
#NANNNANNANNNNA # Specifying full pathnane.
t hen
echo "No command-1|ine arguments.”
el se

echo "First command-line argunent is $1."
f

echo
if [-z "$1"] # Functionally identical to above code bl ocks.

if [-z "$1" shoul d work, but..
#+ Bash responds to a mssing close-bracket with an error nessage.

47

Tests

t hen
echo "No command-1|ine argunments.”
el se
echo "First comand-line argunment is $1."
fi
echo
if /fusr/bin/[-z "$1"] # Again, functionally identical to above
#if Jusr/bin/[-z "$1" # Works, but gives an error nessage.
Not e:
This has been fixed in Bash, version 3.x.
t hen
echo "No command-1|ine argunments.”
el se
echo "First command-line argunment is $1."
fi
echo
exit O

48

Tests

The [[]] construct is the more versatile Bash version of []. This is the extended test command,
adopted from ksh88.

* % %

No filename expansion or word splitting takes place between [[and]], but there is parameter ex-
pansion and command substitution.

file=/etc/passwd

if [[-e $file]]
t hen

echo "Password file exists."
fi

Using the [[...]] test construct, rather than [...] can prevent many logic errors in scripts. For
example, the &&, ||, <, and > operators work within a [[]] test, despite giving an error within a
[] construct.

Arithmetic evaluation of octal / hexadecimal constants takes place automatically within a[[... 1]
construct.

[[Cctal and hexadeci mal eval uation]]
Thank you, Mritz Gonbach, for pointing this out.

deci nal =15
oct al =017
hex=0x0f

= 15 (deci mal)
= 15 (deci mal)
if ["$decimal" -eq "$octal"]
t hen
echo "$deci mal equal s $octal "
el se
echo "$deci mal is not equal to S$octal" # 15 is not equal to
fi # Doesn't evaluate within [single brackets]!

if [["$decimal" -eq "$octal"]

t hen

echo "$deci mal equal s $octal " # 15 equal s 017
el se

echo "$deci mal is not equal to S$octal"
fi # Evaluates within [[double brackets]]!

if [["$decimal" -eq "$hex" 1]

t hen

echo "$deci mal equal s $hex" # 15 equal s OxOf
el se

echo "$deci mal is not equal to $hex"
fi # [[$hexadecimal]] al so eval uates!

49

017

Tests

Note

Following anif, neither the test command nor thetest brackets ([] or [[]]) are strictly necessary.

di r=/ hone/ bozo

if cd "$dir" 2>/dev/null; then # "2>/dev/null" hides error nessage.
echo "Now in $dir."
el se

echo "Can't change to $dir."
fi

The"if COMMAND" construct returns the exit status of COMMAND.

Similarly, a condition within test brackets may stand alone without an if, when used in combina-
tion with alist construct.

var 1=20
var 2=22
["$varl" -ne "$var2"] && echo "$varl is not equal to $var2"

hone=/ hone/ bozo
[-d "$hone"] || echo "$honme directory does not exist."

The (()) construct expands and evaluates an arithmetic expression. If the expression evaluates as zero, it
returns an exit status of 1, or “false”. A non-zero expression returns an exit status of 0, or “true”’. Thisis
in marked contrast to using the test and [] constructs previously discussed.

Example 7.3. Arithmetic Testsusing (())

#! / bi n/ bash
arith-tests. sh
Arithnetic tests.

The ((...)) construct evaluates and tests numerical expressions.
Exit status opposite from[...] construct!

(€ 0))

echo "Exit status of \"((0))\" is $2." # 1

(€ 1))

echo "Exit status of \"((1))\" is $2." # 0

((5>4)) # true
echo "Exit status of \"((5 >4))\" is $2." # 0

((5>9)) # fal se
echo "Exit status of \"((5 >9))\" is $2." # 1

((5==05)) # true
echo "Exit status of \"((5 ==5))\" is $2." # 0

((5=5)) gives an error nessage.

(C(5-5)) #0

50

Tests

echo "Exit status of \"((5 - 5))\" is $2." #1
(¢ 57 4)) # Division o.Kk.
echo "Exit status of \"((5/ 4))\" is $2." # 0
(17 2)) # Division result < 1.
echo "Exit status of \"((1/ 2))\" is $2." # Rounded off to O.
1
((1/ 0)) 2>/ dev/null # 11l egal division by O.
NNANNNNNNNNANNN
echo "Exit status of \"((1/ 0))\" is $2." #1
What effect does the "2>/dev/null"™ have?

What woul d happen if it were renoved?
Try renoving it, then rerunning the script.

((...)) also useful in an if-then test.

var 1=5
var 2=4

if ((varl > var2))

then # " Note: Not $varl, $var2. Wy?
echo "$varl is greater than $var2"

fi # 5 is greater than 4

exit O

File test operators

Returnstrueif...
-e file exists
-a file exists
Thisisidentical in effect to -e. It has been “deprecated,” 2 and its use is discouraged.
-f fileisar egul ar file(not adirectory or devicefile)

-S fileisnot zero size

2 Per the 1913 edition of Webster's Dictionary:

Deprecate

To pray against, as an evil;
to seek to avert by prayer;
to desire the renoval of;
to seek deliverance from
to express deep regret for;
to di sapprove of strongly.

51

Tests

fileisadirectory

fileisablock device

fileis acharacter device

devi ce0="/dev/ sda2" # / (root directory)
if [-b "$device0"]
t hen

echo "$deviceO is a block device."
fi

/dev/sda2 is a bl ock device.

devi cel="/dev/ttyS1" # PCMCI A nodem card.
if [-c "$devicel"]
t hen
echo "$devicel is a character device."
fi

/dev/ttySl is a character device.
fileisapipe

function show_ i nput _type()

{
}

[-p /dev/fd/0] && echo PIPE || echo STDIN
show i nput _type "I nput"
echo "Input" | show_input _type
Thi s exanpl e courtesy of Carl Anderson.
fileisasymboalic link
fileisasymboalic link
fileis asocket

file (descriptor) is associated with aterminal device

Thistest option may be used to check whether thest din[-t 0] orstdout [

t 1] inagivenscriptisaterminal.

file has read permission (for the user running the test)
file has write permission (for the user running the test)
file has execute permission (for the user running the test)

set-group-id (sgid) flag set on file or directory

52

Tests

If adirectory hasthesgi d flag set, then afile created within that directory belongsto the
group that ownsthe directory, not necessarily to the group of the user who created thefile.
This may be useful for a directory shared by aworkgroup.

set-user-id (suid) flag set on file

A binary owned by root withset - user - i d flag set runswith root privileges, even when
an ordinary user invokesit. 3 Thisis useful for executables (such as pppd and cdrecord)
that need to access system hardware. Lacking the suid flag, these binaries could not be
invoked by a non-root user.

-FWSr-Xr-t 1 root 178236 Cct 2 2000 /usr/sbin/pppd

A filewith the sui d flag set showsan sin its permissions.
-k sticky bit set

Commonly known asthe sticky bit, the save-text-mode flag isaspecial type of file permis-
sion. If afile has thisflag set, that file will be kept in cache memory, for quicker access.
41 set on adi rectory, it restricts write permission. Setting the sticky bit adds a t to the
permissions on the file or directory listing. This restricts altering or deleting specific files
in that directory to the owner of thosefiles.

dr wxr wxr wt 7 root 1024 May 19 21:26 tnp/

If a user does not own a directory that has the sticky bit set, but has write permission in
that directory, she can only delete those files that she owns in it. This keeps users from
inadvertently overwriting or deleting each other's files in a publicly accessible directory,
such as/ t np. (The owner of the directory or root can, of course, delete or rename files
there))

-0 you are owner of file

-G group-id of file same as yours

-N file modified since it was last read

fl-ntf2 filef 1 isnewer thanf 2

fl-otf2 filef 1 isolder thanf 2

f1-ef f2 filesf 1 and f 2 are hard links to the samefile

! “not” -- reverses the sense of the tests above (returns true if condition absent).

Example 7.4. Testing for broken links

#! / bi n/ bash

3Be aware that stid binaries may open security holes. The suid flag has no effect on shell scripts.
40n Linux systems, the sticky bit is no longer used for files, only on directories.

53

Tests

broken-Iink.sh
Witten by Lee bigel ow <ligel owbee@ahoo. conr
Used in ABS Guide with perm ssion

A pure shell script to find dead sym inks and output them quoted
so they can be fed to xargs and dealt with :)
eg. sh broken-link.sh /sonedir /soneotherdir]|xargs rm

+ +

This, however, is a better nethod:

find "sonmedir" -type | -printO]\

xargs -r0 file|\

grep "broken synbolic"|

sed -e 's/™\|: *broken synbolic.*$/"/g

+

but that wouldn't be pure Bash, now would it.
Caution: beware the /proc file systemand any circul ar |inks!
HERHHHHH T H T H R H R H R R

HHFHHHFHHHHHF TR

|If no args are passed to the script set directories-to-search
#+ to current directory. Oherw se set the directories-to-search
#+ to the args passed.
HERHHHHH AT

[$# -eq 0] & & directorys=pwd" || directorys=$@

Setup the function |inkchk to check the directory it is passed
#+ for files that are links and don't exist, then print them quoted.
|If one of the elenments in the directory is a subdirectory then
#+ send that subdirectory to the linkcheck function

HUBHHHHHHH
linkchk () {
for element in $1/*; do
[-h "$elenent” -a ! -e "$elenent”] && echo \"$el enent\"
[-d "$elenment”] && linkchk $el enent
O course, '-h' tests for synmbolic link, '-d for directory.
done
}
Send each arg that was passed to the script to the linkchk() function
#+ if it is avalid directoy. |If not, then print the error nessage
#+ and usage i nfo.
HUBHSHSEH SRR R R

for directory in $directorys; do
if [-d $directory]
then |inkchk $directory
el se
echo "$directory is not a directory"
echo "Usage: $0 dirl dir2 ..."
f
done

Tests

exit $?
Example 31.1, “Hiding the cookie jar”, Example 11.8, “A grep replacement for binary files’, Exam-

ple 11.3, “Fileinfo: operating on afilelist contained in avariable’, Example 31.3, “Creating a ramdisk”,
and Example A.1, “ mailformat: Formatting an e-mail message” alsoillustrate uses of thefiletest operators.

Other Comparison Operators

A binary comparison operator compares two variables or quantities. Note that integer and string compar -
ison use a different set of operators.

integer comparison
-eq isequal to
if ["$a" -eq "$b"]
-ne isnot equal to
if ["$a" -ne "$b"]
-gt isgreater than
if ["$a" -gt "$b"]
-ge isgreater than or equa to
if ["$a" -ge "$b"]
-It islessthan
if ["$a" -1t "$b"]
-le islessthan or equal to
if ["$a" -le "$b"]
< isless than (within double parentheses)
(("%$a" < "$b"))
<= islessthan or equal to (within double parentheses)
(("$a" <= "$b"))
> is greater than (within double parentheses)
(("$a" > "$b"))
>= isgreater than or equal to (within double parentheses)

(("$a" >= "$b"))

string comparison

55

Tests

isequal to
if ["$a" = "$b"]
Caution
Note the whitespace framing the =.
if ["$a"="$b"] isnotequivalent tothe above.
isequal to
if ["$a" == "$b"]
Thisisasynonym for =.
Note

The == comparison operator behaves differently within a double-brackets test than within
single brackets.

[[$a == z*]] # True if $a starts with an "z" (pattern matching).
[[$a == "z*"]] # True if $a is equal to z* (literal matching).

[$a == z*] # File gl obbing and word splitting take place.

["$a" == "z*"] # True if $a is equal to z* (literal matching).

Thanks, Stéphane Chazel as
isnot equal to
if ["$a" !'= "$b"]
This operator uses pattern matching within a[][...]] construct.
islessthan, in ASCI| aphabetical order
if [["$a" < "$b" 1]
if ["$a" \< "$b"]
Note that the “<” needs to be escaped withina[] construct.
is greater than, in ASCI| alphabetical order
if [["$a" > "$b" 1]
if ["$a" \> "$b"]
Note that the “>" needs to be escaped withina[] construct.
See Example 27.11, “ The Bubble Sort” for an application of this comparison operator.
string is null, that is, has zero length

String="" # Zero-length ("null") string variable.

56

Tests

if [-z "$String"]

t hen

echo "\$String is null."
el se

echo "\$String is NOT null."
fi # $String is null.

-n stringisnot null.

Caution

The - n test requires that the string be quoted within the test brackets. Using an unquoted
string with ! -z, or even just the unquoted string alone within test brackets (see Example 7.6,
“Testing whether a string is null”) normally works, however, this is an unsafe practice.
Always quote a tested string. °

Example 7.5. Arithmetic and string comparisons

#!/ bi n/ bash

Here "a" and "b" can be treated either as integers or strings.
There is sonme blurring between the arithnetic and string conparisons,
#+ since Bash variables are not strongly typed.

Bash pernits integer operations and conpari sons on vari abl es
#+ whose val ue consists of all-integer characters.
Caution advised, however.

echo

if ["$a" -ne "$b"]

t hen
echo "$a is not equal to $b"
echo "(arithnetic conparison)"

f
echo
i f [n $all ' — n $bll]
t hen
echo "$a is not equal to $b."
echo "(string conmparison)"
ngn 1= g
ASCI1 52 I'= ASCI| 53
f
In this particular instance, both "-ne" and "!=" work.
SAsSC. points out, in a compound test, even quoting the string variable might not suffice. [-n "$string" -o "$a" = "$b"] may

cause an error with some versions of Bash if $st ri ng is empty. The safe way is to append an extra character to possibly empty variables, [" x
$string" !'= x -0 "x$a" = "x$b"] (the“x's’ cancel out).

57

Tests

echo

exit O

Example 7.6. Testing whether a stringisnull
#1/ bi n/ bash

str-test.sh: Testing null strings and unquoted strings,
#+ but not strings and sealing wax, not to mention cabbages and kings .

Using if [...]
If a string has not been initialized, it has no defined val ue.
This state is called "null" (not the sanme as zero!).
if [-n $stringl] # stringl has not been declared or initialized.
t hen

echo "String \"stringl\" is not null."
el se

echo "String \"stringl\" is null."
fi # Wong result.
Shows $stringl as not null, although it was not initialized.
echo

Let's try it again.

if [-n "$stringl"] # This tine, $stringl is quoted

t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Quote strings within test brackets!
echo
if [$stringl] # This time, $stringl stands naked
t hen
echo "String \"stringl\" is not null."
el se

echo "String \"stringl\" is null."

fi # This works fine.

The [...] test operator alone detects whether the string is null.

However it is good practice to quote it (if ["$stringl"]).

#

As St ephane Chazel as points out,

if [$stringl] has one argunent, "]"

if ["$stringl”"] has two argunents, the empty "$stringl" and "]"
echo

58

Tests

stringl=initialized

if [$stringl] # Again, $stringl stands unquoted
t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Again, gives correct result.
Still, it is better to quote it ("$stringl"), because

stringl="a = b

if [$stringl] # Again, $stringl stands unquoted
t hen
echo "String \"stringl\" is not null."
el se
echo "String \"stringl\" is null."
fi # Not quoting "$stringl" now gives wong result!

exit 0 # Thank you, also, Florian Wsser, for the "heads-up".

Example 7.7. zmore

#!/ bi n/ bash
znore

View gzipped files with 'nmore' filter

E_NOARGS=85
E_NOTFOUND=86
E_NOT&ZI P=87

if [$# -eq 0] # sane effect as: if [-z "$1"]
$1 can exist, but be enpty: znmore "" arg2 arg3
t hen
echo "Usage: "“basename $0° fil ename" >&2
Error nessage to stderr.
exit $E_NOARGS
Returns 85 as exit status of script (error code).
f

fil enanme=%$1

if [! -f "$filename"] # Quoting $filename allows for possible spaces.
t hen

echo "File $filename not found!" >&2 # Error nessage to stderr

exit $E_NOTFOUND
f

if [${filename#t#*.} = "gz"]
Using bracket in variable substitution.
t hen

echo "File $1 is not a gzipped file!"

59

Tests

exit $E_NOTGZI P
fi

zcat $1 | nore

Uses the "nore' filter.
May substitute 'less' if desired.

exit $? # Script returns exit status of pipe.
Actually "exit $?" is unnecessary, as the script will, in any case,
#+ return the exit status of the |ast conmand execut ed.

compound comparison
-a logica and

expl -a exp2 returnstrueif both expl and exp2 are true.
-0 logical or

expl -o exp2returnstrueif either expl or exp2 istrue.
These are similar to the Bash comparison operators & & and ||, used within double brackets.
[[conditionl & condition2]]
The -0 and -a operators work with the test command or occur within single test brackets.
if ["$exprl" -a "$expr2"]
t hen

echo "Both exprl and expr2 are true."

el se

echo "Either exprl or expr2 is false."
fi

Caution

But, asrihad points out:

[1 -eqg 1] & [-n "“echo true 1>&2™ "] # true
[1 -eg 2] & [-n "“echo true 1>&2™ "] # (no output)
AANAAN Eglse condition. So far, everything as expected.

However
[1 -eq 2 -a-n ""echo true 1>&2™ "] # true
NNNAAAAN Fal se condition. So, why "true" output?

1s it because both condition clauses within brackets eval uate?
[[1 -eq 2 & -n "“echo true 1>&2™"]] # (no output)
No, that's not it.

Apparently && and || "short-circuit" while -a and -o do not.

Refer to Example 8.3, “Compound Condition Tests Using & & and ||, Example 27.17, “ Simulating a two-
dimensiona array, then tilting it”, and Example A.29, “Spammer Hunt” to see compound comparison
operatorsin action.

60

Tests

Nested i f/ t hen Condition Tests

Condition tests using thei f / t hen construct may be nested. The net result is equivalent to using the & &
compound comparison operator.

a=3

if ["$a" -gt 0]

t hen
if ["$a" -1t 5]
t hen
echo "The value of \"a\" |ies sonewhere between 0 and 5."

fi
fi

Same result as:

if ["$a" -gt 0] & ["$a" -1t 5]
t hen

echo "The value of \"a\" |ies sonewhere between 0 and 5."
fi

Example 37.4, “Using arrays and other miscellaneous trickery to deal four random hands from a deck of
cards’ and Example 17.11, “Backlight: changes the brightness of the (laptop) screen backlight” demon-
strate nested i f / t hen condition tests.

Testing Your Knowledge of Tests

The systemwidexi ni t r ¢ file can be used to launch the X server. Thisfile contains quite anumber of if/
thentests. Thefollowing isexcerpted froman“ancient” versionof xi ni t r ¢ (RedHat 7.1, or thereabouts).

if [-f $HOVE . Xclients]; then
exec $HOVE/ . Xclients
elif [-f /etc/X11/xinit/Xclients]; then
exec /etc/ X11l/xinit/ Xclients
el se
failsafe settings. Although we should never get here
(we provide fallbacks in Xclients as well) it can't hurt.
xcl ock -geonetry 100x100-5+5 &
xterm -geonetry 80x50-50+150 &
if [-f /usr/bin/netscape -a -f /usr/share/doc/HTM./index.htm]; then
net scape /usr/share/ doc/ HTM./ i ndex. htm &
fi
fi

Explain the test constructs in the above snippet, then examine an updated version of the file, / et c/
X11/ xi ni t/ xi ni trc,and analyzetheif/then test constructs there. Y ou may need to refer ahead to the
discussions of grep, sed, and regular expressions.

61

Chapter 8. Operations and Related
Topics

Operators

assignment

vari abl e assi gnment Initializing or changing the value of avariable

arithmetic operators

+

Note

Integer variables in older versions of Bash were signed long (32-bit) integers, in the range of
-2147483648 to 2147483647. An operation that took a variable outside these limits gave an er-
roneous result.

echo $BASH VERSION # 1.14

a=2147483646

echo "a = $a" # a = 2147483646
let "a+=1" # Increment "a"
echo "a = $a" # a = 2147483647
et "a+=1" # increnment "a" again, past the limt.
echo "a = $a" # a = -2147483648
ERROR: out of range,
#H+ and—theteftrost—bi-t—the-sign—bit;
+ 6Ras been set, nmaking the result negative.

As of version >= 2.05b, Bash supports 64-bit integers.

Operations and Related Topics

a=1l.5

let "b = $%a + 1.3" # Error

t2.sh: let: b =1.5+ 1.3: syntax error in expression
(error token is ".5 + 1.3")
echo "b = $b" # b=1

Use bc in scripts that need floating point calculations or math library functions.

bitwise operators. The bitwise operators seldom make an appearance in shell scripts. Their chief use
seems to be manipulating and testing values read from ports or sockets. “Bit flipping” is more relevant to
compiled languages, such as C and C++, which provide direct access to system hardware. However, see
vladZ's ingenious use of bitwise operatorsin his base64.sh (Example A.54, “Base64 encoding/decoding”)
script.

bitwise operators
<<

<<=

>>

>>=

logical (boolean) operators

!
&&
|

miscellaneous oper ator s

Numerical Constants

A shell script interprets a number as decimal (ase 10), unlessthat number has a special prefix or notation.
A number preceded by a0 isoct al (base 8). A number preceded by Ox ishexadeci nal (base16). A
number with an embedded # eval uates as BASE#NUMBER (with range and notational restrictions).

Operations and Related Topics

Cctal: nunbers preceded by '0' (zero)
et "oct = 032"

echo "octal nunber = $oct"” # 26
Expresses result in decinal
Hoomm oo oo e eeee---

Hexadeci mal : nunbers preceded by 'Ox' or '0X
et "hex = 0x32"

echo "hexadeci mal nunmber = $hex" # 50
echo $((0x9abc)) # 39612
AN AN doubl e- parent heses arithnmeti c expansi on/ eval uati on

Expresses result in decinal

Ot her bases: BASE#NUMBER
BASE between 2 and 64.
NUMBER must use synbols within the BASE range, see bel ow

let "bin = 2#111100111001101"
echo "binary nunber = $hin" # 31181

|l et "b32 = 32#77"
echo "base-32 nunber = $b32" # 231

let "b64 = 64#@"

echo "base-64 nunber = $b64" # 4031

This notation only works for a limted range (2 - 64) of ASCI| characters.
10 digits + 26 | owercase characters + 26 uppercase characters + @+ _

echo

echo $((36#zz)) $((2#10101010)) $((16#AF16)) $((53#1ah))
1295 170 44822 3375

| nportant note:

=

Using a digit out of range of the specified base notation
#+ gives an error mnessage.

l et "bad _oct = 081"

(Partial) error nessage output:

bad_oct = 081: value too great for base (error token is "081")
Cctal nunbers use only digits in the range 0 - 7

exit $? # Exit value = 1 (error)

Operations and Related Topics

Thanks, Rich Bartell and Stephane Chazelas, for clarification

The Double-Parentheses Construct

Similar to the let command, the ((...)) construct permits arithmetic expansion and evaluation. In its sm-
plest form,a=$((5 + 3)) wouldsetato5 + 3, or 8. However, this double-parentheses construct
isalso amechanism for allowing C-style manipulation of variablesin Bash, for example, ((var ++)).

Example 8.5. C-style manipulation of variables

#1/ bi n/ bash
c-vars.sh
Mani pul ating a variable, Cstyle, using the ((...)) construct.

echo

((a=23)) # Setting a value, Cstyle,
#+ with spaces on both sides of the "=".

echo "a (initial value) = $a" # 23

((at++)) # Post-increnent 'a', Cstyle
echo "a (after a++) = $a" # 24

((a--)) # Post-decrenent 'a', C-style
echo "a (after a--) = $a" # 23

((++a)) # Pre-increnment 'a', Cstyle.
echo "a (after ++a) = $a" # 24

((--a)) # Pre-decrenment 'a', Cstyle.
echo "a (after --a) = $a" # 23

echo

HERHHHHH TR H T H T H R H R
Note that, as in C, pre- and post-decrenent operators
#+ have different side-effects.

n=1; let --n & echo "True" || echo "False" # False
n=1; let n-- && echo "True" || echo "False" # True

Thanks, Jeroen Domburg.
HERHHHHH TR H T H T H R H R

echo

((t = a<45?7:11)) # C-style trinary operator

N NN

65

Operations and Related Topics

echo "If a <45, thent =7, elset =11." # a = 23
echo "t = $t " #t =7
echo

H oo aaooo

Easter Egg alert!

H oo aaooo

Chet Raney seens to have snuck a bunch of undocunented C-style
#+ constructs into Bash (actually adapted from ksh, pretty mnuch).
1In the Bash docs, Ranmey calls ((...)) shell arithnetic,

#+ but it goes far beyond that.

Sorry, Chet, the secret is out.

See also "for" and "while" loops using the ((...)) construct.
These work only with version 2.04 or |ater of Bash.
exit

See also Example 11.13, “A C-style for loop” and Example 8.4, “ Representation of numerical constants’.

Operator Precedence

In a script, operations execute in order of precedence: the higher precedence operations execute before
the lower precedence ones. 3

Table8.1. Operator Precedence

Operator Meaning Comments
HIGHEST PRECEDENCE
var ++ var - - post-increment, post-decrement | C-style operators
++var --var pre-increment, pre-decrement
I~ negation logical / bitwise, inverts sense of

following operator

** exponentiation arithmetic operation
* | % multiplication, division, modulo |arithmetic operation
+ - addition, subtraction arithmetic operation
<< >> left, right shift bitwise

-z -n unary comparison string is/is-not null

3Precedence, in this context, has approximately the same meaning as priority

66

Operations and Related Topics

Operator Meaning Comments

-e -f -t -x, etc. unary comparison file-test

< -t > -gt <= -le >=|compound comparison string and integer

- ge

-nt -ot -ef compound comparison file-test

== -eq != -ne equality / inequality test operators, string and integer

& AND bitwise

A XOR exclusive OR, bitwise

| OR bitwise

&& -a AND logical, compound comparison

|| -0 OR logical, compound comparison

?: trinary operator C-style

= assignment (do not confuse with equality test)

*= [= Y% += -= <<= >>=|combination assignment times-equal, divide-equal, mod-

&= equal, etc.

. comma links a sequence of operations
LOWEST PRECEDENCE

In practice, all you really need to remember is the following:

* The"“My Dear Aunt Sally” mantra(multiply, divide, add, subtract) for thefamiliar arithmetic operations.
» The compound logical operators, & &, ||, -a, and -0 have low precedence.

e Theorder of evaluation of equal-precedence operatorsis usually |eft-to-right.

Now, let's utilize our knowledge of operator precedence to analyze a couple of lines from the / et ¢/
init.d/ functions file,asfoundintheFedora CoreLinux distro.

while [-n "$remmining" -a "$retry” -gt 0]; do
This | ooks rather daunting at first gl ance.

Separate the conditions:

while [-n "$remmining" -a "$retry” -gt 0]; do
--condition 1-- ~™ --condition 2-

|f variable "$remaining"” is not zero |length

#+ AND (- a)
#+ variable "$retry" is greater-than zero
#+ then

#+ the [expresion-w thin-condition-brackets] returns success (0)
#+ and the whil e-1oop executes an iteration.

67

Operations and Related Topics

Evaluate "condition 1" and "condition 2" ***pefore***

#+ ANDi ng them Why? Because the AND (-a) has a | ower precedence
#+ than the -n and -gt operators,

#+ and therefore gets eval uated *| ast*.

HERHHHHH T H T H R H R R
if [-f /etc/sysconfig/il8n -a -z "${NOLOCALE: -}"] ; then

Again, separate the conditions:

if [-f /etc/sysconfig/il8n -a -z "${NOLOCALE: -}"] ; then

--condition 1--------- AN --condition 2-----

If file "/etc/sysconfig/il8n" exists

#+ AND (- a)
#+ vari abl e $NOLCCALE is zero | ength
#+ then

#+ the [test-expresion-w thin-condition-brackets | returns success (0)
#+ and the conmands fol |l ow ng execute.

#

As before, the AND (-a) gets evaluated *last*

#+ because it has the | owest precedence of the operators within

#+ the test brackets.

Not e:

${NOLOCALE: -} is a paraneter expansion that seens redundant.

But, if $NOLOCALE has not been declared, it gets set to *null*,
+ in effect declaring it.

This makes a difference in sone contexts.

Tip

#
#
#
#
#
#

To avoid confusion or error in a complex sequence of test operators, break up the sequence into
bracketed sections.

if ["$vl" -gt "$v2" -0 "$v1" -1t "$v2" -a -e "S$filenane"]
Uncl ear what's going on here...

if [["$v1" -gt "$v2" 11 || [["$vi" -1t "$v2" 1] && [[-e "$filenane"]]

Much better -- the condition tests are grouped in |ogical sections.

68

Part Part 3. Beyond the Basics

Table of Contents

9. Another LOOK @t VariableScoouuuiiiiii e e 71
INterNal VariableSoouuiiiii e 71
Typing variables: declare oF tYPESEL ... 72

ANONEr USE fOr AECIAIE ... i 74
SRANDOM: generate random IMEEgENc.uuuuuniieeeiieiiiiia e e e e e eeettti e e e e e e eesbara e e e eaaaeeees 75

10. Manipulating VariablEsuuiiiiiiee et 89

MaNIPUIBEING SEFNGS .. eeetie ettt ettt et e e et e et et e e e eni e ennens 89
Manipulating StringS USING @WKcoouuiiiiiiici e 98
FUIhEr REFEIENCEe et eees 99

Parameter SUDSHITULIONuuiiiiit e et e e e e e et e eeerb e e 99

11. LOOPS 8N BraNCESeuiiiiii et 111
[0 o S TP PTUPP 111
NS s o o] L ST SOPPTTRSOPPTTR 111
LOOP CONIOL ..ttt ettt ettt e e e e et a e e e b eeeaa s 112
Testing and BranChingoeieiiieii e 112

12. Command SUDSHTULTIONovieeieiiii et e et e e 113

13, ArthMELIC EXPANSIONeeeitieiiiii ettt et ettt e et e e e e e e an e eneas 120

T4, RECESS TIIMIE L.ttt ettt ettt e e ettt e e et b e ettt e e e e e e e e aaa s 121

70

Chapter 9. Another Look at Variables

Used properly, variables can add power and flexibility to scripts. This requires learning their subtleties
and nuances.

Internal Variables

Builtin variabl es: variablesaffecting bash script behavior
$BASH
$BASH_ENV
$BASH_SUBSHELL
$BASHPI D
$BASH_VERSI NF(n]
$BASH_VERSI ON
$CDPATH

$DI RSTACK

$EDI TOR

$EUI D
$FUNCNANVE
$GLOBI GNORE
$CGROUPS

$HOME
$HOSTNAME
$HOSTTYPE

$I FS

$1 GNOREEOF
$LC_COLLATE
$LC_CTYPE

$LI NENO
$SMACHTYPE

$OLDPVD

COCTVPE
PO T

71
$PATH

$PI PESTATUS

Another Look at Variables

Other Special Parameters

Typing variables: declare or typeset

The declare or typeset builtins, which are exact synonyms, permit modifying the properties of variables.
Thisisavery weak form of thetyping 6 availablein certain programming languages. The declare command
is specific to version 2 or later of Bash. The typeset command also works in ksh scripts.

declar e/typeset options
-rreadonly (decl are -r var 1l worksthesameasreadonly var 1)

Thisistherough equivalent of the C const type qualifier. An attempt to change
the value of areadonly variable fails with an error message.

declare -r varl=1

echo "varl = $var1" #varl =1
((varl++)) # x.sh: line 4: varl: readonly variable
-ii nt eger decl are -i nunber

The script will treat subsequent occurrences of "nunber" as an

nunber =3
echo "Nunber = $nunber" # Nunmber = 3

nunber =t hr ee
echo "Number = $nunber” # Nunber = 0
Tries to evaluate the string "three" as an integer.

Certain arithmetic operations are permitted for declared integer variables with-
out the need for expr or let.

n=6/3

echo "n = $n" #n =6/3

811 this context, typing avariable meansto classify it and restrict its properties. For example, avariable declared or typed as an integer is no longer
available for string operations. declare -i n

declare -i intvar n=6/3
echo "n = $n" #n

1
N

i ntvar=23

echo "$intvar" # 23
i ntvar=stringval

echo "$intvar" #0

72

Another Look at Variables

-aarray declare -a indices
Thevariablei ndi ces will betreated as an array.
-ffunction(s) declare -f

A decl are -f linewith no argumentsin a script causes a listing of al the
functions previously defined in that script.

declare -f function_nane
Adeclare -f function_namne inascriptlistsjust the function named.
-X export declare -x var3

This declares a variable as available for exporting outside the environment of
the script itself.

-X var=$vaue decl are -x var3=373

The declar e command permits assigning avalue to avariablein the same state-
ment as setting its properties.

Example 9.10. Using declareto type variables

#! / bi n/ bash
funcl ()
{
echo This is a function
}
declare -f # Lists the function above.
echo
declare -i varl # varl is an integer
var 1=2367
echo "varl decl ared as $var1l"
var 1=var 1+1 # Integer declaration elimnates the need for 'let'.

echo "varl incremented by 1 is $varl."
Attenpt to change variabl e declared as integer.
echo "Attenpting to change varl to floating point value, 2367.1."

var 1=2367. 1 # Results in error nessage, with no change to vari abl e.
echo "varl is still $varl”

echo

declare -r var2=13. 36 # 'declare' pernmits setting a variable property

#+ and sinmul taneously assigning it a val ue.
echo "var2 declared as $var2" # Attenpt to change readonly variable.
var 2=13. 37 # Cenerates error nessage, and exit fromscript.

echo "var2 is still $var2" # This line will not execute.

73

Another Look at Variables

exit O # Script will not exit here.

Caution

Using the declare builtin restricts the scope of avariable.

foo ()

{

FOO="bar"

}

bar ()

{

foo

echo $FQO

}

bar # Prints bar.
However . ..

foo (){

decl are FOO="bar"
}

bar ()

{

foo

echo $FQO

}

bar # Prints nothing.

Thank you, M chael latrou, for pointing this out.

Another use for declare

The declare command can be helpful in identifying variables, environmental or otherwise. This can be
especialy useful with arrays.

bash$ declare | grep HOME
HOVE=/ hone/ bozo

bash$ zzy=68
bash$ declare | grep zzy
zzy=68

bash$ Col ors=([0] ="purple" [1] ="reddi sh-orange" [2]="1ight green")
bash$ echo ${Colors[@}

purpl e reddi sh-orange |ight green

bash$ declare | grep Colors

74

Another Look at Variables

Col ors=([0] ="purple" [1] ="reddi sh-orange” [2]="1ight green")

$RANDOM: generate random integer

Anyone who attempts to generate random numbers by deterministic meansis, of course, living in a state
of sin.

--John von Neumann

$RANDOMis an internal Bash function (not a constant) that returns a pseudorandom i nteger in the range
0- 32767. It should not be used to generate an encryption key.

Example 9.11. Generating random numbers
#1/ bi n/ bash

$RANDOM returns a different randominteger at each invocation.
Nom nal range: 0 - 32767 (signed 16-bit integer).

MAXCOUNT=10

count =1

echo

echo "$MAXCOUNT random numbers: "

echo "---------c--- "

while ["$count” -le $SMAXCOUNT] # Cenerate 10 ($MAXCOUNT) random i ntegers.
do

nurmber =$RANDOM

echo $nunber

let "count += 1" # Increnent count.
done
echo "---------c--- "

If you need a randomint within a certain range, use the 'nodul o' operator.

This returns the remainder of a division operation.
RANGE=500
echo

nunber =$RANDOM
| et "nunber % $RANGE"

NN
echo "Random nunber |ess than $RANGE --- $nunber"
echo

True “randomness,” insofar asit exists at all, can only be found in certain incompletely understood natural phenomena, such as radioactive decay.
Computers only simulate randomness, and computer-generated sequences of “random” numbers are therefore referred to as pseudorandom.

75

Another Look at Variables

|1f you need a randominteger greater than a | ower bound,
#+ then set up a test to discard all nunbers bel ow that.

FLOOR=200

nunber =0 #initialize
while ["$nunber" -le $FLOOR]
do
nunber =$RANDOM
done
echo "Random nunber greater than $FLOOR --- $nunber”
echo

Let's examine a sinple alternative to the above | oop, nanely
l et "nunber = $RANDOM + $FLOOR'
That would elinmnate the while-loop and run faster

#
#
#
But, there mght be a problemwth that. Wiat is it?

Combi ne above two techniques to retrieve random nunber between two limts.
number =0 #initialize
while ["$nunber" -le $FLOOR]
do
nunber =$RANDOM
| et "nunber % $RANGE" # Scal es $nunber down within $RANGE
done
echo "Random nunber between $FLOOR and $RANGE --- S$nunber”
echo

Cenerate binary choice, that is, "true" or "false" val ue.
Bl NARY=2

T=1

nunber =$RANDOM

l et "nunber % $BI NARY"

Note that | et "nunber >>= 14" gives a better randomdi stribution
#+ (right shifts out everything except last binary digit).

if ["$nunber" -eq $T]

t hen

echo " TRUE"
el se

echo "FALSE"
f
echo

CGenerate a toss of the dice.
SPOTS=6 # Modul o 6 gives range 0 - 5.
Incrementing by 1 gives desired range of 1 - 6.

76

Another Look at Variables

Thanks, Paul o Marcel Coel ho Aragao, for the sinmplification
di el=0
di e2=0
Wuld it be better to just set SPOIS=7 and not add 1? Why or why not?

Tosses each die separately, and so gives correct odds.
let "diel = $RANDOM % $SPOTS +1" # Roll first one.
let "die2 = $RANDOM % $SPOTS +1" # Roll second one

VWhich arithmetic operation, above, has greater precedence --
#+ nodulo (% or addition (+)?

et "throw = $diel + $die2"
echo "Throw of the dice = $throw'
echo

exit O

Example 9.12. Picking a random card from a deck

#1/ bi n/ bash
pick-card. sh

This is an exanpl e of choosing random el ements of an array.

Pick a card, any card

Sui t es="Cl ubs
Di anonds
Hearts
Spades”

Denom nati ons="2

©oo~NOOLh~W

10
Jack
Queen
Ki ng
Ace"

Note variables spread over nultiple lines.

sui te=($Sui t es) # Read into array vari abl e.
denomi nat i on=($Denoni nat i ons)

77

Another Look at Variables

num sui tes=${#suite[*]} # Count how nany el enents.
num denomni nat i ons=${ #denoni nati on[*]}

echo -n "${denon nati on[$((RANDOWHuUm denoni nations))]} of "
echo ${suite[$((RANDOWHuUmM suites))]}

$bozo sh pick-cards. sh
Jack of C ubs

Thank you, "jipe," for pointing out this use of $RANDOM
exit O

Example 9.13. Brownian Motion Simulation

#!/ bi n/ bash

browni an. sh

Aut hor: Mendel Cooper
Rel date: 10/ 26/07

License: GPL3

This script nmodels Browni an notion

#+ the random wanderings of tiny particles in a fluid,

#+ as they are buffeted by random currents and col | i sions.
#+ This is colloquially known as the "Drunkard' s Wal k."

1t can also be considered as a stripped-down sinulation of a
#+ Galton Board, a slanted board with a pattern of pegs,

#+ down which rolls a succession of narbles, one at a tine.

#+ At the bottomis a row of slots or catch basins in which

#+ the marbles come to rest at the end of their journey.

Think of it as a kind of bare-bones Pachi nko gane.

As you see by running the script,

#+ nost of the marbles cluster around the center slot.

#+ This is consistent with the expected binomal distribution

As a Galton Board sinmulation, the script

#+ di sregards such paraneters as

#+ board tilt-angle, rolling friction of the marbles,

#+ angl es of inpact, and elasticity of the pegs.

To what extent does this affect the accuracy of the sinulation?

PASSES=500 # Nunber of particle interactions / marbles.

RONG=10 # Nunber of "collisions" (or horiz. peg rows).

RANGE=3 # 0 - 2 output range from $RANDOM

POS=0 # Left/right position

RANDOMESS # Seeds the random number generator fromPID
#+ of script.

78

Another Look at Variables

declare -a Slots # Array holding cunul ative results of passes.
NUMSLOTS=21 # Nunber of slots at bottom of board.

Initialize Slots () { # Zero out all elements of the array.
for i in $(seq $NUMSLOTS)
do
Slots[$i]=0
done

echo # Blank |ine at beginning of run

}

Show _Slots () {
echo; echo
echo -n " "
for i in $(seq $NUMSLOTS) # Pretty-print array el ements.
do

printf "o8dd" ${Slots[$i]} # Allot three spaces per result.
done

echo # Row of slots:
echo " | __| | ||| J 1| JJ | J_J [|__|__["
echo " []"
echo # Note that if the count within any particular slot exceeds 99,
#+ it messes up the display.
Running only(!) 500 passes usually avoids this.

}
Move () { # Move one unit right / left, or stay put.
Move=$RANDOM # How randomis $RANDOW? Well, let's see ..

et "Move % RANGE" # Normalize into range of 0 - 2.
case "$Move" in

0) ;; # Do nothing, i.e., stay in place.
1) ((PCs--));; # Left.
2) ((POS++)):; # Right.
*) echo -n "Error ";; # Anomal y! (Shoul d never occur.)
esac
}
Play () { # Single pass (inner |oop).
i =0
while ["$i" -1t "SRONE"] # One event per row
do
Move
((i++));
done
SH FT=11 Wiy 11, and not 10?

et "POS += $SHI FT"
((Slots[$POS] ++))

Shift "zero position" to center
DEBUG echo $PCS

H*H H H*

79

Another Look at Variables

echo -n "$PCS "

}

Run () { # Quter |oop.
p=0
while ["$p" -1t "S$PASSES"]
do
Pl ay
(C pt+))
PGCS=0 # Reset to zero. Wy?
done

main ()
Initialize Slots
Run

Show Sl ot s

exit $?

[Exerci ses:

H o o-m e e e a - - -

1) Show the results in a vertical bar graph, or as an alternative,
#+ a scattergram

2) Alter the script to use /dev/urandominstead of $RANDOM

WIl this make the results nore randon?

3) Provide sone sort of "animation" or graphic output

for each marbl e pl ayed.

Jipe points out a set of techniques for generating random numbers within arange.

GCenerate random nunber between 6 and 30.
r nunber =$((RANDOW25+6))

GCenerate random nunber in the same 6 - 30 range,
#+ but the nunber nust be evenly divisible by 3.
r nunmber =$(((RANDOW/B0/ 3+1) *3))

Note that this will not work all the tinme.
It fails if $RANDOWBO returns O.

Frank Wang suggests the follow ng alternative:
rnunmber =$((RANDOWR7/ 3*3+6))

Bill Gradwohl came up with an improved formulathat works for positive numbers.
r nunmber =$(((RANDOWA max- mi n+di vi si bl eBy))/ di vi si bl eBy*di vi si bl eBy+ni n))

Here Bill presents a versatile function that returns arandom number between two specified values.

80

Another Look at Variables

Example 9.14. Random between values

#1/ bi n/ bash
random bet ween. sh
Random nunber between two specified val ues.
Script by Bill Gadwohl, with mnor nodifications by the docunent author
Corrections in lines 187 and 189 by Anthony Le C ezio.
Used with perm ssion.
randonBet ween() {
GCenerates a positive or negative random nunber
#+ between $mn and $max
#+ and divi si bl e by $divisi bl eBy.
Gves a "reasonably random distribution of return val ues.
#
Bill Gadwhl - Cct 1, 2003

syntax() {

Function enbedded within function
echo
echo "Syntax: randonmBetween [min] [max] [nultiple]”
echo
echo -n "Expects up to 3 passed paraneters, "
echo "but all are conpletely optional."”
echo "mnis the mninmmval ue"
echo "max is the maxi mum val ue"
echo -n "nmultiple specifies that the answer nust be "
echo "a multiple of this value.™
echo " i.e. answer nust be evenly divisible by this nunber.™
echo
echo "If any value is mssing, defaults area supplied as: 0 32767 1"
echo -n "Successful conpletion returns 0, "
echo "unsuccessful conpletion returns”
echo "function syntax and 1."
echo -n "The answer is returned in the global variable "
echo "randonBet weenAnswer "
echo -n "Negative values for any passed paraneter are "
echo "handl ed correctly."

}

l ocal m n=${1:-0}

l ocal nmax=${2:-32767}

| ocal divisibleBy=${3:-1}

Default val ues assigned, in case paraneters not passed to function

| ocal x
| ocal spread

Let's nmake sure the divisibleBy value is positive.
[${divisibleBy} -1t 0] && divisibleBy=$((0-divisibleBy))

Sanity check.
if [$# -gt 3 -0 ${divisibleBy} -eq 0 -0 ${nmin} -eq ${max}]; then

81

Another Look at Variables

f

synt ax
return 1

See if the mn and max are reversed.

i f

f

#+
i f

f

#+
i f

f

#+
#+

#+

#+
#+
#+

[${mn} -gt ${max}]; then
Swap them

x=%{ m n}

m n=${ max}

max=${ x}

If mnis itself not evenly divisible by $divisibl eBy,
then fix the min to be within range
[$((m n/divisibleBy*divisibleBy)) -ne ${nmin}]; then
if [${mn} -1t 01]; then

m n=$((m n/ di vi si bl eBy*di vi si bl eBy))
el se

m n=$((((m n/ di vi si bl eBy) +1) *di vi si bl eBy))
f

If max is itself not evenly divisible by $divisibl eBy,
then fix the max to be within range
[$((max/divisibleBy*divisibleBy)) -ne ${max}]; then
if [${mex} -1t 0]; then

max=$((((max/ di vi si bl eBy) - 1) *di vi si bl eBy))
el se

max=$((max/ di vi si bl eBy*di vi si bl eBy))
f

Now, to do the real work

Note that to get a proper distribution for the end points,
the range of random val ues has to be allowed to go between
0 and abs(max-m n) +di vi si bl eBy, not just abs(max-mn)+1

The slight increase will produce the proper distribution for the
end points.

Changing the forrmula to use abs(max-mn)+1 will still produce
correct answers, but the randommess of those answers is faulty in
that the nunber of tines the end points ($m n and $max) are returned
is considerably | ower than when the correct formula is used.

spread=$((max-mn))

#
#+

Omair Eshkenazi points out that this test is unnecessary,
since max and m n have al ready been swi tched around.

[${spread} -It 0] && spread=$((0-spread))
| et spread+=divi si bl eBy
randonBet weenAnswer =$(((RANDOW/spr ead) / di vi si bl eBy*di vi si bl eBy+mi n))

82

Another Look at Variables

return O

However, Paul o Marcel Coel ho Aragao points out that

#+ when $max and $min are not divisible by $divisibl eBy,

#+ the formula fails.

#

He suggests instead the follow ng formul a:

rnunber = $(((RANDOMA mex- mi n+1) +mi n)/ di vi si bl eBy*di vi si bl eBy))

}

Let's test the function.
m n=-14

max=20

di vi si bl eBy=3

GCenerate an array of expected answers and check to make sure we get
#+ at | east one of each answer if we [oop | ong enough

decl are -a answer
m ni nune${ m n}
mexi mune${ max}
if [$((m ni mum divi si bl eBy*di visibleBy)) -ne ${mnimun}]; then
if [${mninmun} -1t 0]; then
m ni mume$((m ni nund di vi si bl eBy*di vi si bl eBy))
el se
m ni mume$((((m ni mund di vi si bl eBy) +1) *di vi si bl eBy))
f
f

|If max is itself not evenly divisible by $divisibleBy,
#+ then fix the max to be within range

if [$((maxi mum divi si bl eBy*di vi si bl eBy)) -ne ${maxi mun}]; then
if [${maximun} -1t 0]; then
maxi mume$((((maxi mund di vi si bl eBy) - 1) *di vi si bl eBy))
el se
maxi mume$((maxi mund di vi si bl eBy*di vi si bl eBy))
f
f

W need to generate only positive array subscripts,
#+ so we need a displacenent that will guarantee
#+ positive results.

di sp=$((0-m ni num))

for ((i=%{m nimun}; i<=${maxinun}; i+=divisibleBy)); do
answer [i +di sp] =0

done

83

Another Look at Variables

Now | oop a | arge nunber of times to see what we get.
| ooplt=1000 # The script author suggests 100000,
#+ but that takes a good | ong while.

for ((i=0; i<${looplt}; ++i)); do

Note that we are specifying min and max in reversed order here to
#+ make the function correct for this case.

randonBet ween ${nax} ${m n} ${di visi bl eBy}

Report an error if an answer is unexpected.

[${randonBet weenAnswer} -1t ${m n} -o ${randonBet weenAnswer} -gt ${max}] \
&% echo M N or MAX error - ${randonBetweenAnswer}!

[$((randonBet weenAnswer %${ di vi si bl eBy})) -ne 0] \

&& echo DI VI SI BLE BY error - ${randonBetweenAnswer}!

Store the answer away statistically.
answer [r andonmBet weenAnswer +di sp] =$((answer [r andonBet weenAnswer +di sp] +1))
done

Let's check the results

for ((i=%{m nimun}; i<=${maxinunt}; i+=divisibleBy)); do
[${answer[i+disp]} -eq 0] \
&& echo "W never got an answer of $i." \
|| echo "${i} occurred ${answer[i+disp]} times."
done

exit O

Just how random is $RANDOM? The best way to test thisisto write a script that tracks the distribution of
“random” numbers generated by $RANDOM Let's roll a $RANDOMdie afew times. . .

Example 9.15. Rolling a single diewith RANDOM

#!/ bi n/ bash

How random i s RANDOW

RANDOMES$ # Reseed the random nunber generator using script process ID
Pl PS=6 # A die has 6 pips.

MAXTHROA5=600 # Increase this if you have nothing better to do with your tine.
t hr ow=0 # Number of tinmes the dice have been cast.

ones=0 # Must initialize counts to zero,

t wos=0 #+ since an uninitialized variable is null, NOT zero

t hrees=0

f our s=0

fives=0

Another Look at Variables

S

pr
{

ec
ec
ec
ec
ec
ec
ec
ec

}
up
{

ca

es

}

ec

wh
do

do

pr

ex

#

#

xes=0

int_result ()

ho

ho "ones = $ones"
ho "twos = $t wos"
ho "t hrees = $t hrees"”
ho "fours = $fours”
ho "fives = $fives"
ho "sixes = $sixes"
ho

dat e_count ()

se "$1" in

0) ((ones++));;
1) ((twos++));;
2) ((threes++));;
3) ((fours++));;
4) ((fives++));;
5) ((sixes++));;
ac

Since a die has no "zero"
And this to 2.
And so forth.

ho

ile ["$throw' -It "$MAXTHROWS']
et "diel = RANDOM % $PI PS"

updat e_count $di el

let "throw += 1"

ne
int_result

it $?

The scores should distribute evenly,
Wth $MAXTHROAS at 600, all should cluster

pl us-or-m nus 20 or so.

Keep in mnd that
and not a spectacul arly good one at that.

Randommess is a deep and conpl ex subject.

this corresponds to 1.

assum ng RANDOM i s random
around 100,

RANDOM i s a ***pseudor andont** gener at or,

Sufficiently |Iong "random sequences may exhi bit

chaotic and ot her "non-randomi behavi or

Exercise (easy):

Rewrite this script to flip a coin 1000 ti mes.

85

Another Look at Variables

Choices are "HEADS' and "TAILS."

As we have seen in the last example, it is best to reseed the RANDOM generator each time it is invoked.
Using the same seed for RANDOMrepeats the same series of numbers. 8 (This mirrors the behavior of the
randon{) functioninC.)

Example 9.16. Reseeding RANDOM

#!/ bi n/ bash
seedi ng-random sh: Seedi ng the RANDOM vari abl e.
v 1.1, reldate 09 Feb 2013

MAXCOUNT=25 # How many nunbers to generate.
SEED=

random numbers ()
| ocal count =0
| ocal numnber

while ["$count” -1t "SMAXCOUNT"]
do

nunber =$RANDOM

echo -n "$nunber "

| et "count ++"
done

}

echo; echo

SEED=1

RANDOM=$SEED # Setting RANDOM seeds the random nunber generator.
echo "Random seed = $SEED"

random nunbers

RANDOM=$SEED # Sanme seed for RANDOM .
echo; echo "Again, with sanme random seed ..."
echo "Random seed = $SEED"

random nunbers # reproduces the exact sane nunber series.

#

When is it useful to duplicate a "randonm' series?

echo; echo

SEED=2

RANDOM=$SEED # Trying again, but with a different seed .
echo "Random seed = $SEED"

random nunbers # . . . gives a different number series.

8The seed of acomputer-generated pseudorandom number series can be considered an identification label. For example, think of the pseudorandom
serieswith aseed of 23 asSeri es #23.

A property of a pseurandom number series is the length of the cycle before it starts repeating itself. A good pseurandom generator will produce
series with very long cycles.

86

Another Look at Variables

echo; echo

RANDOVES seeds RANDOM from process id of script.
1t is also possible to seed RANDOM from 'tine' or 'date' conmmands.

Cetting fancy. ..

SEED=$(head -1 /dev/urandom| od -N 1 | awk '{ print $2 }'| sed s/"0*//)
Pseudo-random out put fetched

#+ from /dev/urandom (syst em pseudo-random devi ce-file),

#+ then converted to line of printable (octal) nunbers by "od",
#+ then "awk" retrieves just one number for SEED

#+ finally "sed" renmpves any | eadi ng zeros.

RANDOMVE$SEED

echo "Random seed = $SEED"

random nunbers

echo; echo

exit O

Note

The / dev/ urandom pseudo-device file provides a method of generating much more
“random” pseudorandom numbers than the $RANDOM variable. dd i f =/ dev/ ur andom
of =targetfile bs=1 count=XX creates afile of well-scattered pseudorandom numbers.
However, assigning these numbersto avariablein ascript requiresaworkaround, such asfiltering
through od (as in above example, Example 16.14, “ Generating 10-digit random numbers’, and
Example A.36, “Insertion sort™), or even piping to md5sum (see Example 36.16, “A “horserace”
game”).

There are also other ways to generate pseudorandom numbers in a script. Awk provides a con-
venient means of doing this.

Example 9.17. Pseudorandom number s, using awk

#1/ bi n/ bash

randon®.sh: Returns a pseudorandom nunber in the range 0 - 1,
#+ to 6 decimal places. For exanple: 0.822725

Uses the awk rand() function.

AVKSCRI PT=" { srand(); print rand() } '
Conmand(s)/ paraneters passed to awk
Note that srand() reseeds awk's random nunber generator.

echo -n "Random nunber between 0 and 1 =

echo | awk "$AWKSCRI PT"
What happens if you | eave out the 'echo' ?

87

Another Look at Variables

exit O

Exerci ses:

Hooooo oo

1) Using a |l oop construct, print out 10 different random nunbers.

(Hint: you nmust reseed the srand() function with a different seed
#+ i n each pass through the | oop. Wat happens if you omt this?)

2) Using an integer multiplier as a scaling factor, generate random nunbers
#+ in the range of 10 to 100.

3) Sanme as exercise #2, above, but generate randomintegers this tinme.

The date command also lends itself to generating pseudorandom integer sequences.

88

Chapter 10. Manipulating Variables
Manipulating Strings

Bash supports a surprising number of string manipulation operations. Unfortunately, these tools lack a
unified focus. Some are a subset of parameter substitution, and others fall under the functionality of the
UNIX expr command. This results in inconsistent command syntax and overlap of functionality, not to
mention confusion.

String Length

${ #string}

expr length $strin
priend J These are the equivalent of strlen() in C.

expr "$string” : ".*'
P g stri ngZ=abcABC123ABCabc
echo ${#stringZ} # 15
echo “expr length $stringzZ # 15
echo “expr "$stringz" : '.*'° # 15

Example 10.1. Inserting a blank line between paragraphsin atext file

#!/ bi n/ bash
paragr aph-space. sh
Ver. 2.1, Reldate 29Jul 12 [fi xup]

Inserts a blank |line between paragraphs of a single-spaced text file.
Usage: $0 <FI LENAME

M NLEN=60 # Change this value? It's a judgnent call.
Assune |ines shorter than $M NLEN characters ending in a period
#+ term nate a paragraph. See exercises bel ow

while read line # For as many lines as the input file has ...
do
echo "$line" # Qutput the line itself.

| en=${#l i ne}
if [["$len" -1t "$M NLEN' && "$line" =~ [*{\.}]$ 1]
#0f [["$len” -1t "$MNLEN' && "$line" =~ \[*\.\]]]

An update to Bash broke the previous version of this script. Quch!
Thank you, Halim Srama, for pointing this out and suggesting a fix.
t hen echo # Add a blank line inmediately
fi #+ after a short line terminated by a period.
done

exit

Exerci ses:

89

Manipulating Variables

1) The script usually inserts a blank line at the end

#+ of the target file. Fix this.

2) Line 17 only considers periods as sentence term nators.

Modify this to include other conmon end-of - sentence characters,
#+ such as ?, !, and "

Length of Matching Substring at Beginning of String

expr match "$string" "$substring' o _
$subst ri ng isaregular expression.

expr "$string” : '$substring’
P ? : $substri ng isaregular expression.

stri ngZ=abcABC123ABCabc

| ------ |
12345678
echo “expr match "$stringz" 'abc[A-Z]*.2'" # 8
echo “expr "$stringz" : 'abc[A-Z]*.2'" # 8
I ndex
expr index $string $substring . o , , , ,
Numerical position in $string of first character in $substring that
matches.
st ri ngZ=abcABC123ABCabc
123456 ...
echo “expr index "$stringz" Cl2° # 6
C positiol
echo “expr index "$stringz" 1c’ # 3
#'c" (in #3 position) nmatches before '1'.
Thisisthe near equivalent of strchr() in C.
Substring Extraction
${ string:position})) o
Extracts substring from $st ri ng at $posi ti on.
If the $stri ng parameter is “*” or “@", then this extracts the
positional parameters, * starting at $posi t i on.
${ string:position:length}) _
Extracts $l engt h characters of substring from $string at
$posi ti on.
st ri ngZ=abcABC123ABCabc
0123456789.
0- based i ndexi ng.
echo ${stringzZ: 0} # abcABC123,

This appliesto either command-line arguments or parameters passed to a function.

90

Manipulating Variables

echo ${stringz: 1} # bcABC123Al
echo ${stringz: 7} # 23ABCabc
echo ${stringz: 7: 3} # 23A

Three chal

1s it possible to index fromthe right end of the stril

echo ${stringzZ: -4} # abcABC123,
Defaults to full string, as in ${paraneter:-defaul t}.
However

echo ${stringzZ: (-4)} # Cabc

echo ${stringz: -4} # Cabc

Now, it works.

Parent heses or added space "escape" the position param

Thank you, Dan Jacobson, for pointing this out.

The position and length arguments can be “parameterized,” that is,
represented as a variable, rather than as a numerical constant.

Example 10.2. Generating an 8-character “random”
string

#!/ bi n/ bash

rand-string. sh

Cenerating an 8-character "randont string.

if [-n"$1"] # |f command-line argunent present,

t hen #+ then set start-string to it.
stro="%1"

el se # Else use PID of script as start-strin
stro="s"

fi

POS=2 # Starting fromposition 2 in the string.
LEN=8 # Extract eight characters.

str1=$(echo "$str0" | md5sum| md5sum)
Doubly scranble ANNNNN - ANNNNN
#+ by piping and repiping to nd5sum

randstring="${str1l: $PCS: $LEN} "
Can paraneterize "N AAAN

echo "$randstring

exit $?

91

Manipulating Variables

expr substr $string $position
$length

expr match "$string" \($substring\)'

expr "$string" : "\($substring\)'

expr match "$string" *.*\($sub-
string\)'

expr "$string"” : . *\($substring\)’

bozo$./rand-string.sh ny-password
1bdd88c4

No, this is not recomended
#+ as a nethod of generating hack-proof passwords.

If the$st ri ng parameteris“*” or “@", then this extracts amaxi-
mum of $| engt h positional parameters, starting at $posi t i on.

echo ${*:2} # Echoes second and followi ng positi
echo ${ @ 2} # Same as above.
echo ${*:2:3} # Echoes three positional paraneter:

Extracts $| engt h charactersfrom $st r i ng starting at $posi -
tion.

st ri ngZ=abcABC123ABCabc

123456789.

1- based i ndexi ng.

echo “expr substr $stringz 1 2° # ab
echo “expr substr $stringZ 4 3° # ABC

Extracts $subst ri ng at beginning of $st ri ng, where $sub-
stringisaregular expression.

Extracts $subst ri ng at beginning of $st ri ng, where $sub-
stringisaregular expression.

st ri ngZ=abcABC123ABCabc

—======

echo “expr match "$stringz" '\ (.[b-c]*[A-Z]..[0-9]\)"
echo “expr "$stringz" : '\(.[b-c]*[A-Z]..[0-9]\)""
echo “expr "$stringZ" : "\(....... \)' o

Al of the above forms give an identical result.

Extracts$subst ri ng atendof $st ri ng, where$substri ng
isaregular expression.

Extracts$subst ri ng atendof $st ri ng, where$substri ng
isaregular expression.

st ri ngZ=abcABC123ABCabc
—=====

echo “expr match "$stringz" '.*\([AC[A-CI[A-C[a-c]*\)'

92

Manipulating Variables

echo “expr "$stringZ" : ".*\(...... \)' o
Substring Removal

¥ string#substring}
Deletes shortest match of $subst ri ng from front of $st ri ng.

${ string##substring}
Deletes longest match of $subst ri ng from front of $st ri ng.

st ri ngZ=abcABC123ABCabc

[----] short est
[---------- | | ongest
echo ${stringz#a*C # 123ABCabc

Strip out shortest match between 'a' and 'C .

echo ${stringz##a*C} # abc
Strip out |longest match between '"a' and 'C .

You can parameterize the substrings.

X="a*C
echo ${stringz#$x} # 123ABCabc
echo ${stringz##$Xx} # abc

As above.

${ string%substring}
Deletes shortest match of $subst ri ng from back of $st ri ng.

For example:

Rename all filenanes in $PWD with "TXT" suffix to a "txt"
For example, "filel. TXT" becones "filel.txt"

SUFF=TXT
suf f =t xt

for i in $(ls *.$SUFF)
do
mv -f $i ${i % $SUFF}. $suf f
Leave unchanged everything *except* the shortest patteri
#+ starting fromthe right-hand-side of the variable $i
done ### This could be condensed into a "one-liner" if desir

Thank you, Rory W nston.

${ string%eYosubstring}
Deletes longest match of $subst ri ng from back of $st ri ng.

st ri ngZ=abcABC123ABCabc
| short est
[------------ | | ongest

93

Manipulating Variables

echo ${stringZ%*c} # abcABCl123ABCa
Strip out shortest match between 'b' and

¢c', from back of

echo ${stringZ%b*c} # a
Strip out |ongest match between 'b' and

¢c', from back of ¢

This operator is useful for generating filenames.

Example 10.3. Converting graphic file formats, with
filename change

#!/ bi n/ bash
cvt.sh:
Converts all the MacPaint image files in a directory to

Uses the "macptopbnt binary fromthe "netpbm package,
#+ which is maintained by Brian Henderson (bryanh@i raffe- dat
Netpbmis a standard part of npbst Linux distros.

OPERATI ON=nacpt opbm

SUFFI X=pbm # New fil ename suffi x.
if [-n"$1"]
t hen
directory=$1 # If directory nane given as a script ar(
el se
di rect or y=$PWD # Otherw se use current working director)

fi

Assunes all files in the target directory are MacPaint im
#+ with a ".mac" filename suffix.

for file in $directory/* # Fil enane gl obbi ng.
do
filename=${file% *c} # Strip ".mac" suffix off filen:
#+ ('.*c' matches everything

#+ bet ween and 'c', inclusive).
$OPERATI ON $file > "$fil enanme. $SUFFI X"

Redirect conversion to new filcé
rm-f $file # Delete original files after col
echo "$fil ename. $SUFFI X' # Log what is happening to stdoul

done

exit O
Exerci se

As it stands, this script converts *all* the files in the
#+ working directory.
Mdify it to work *only* on files with a

.mac" suffix.

94

Manipulating Variables

*** And here's another way to do it. ***

#!/ bi n/ bash

Batch convert into different graphic formats.

Assunes inmagenagi ck installed (standard in nost Linux disti

I NFMI'=png # Can be tif, jpg, gif, etc.
OQUTFMI=pdf # Can be tif, jpg, gif, pdf, etc.

for pic in *"$I NFMI"

do
p2=%(ls "$pic" | sed -e s/\.$SINFMI//)
echo $p2
convert "$pic" $p2. SOUTFMT
done
exit $?

Example 10.4. Converting streaming audio files to ogg

#! / bi n/ bash
ra2ogg. sh: Convert streamng audio files (*.ra) to ogg.

Uses the "nplayer" nedia player program
htt p: // www. mpl ayer hg. hu/ honepage

Uses the "ogg" library and "oggenc":

htt p: // www. xi ph. or g/
#
#
#

This script may need appropriate codecs installed, such as
Possibly al so the conpat-1ibstdc++ package.

OFl LEPREF=%{ 1%8% a} # Strip off the "ra" suffix.

OF| LESUFF=wav # Suffix for wav file

OUTFI LE=" $OFI LEPREF" " $COFI LESUFF"

E_NOARGS=85

if [-z "$1"] # Must specify a filename to convert.
t hen

echo "Usage: " basenane $0° [filenane]"
exit $E_NOARGS
fi

HHBH IR R TR TR T
npl ayer "$1" -ao pcmfil e=$OUTFI LE

oggenc "$OUTFILE" # Correct file extension automatically adt
HHBH IR R R TR T

rm " $OUTFI LE" # Delete internmediate *.wav file
If you want to keep it, comment out abo

95

Manipulating Variables

exit $?

Note:

_— -

On a Website, sinply clicking on a *.ram stream ng audi o f
#+ usually only downl oads the URL of the actual *.ra audio fi
You can then use "wget" or sonething simlar

#+ to download the *.ra file itself.

Exerci ses:

=

As is, this script converts only *.ra fil enanes.

Add flexibility by permtting use of *.ramand other fil el
#

|If you're really anbitious, expand the script

#+ to do automati c downl oads and conversions of streanm ng aut
Gven a URL, batch downl oad streamng audio files (using
#+ and convert themon the fly.

A simple emulation of getopt using substring-extraction constructs.

Example 10.5. Emulating getopt

#!/ bi n/ bash

getopt-sinple.sh

Aut hor: Chris Mrgan

Used in the ABS CGuide with perm ssion.

get opt _si npl e()

{

}

echo "getopt_sinple()"

echo "Paraneters are ' $*'"

until [-z "$1"]

do
echo "Processing paranmeter of: '$1'"
if [${1:0:1} ="/"]

t hen
tmp=${ 1: 1} # Strip off leading '/’
par anet er =${ t np%s*} # Extract nane.
val ue=${ t np##* =} # Extract val ue

echo "Parameter: '$paranmeter', value: '$value'"
eval $paranet er =$val ue
fi
shift
done

Pass all options to getopt_sinmple().
getopt _sinple $*

96

Manipulating Variables

echo "test is '$test'”
echo "test2 is '$test2'"

exit 0 # See also, UseGetOpt.sh, a nodified version of this

sh get opt _exanpl e. sh /test=val uel /test2=val ue2

Paraneters are '/test=val uel /test2=val ue2'
Processi ng paraneter of: '/test=val uel
Paraneter: 'test', value: 'valuel
Processi ng paraneter of: '/test2=val ue2
Paraneter: 'test2', value: 'value2

test is 'valuel

test2 is 'val ue2'

Substring Replacement

${ string/substring/replacement})
Replace first match of $subst ri ng with $r epl acenent .

${ string//substring/replacement}
Replace all matches of $subst ri ng with $r epl acenent .

st ri ngZ=abcABC123ABCabc

echo ${stringz/ abc/xyz} # xyzABC123ABCabc

Repl aces first match of
echo ${stringz//abc/xyz} # xyzABC123ABCxyz

Repl aces all matches of
echo ---------------
echo "$stringz" # abcABC123ABCabc
echo ---------------

The string itself is not

Can the match and repl acement strings be paraneterized

mat ch=abc

r epl =000

echo ${stringzZ/ $match/ $repl} # 000ABCL123ABCabc
N N NNN

echo ${stringz//$match/ $repl} # 000ABCL23ABCO00
Yesl N N NNN NNN
echo

What happens if no $replacenent string is supplied?
echo ${stringz/ abc} # ABC123ABCabc

echo ${stringz//abc} # ABC123ABC

A sinple deletion takes place.

2Notethat $subst r i ng and $r epl acenment may refer to either literal strings or variables, depending on context. See the first usage example.

97

Manipulating Variables

${ string/#substring/replacement})) .
If $subst ri ng matchesfront end of $st ri ng, substitute $r e-

pl acenment for $substri ng.

${ string/%substring/replacement} . .]
If $subst r i ng matchesback end of $st r i ng, substitute $r e-

pl acenent for $substri ng.

st ri ngZ=abcABC123ABCabc

echo ${stringz/ #abc/ XYZ} # XYZABC123ABCabc
Repl aces front-end m

echo ${stringz/ %abc/ XYZ} # abcABC123ABCXYZ
Repl aces back-end na

Manipulating strings using awk

A Bash script may invoke the string manipulation facilities of awk as an aternative to using its built-in
operations.

Example 10.6. Alter nate ways of extracting and locating substrings

#!/ bi n/ bash
substring-extraction. sh

String=23ski dool

012345678 Bash

123456789 awk

Note different string indexing system

Bash nunbers first character of string as O.
Awk nunbers first character of string as 1.

echo ${String:2:4} # position 3 (0-1-2), 4 characters | ong

skid
The awk equival ent of ${string:pos:length} is substr(string,pos,|ength).
echo | awk '
{ print substr("" "${String}""'", 3, 4) # skid
}

Piping an enpty "echo" to awk gives it dumy input,
#+ and thus nmakes it unnecessary to supply a fil enane.

And | i kew se:

echo | awk '
{ print index("'"${String}"'", "skid") # 3
} # (skid starts at position 3)

The awk equival ent of "expr index"

98

Manipulating Variables

exit O

Further Reference

For more on string manipulation in scripts, refer to the section called “ Parameter Substitution” and the
relevant section of the expr command listing.

Script examples:

Example 16.9, “Using expr”

Example A.36, “Insertion sort”

N o g ~ W Dd P

Example 10.9, “Length of avariable”
Example 10.10, “ Pattern matching in parameter substitution”
Example 10.11, “Renaming file extensions.”

Example 10.13, “Matching patterns at prefix or suffix of string”

Example A.41, “Quacky: a Perquackey-type word game”

Parameter Substitution

Manipulating and/or expanding variables

${ par anet er}

${ paraneter-defaul t},
${ paranet er: -defaul t}

Sameas$par anet er, i.e, valueof thevariablepar amet er . In
certain contexts, only the less ambiguous ${ par anet er } form
works.

May be used for concatenating variables with strings.

your _i d=${ USER} - on- ${ HOSTNANME}

echo "$your _id"

#

echo "A d \ $PATH = $PATH'

PATH=${ PATH}: /opt/bin # Add /opt/bin to $PATH for durati
echo "New \ $PATH = $PATH'

If parameter not set, use default.

var 1=1
var 2=2
var3 i s unset.

echo ${var1- $var 2}
echo ${var 3- $var 2}
N

1
2
Note the $ prefix.

echo ${usernane- whoam "}
Echoes the result of “whoam *, if variable $usernane i:

99

Manipulating Variables

Note

${ par anmet er - def aul t } and ${ par ane-
ter:-default} are amost equivalent. The extra :
makes a difference only when par anet er has been de-
clared, but isnull.

#!1 / bi n/ bash
param sub. sh

\Whether a variable has been decl ared
#+ affects triggering of the default option
#+ even if the variable is null.

user nanme0=

echo "usernane0 has been declared, but is set to null.”
echo "usernane0 = ${usernanme0l- whoam "} "

WIIl not echo.

echo
echo usernanel has not been decl ar ed.
echo "usernanel = ${usernanel- whoam "}"

WIIl echo.

user name2=
echo "usernane2 has been declared, but is set to null."

echo "usernane2 = ${usernane2: - whoam "}"
AN
W1l echo because of :- rather than just - in conditiol

Compare to first instance, above.

#
Once agai n:

vari abl e=
vari abl e has been declared, but is set to null

echo "${vari abl e-0}" # (no output)
echo "${variable:-1}" # 1

AN

unset variabl e

echo "${vari abl e-2}" # 2

echo "${variabl e:-3}" # 3

exit O

The default parameter construct finds use in providing “missing”
command-line arguments in scripts.

100

Manipulating Variables

DEFAULT_FI LENAME=generi c. dat a

filename=${1: - SDEFAULT_FI LENAVE}

|If not otherw se specified, the follow ng command bl o
#+ on the file "generic.data".

Begi n- Conmand- Bl ock

#
#
...
End- Command- Bl ock

From "hanoi 2. bash" exanpl e:

Dl SKS=${ 1: - E_NOPARAM # Must specify how many di sks.
Set $DISKS to $1 command-|i ne- paraneter,

#+ or to $SE_NOPARAM if that is unset.

See also Example 3.4, “Backup of all files changed in last day”,
Example 31.2, “ Setting up aswapfileusing/ dev/ zer 0", and Ex-
ample A.6, “Collatz series’.

Comparethismethod with using an and list to supply adefault com-
mand-line argument.

${ par anet er =def aul t },

${ par anet er : =def aul t}
If parameter not set, set it to default.

Both forms nearly equivalent. The : makes a difference only when
$par anet er has been declared and is null, 3 as above.

echo ${var=abc} # abc
echo ${var=xyz} # abc
$var had already been set to abc, so it did not change.

${paranet er +al t _val ue}, If parameter set, useal t _val ue, else use null string.

${paraneter: +alt_val ue}
Both forms nearly equivalent. The : makes a difference only when

par anet er has been declared and is null, see below.

echo "###### \ ${ par anet er +al t _val ue} ####H##H#"
echo

a=$%{ par anl+xyz}

echo "a = $a" # a =

par an=

a=%{ par an2+xyz}

echo "a = $a" # a = xyz
par an8=123

a=$%{ par anB+xyz}

echo "a = $a" # a = xyz

& $parameter isnull in anon-interactive script, it will terminate with a 127 exit status (the Bash error code for “command not found”).

101

Manipulating Variables

echo
echo "###### \ ${ paraneter: +al t _val ue} ########"
echo

a=%${ par ami: +xyz}

echo "a = $a" # a =
par anb=

a=%{ par anb: +xyz}

echo "a = $a" # a =

Different result from a=${paranb+xyz}

par an6=123

a=${ par anb: +xyz}

echo "a = $a" # a = xyz
${ par anet er ?err _nsg}, If parameter set, useit, else print err_msg and abort the script with
${paraneter: ?err_nsg} an exit status of 1.

Both forms nearly equivalent. The : makes a difference only when
par anet er hasbeen declared and is null, as above.

Example 10.7. Using parameter substitution and error messages
#!/ bi n/ bash

Check sone of the system s environnental variables.

This is good preventative naintenance.

|f, for exanple, $USER, the nane of the person at the console, is not set,
#+ the machine will not recogni ze you.

${ HOSTNAME?} ${ USER?} ${HOVE?} ${MAI L?}
echo

echo "Nane of the machine is $HOSTNAME. "
echo "You are $USER. "

echo "Your home directory is $HOWE. "

echo "Your mail INBOX is located in $MAIL."
echo

echo "If you are reading this nessage,"”
echo "critical environnental variables have been set."
echo

echo

The ${variabl ename?} construction can al so check
#+ for variables set within the script.

Thi sVari abl e=Val ue- of - Thi sVari abl e
Note, by the way, that string variables may be set
#+ to characters disallowed in their nanes.
${ Thi sVari abl e?}
echo "Value of ThisVariable is $ThisVariabl e".

102

Manipulating Variables

echo; echo

${ Z2ZXy23AB?" ZZXy23AB has not been set."}
Since ZZXy23AB has not been set,
#+ then the script termnates with an error nessage.

You can specify the error nessage.
: ${vari abl ename?" ERROR MESSAGE"}

Sanme result with: dunmmy_vari abl e=${ ZZXy23AB?}

dummy_vari abl e=${ ZZXy23AB?" ZXy23AB has not been set."}
#

echo ${ZzXy23AB?} >/dev/null

Conpare these nmethods of checki ng whether a variabl e has been set
#+ with "set -u"

echo "You will not see this nessage, because script already termnated."

HERE=0
exit $HERE # WIIl NOT exit here.

In fact, this script will return an exit status (echo $?) of 1.

Example 10.8. Parameter substitution and “ usage” messages

#1/ bi n/ bash
usage- nessage. sh

${1?" Usage: $0 ARGUMENT"}
Script exits here if command-I|ine paraneter absent,
#+ with foll owi ng error nessage.
usage- message. sh: 1: Usage: usage- nmessage. sh ARGUVENT

echo "These two lines echo only if command-|ine parameter given."
echo "command-|line paraneter = \"$1\""

exit O # WII exit here only if command-I|ine paraneter present.

Check the exit status, both with and wi thout command-I|ine paraneter.
|f command-|ine paranmeter present, then "$?" is 0.
1f not, then "$?" is 1.

Parameter substitution and/or expansion. The following expressions are the complement to the
match i n expr string operations (see Example 16.9, “Using expr”). These particular ones are used mostly
in parsing file path names.

103

Manipulating Variables

Variablelength / Substring removal

${#var} String | ength (number of charactersin $var). For an array, ${#array}
isthe length of the first element in the array.

Note

Exceptions:

${#*} and ${#@} give the number of positional parameters.

e For an array, H{#array[*]} and ${#Harray[@]} give the number of
elementsinthe array.

Example 10.9. Length of a variable

#!/ bi n/ bash
| engt h. sh

E_NO_ARGS=65

if [$# -eq 0] # Must have comand-line args to denp script.

t hen
echo "Pl ease invoke this script with one or nore comrand-1line :
exit $E_NO _ARGS

fi

var 01=abcdEFGH28i |

echo "var01 = ${var01}"

echo "Length of var0l = ${#var01}"
Now, let's try enbeddi ng a space.
var 02="abcd EFGH28ij"

echo "var02 = ${var02}"

echo "Length of var02 = ${#var02}"

echo "Nunber of command-line argunments passed to script
echo "Nunber of command-line argunments passed to script

${#Q@"
${#*}"

exit O

${var#Pat tern},

${var ##Pat t er n}
${var#Pattern} Remove from $var the shortest part of $Patt er n that
matchesthef ront end of $var.

${var##Pattern} Remove from $var the longest part of $Pat t er n that
matchesthef ront end of $var .

A usage illustration from Example A.7, “days-between: Days between two
dates’:

104

Manipulating Variables

${var %rat t ern},
${var WFat t er n}

Function from "days-between. sh" exanpl e.
Strips | eading zero(s) from argunent passed.

strip_leading _zero () # Strip possible | eading zero(s)

{ #+ from argunent passed.
ret ur n=${ 1#0} # The "1" refers to "$1" -- passed arg.
} # The "0" is what to renove from"$1" --

Manfred Schwarb's more elaborate variation of the above:

strip_leading_zero2 () # Strip possible |leading zero(s), since of

{ # Bash will interpret such nunbers as oct:
shopt -s extglob # Turn on extended gl obbi ng.
| ocal val =${1##+(0)} # Use local variable, |ongest matching sel
shopt -u extglob # Turn of f extended gl obbi ng.

_strip_l eading_zero2=${val : -0}
If input was O, return O instead of

}

Another usage illustration:

echo "~basename $PWD # Basenane of current working direct:¢
echo " ${ PVWD##*/}" # Basenane of current working direct:¢
echo

echo "“basenanme $0° # Name of script.

echo $0 # Nane of script.

echo "${0##*/}" # Name of script.

echo

fil ename=test. data

echo "${fil ename##*.}" # data

Extension of fil enane.

$var% Pattern} Remove from $var the shortest part of $Pat t er n that
matchesthe back end of $var .

${var % % Pattern} Remove from $var the longest part of $Pat t er n that
matchesthe back end of $var .

Version 2 of Bash added additional options.

Example 10.10. Pattern matching in parameter substitution

#! / bi n/ bash

patt-matching. sh

Pattern matching wusing the # ## % %6 paraneter substitution operators.

var 1=abcd12345abc6789
patternl=a*c # * (wild card) matches everything between a - c.

105

Manipulating Variables

echo
echo "varl = $varl” # abcdl12345abc6789
echo "varl = ${var1}" # abcd12345abc6789

(alternate form
echo "Nunber of characters in ${varl} = ${#var1}"

echo

echo "patternl = $patternl” # a*c (everything between 'a' and 'c')

echo "-------------- "

echo ' ${var 1#$patternl} =" "${var 1#$patternl}” # d12345abc6789
Shortest possible match, strips out first 3 characters abcdl12345abc6789
ANNNAN | _ |

echo ' ${var 1##$patternl} =" "${var 1##$patternl}” # 6789
Longest possible match, strips out first 12 characters abcd12345abc6789
ANANNN | __________ |

echo; echo; echo

pattern2=b*9 # everything between 'b' and '9’

echo "varl = $var1" # Still abcdl12345abc6789

echo

echo "pattern2 = $pattern2”

echo "-------------- "

echo '${varl1%attern2} =" "${varl%pattern2}"” # abcd12345a

Shortest possible match, strips out last 6 characters abcd12345abc6789
ANNN | e - - |
echo ' ${var1%pattern2} =" "${var1%Gpattern2}"” # a

Longest possible match, strips out last 12 characters abcd12345abc6789
ANNN | _____________ |

Remenber, # and ## work fromthe left end (begi nning) of string,
% and %® work fromthe right end

echo

exit O

Example 10.11. Renaming file extensions.

#1/ bi n/ bash

rfe.sh: Renam ng file extensions.

#

rfe ol d_extensi on new_extension

#

Exanpl e:

To rename all *.gif files in working directory to *.jpg
rfe gif jpg

E_BADARGS=65

case $# in
0| 1) # The vertical bar nmeans "or" in this context.
echo "Usage: “basenanme $0° old_file_suffix new file_suffix"

106

Manipulating Variables

exit $E BADARGS # If 0 or 1 arg, then bail out.

esac

for filenane in *.$1

Traverse list of files ending with 1st argument.

do
mv $filenane ${fil enane%1}$2
Strip off part of filename matching 1st argunent,
#+ then append 2nd argunent.

done

exit O

Variable expansion / Substring replacement
These constructs have been adopted from ksh.
${var: pos} Variablevar expanded, starting from offset pos.

${var: pos: | en} Expansion to amax of | en charactersof variablevar , from offset
pos. See Example A.13, “ password: Generating random 8-charac-
ter passwords’ for an example of the creative use of this operator.

${var/ Pat t ern/ Repl ace- First match of Pat t er n, within var replaced with Repl ace-
nment } ment .

If Repl acenent isomitted, then the first match of Pat t er n is
replaced by nothing, that is, deleted.

${var// Pattern/ Repl ace- Global replacement. All matches of Pat t er n, within var
nment } replaced with Repl acenent .

As above, if Repl acenent is omitted, then all occurrences of
Pat t er n arereplaced by nothing, that is, deleted.

Example 10.12. Using pattern matching to parse
arbitrary strings

#!/ bi n/ bash

var 1=abcd- 1234- def g
echo "varl = $varl"

t=${var 1#*-*}

echo "varl (with everything, up to and including first -
t=${vari#*-} works just the sane,

#+ since # matches the shortest string,

#+ and * mat ches everything preceding, including an enpt)
(Thanks, Stephane Chazelas, for pointing this out.)

t =${ var 1##*-*}
echo "If varl contains a \"-\", returns enpty string...

107

Manipulating Variables

${var/#Pat t er n/ Repl ace-
nent }

${var/ % at t er n/ Repl ace-
nent }

t=${var 1% -*}
echo "varl (with everything fromthe last - on stripped «

echo

echo "path_name = $pat h_nane"

t =${ pat h_nane##/ */}

echo "path_nane, stripped of prefixes = $t"

Sane effect as t =" basename $path_nane” in this parti«
t=${path_name%}; t=${t##*/} is a nore general sol ut
#+ but still fails sonetines.

1f $path_name ends with a newline, then ~basenane $pa
#+ but the above expression wll.

(Thanks, S.C.)

t =${ pat h_nanme% *. *}

Sane effect as t="dirnanme $path_nane’

echo "path_nane, stripped of suffixes = $t"

These will fail in some cases, such as "../", "/fool/l/l
Renoving suffixes, especially when the basename has n
#+ but the dirnane does, also conplicates matters.

(Thanks, S.C.)

echo

t =${ pat h_nane: 11}

echo "$path_nanme, with first 11 chars stripped off = $t"
t =${ pat h_nane: 11: 5}

echo "$path_name, with first 11 chars stripped off, |eng!

echo

t =${ pat h_nan®e/ bozo/ cl own}

echo "$path_name with \"bozo\" replaced by \"clown\" =
t =${ pat h_nane/ t oday/ }

echo "$path_name with \"today\" deleted = $t"

t =${ pat h_nane// o/ G

echo "$path_name with all o's capitalized = $t"

t =${ pat h_nane// o/}

echo "$path_name with all o's deleted = $t"

exit O

If prefix of var matches Pat t er n, then substitute Repl ace-
ment forPattern

If suffix of var matches Pat t er n, then substitute Repl ace-
ment forPattern

108

Manipulating Variables

Example 10.13. M atching patternsat prefix or suffix
of string

#!/ bi n/ bash
var-mat ch. sh:
Denp of pattern replacenent at prefix / suffix of stril

vO0=abc1234zi pl234abc # Original variable.
echo "v0 = $vO" # abcl1234zi pl1234abc
echo

Match at prefix (beginning) of string.
v1=${vO0/ #abc/ ABCDEF} # abc1234zi pl234abc
|-
echo "vl1l = $v1" # ABCDEF1234zi pl1234abc
#----

Match at suffix (end) of string.
v2=%${v0/ %abc/ ABCDEF} # abcl1234zi pl23abc

|-
echo "v2 = $v2" # abc1234zi p1234ABCDEF
|----1
echo
H o m o o o e e e e e e e e e e e e e e oo

Mist match at beginning / end of string,
#+ otherwi se no replacenent results.
H o m o o o e e e e e e e e e e e e e e oo

v3=${vO0/ #123/ 000} # Matches, but not at beginning
echo "v3 = $v3" # abcl1234zi pl234abc
NO REPLACEMENT.
v4=${v0/ %423/ 000} # Matches, but not at end
echo "v4 = $v4" # abcl1234zi pl234abc
NO REPLACEMENT.
exit O
${!varprefix*}, ${! Matches names of all previously declared variables beginning with
varprefi x@ var prefi x.

This is a variation on indirect reference, but with a
Bash, version 2.04, adds this feature.

xyz23=what ever

Xyz24=

a=${! xyz*} # Expands to *names* of declared vari
NN n + beginning with "xyz"

echo "a = $a" # a = xyz23 xyz24

a=${! xyz@ # Same as above.

echo "a = $a" # a = xyz23 xyz24

109

Manipulating Variables

eChO n___mn

abc23=sonet hi ng_el se

b=${! abc*}

echo "b = $b" # b = abc23

c=${! b} # Now, the nore famliar type of ind
echo $c # sonething_el se

110

Chapter 11. Loops and Branches

What needs this iteration, woman?

--Shakespeare, &t hel | 0

Operations on code blocks are the key to structured and organized shell scripts. Looping and branching
constructs provide the tools for accomplishing this.

Loops

A loop isablock of code that iterates ! alist of commands as long as the loop control conditionistrue.

for loops
forargin[list]
while

until

How to choose between afor loop or awhile loop or until loop? In C, you would typically use afor loop
when the number of loop iterations is known beforehand. With Bash, however, the situation is fuzzier.
The Bash for loop is more loosely structured and more flexible than its equivalent in other languages.
Therefore, feel free to use whatever type of loop gets the job done in the simplest way.

Nested Loops

A nested loop is a loop within aloop, an inner loop within the body of an outer one. How thisworks is
that the first pass of the outer loop triggers the inner loop, which executes to completion. Then the second
pass of the outer loop triggers the inner loop again. This repeats until the outer loop finishes. Of course, a
break within either the inner or outer loop would interrupt this process.

Example 11.20. Nested L oop

#1/ bi n/ bash
nested-1oop. sh: Nested

for" | oops.
outer=1 # Set outer |oop counter.

Begi nning of outer | oop.
for ainl1l2345

do
echo "Pass $outer in outer |oop."
echo L n
inner=1 # Reset inner | oop counter.

Lteration: Repeated execution of a command or group of commands, usually -- but not always, while a given condition holds, or until a given
condition is met. # —====————m———————m———————m———————m———————mm—

Loops and Branches

Begi nning of inner | oop.
for binl1l2345
do
echo "Pass $inner in inner |oop."

et "inner+=1" # Increnent inner |oop counter
done
End of inner |oop
==
| et "outer+=1" # Increment outer |oop counter
echo # Space between output blocks in pass of outer |oop
done

End of outer |oop.
exit O

See Example 27.11, “The Bubble Sort” for an illustration of nested whileloops, and Example 27.13, “The
Sieve of Eratosthenes’ to see awhile loop nested inside an until loop.

Loop Control

Tournez cent tours, tournez mille tours,
Tournez souvent et tournez toujours. . .

--Verlaing, “ Chevaux de bois’

Commands affecting loop behavior

break,
continue

Testing and Branching

The case and select constructs are technically not loops, since they do not iterate the execution of a code
block. Like loops, however, they direct program flow according to conditions at the top or bottom of the
block.

Controlling program flow in a code block
case(in) / esac

select

112

Chapter 12. Command Substitution

Command substitution reassignsthe output of acommand Lor even multiple commands; it literally plugs
the command output into another context. 2

The classic form of command substitution uses backquotes ("..."). Commands within backquotes (back-
ticks) generate command-line text.

scri pt _nanme="basenane $0°
echo "The name of this script is $script_nane."

Theoutput of commands can be used as argumentsto another command, to set avariable, and even
for generating the argument list in afor loop.

rm cat fil enanme’ # “filename” contains a list of files to delete.

#

S. C points out that "arg list too long" error might result.
Better is xargs rm-- < fil ename

(-- covers those cases where “filenane” begins with a “-")

textfile_listing="ls *.txt"
Variabl e contains names of all *.txt files in current working directory.
echo $textfile_listing

textfile_listing2=$(ls *.txt) # The alternative form of conmand substitution.
echo $textfile_listing2
Same result.

A possible problemw th putting a list of files into a single string

is that a newWine may creep in.

#

A safer way to assign a list of files to a paraneter is with an array.
shopt -s nullglob # 1f no match, filename expands to not hi ng.
textfile_listing=(*.txt)

#

Thanks, S.C.

Note

Command substitution invokes a subshell.

Caution

Command substitution may result in word splitting.

COWAND “echo a b’ # 2 args: a and b
COWAND "“echo a b™" # 1 arg: "a b"
COWAND " echo’ # no arg

COWAND " echo™" # one enpty arg

ror purposes of command substitution, acommand may be an external system command, an internal scripting builtin, or even a script function.
2In amore technically correct sense, command substitution extractsthe st dout of acommand, then assignsit to a variable using the = operator.

113

Command Substitution

Thanks, S.C.

Even when there is no word splitting, command substitution can remove trailing newlines.

cd ""pwd " # This should al ways work.
However. ..

nkdir "dir with trailing newine

cd "dir with trailing newine

cd ""pwd " # Error nessage:
bash: cd: /tnmp/file with trailing newWine: No such file or directory

cd "$PWD' # Works fine.

old_tty_setting=$(stty -Q) # Save old term nal setting.

echo "Hit a key "

stty -icanon -echo # Di sabl e "canonical" npode for term nal
Al so, disable *local* echo.

key=$(dd bs=1 count=1 2> /dev/null) # Using 'dd' to get a keypress.

stty "$old_tty_setting" # Restore old setting.

echo "You hit ${#key} key." # ${#variable} = nunber of characters in $variable

#

Hit any key except RETURN, and the output is "You hit 1 key."

Ht RETURN, and it's "You hit 0 key."

The newline gets eaten in the conmand substitution

#Code sni ppet by St éphane Chazel as.

Caution

Using echo to output an unquoted variable set with command substitution removes trailing new-
lines characters from the output of the reassigned command(s). This can cause unpleasant sur-
prises.

dir_listing="Ils -1°
echo $dir_listing # unquot ed

Expecting a nicely ordered directory listing.

However, what you get is:
total 3 -rwrwr-- 1 bozo bozo 30 May 13 17:15 1.txt -rwrwr-- 1 bozo
bozo 51 May 15 20:57 t2.sh -rwxr-xr-x 1 bozo bozo 217 Mar 5 21:13 wi .sh

114

Command Substitution

The newl i nes di sappeared.

echo "$dir_listing" # quot ed

#o-rWrwr-- 1 bozo 30 May 13 17:15 1.txt
#o-rWrwr-- 1 bozo 51 May 15 20:57 t2.sh
- TWXT - XT-X 1 bozo 217 Mar 5 21:13 w .sh

Command substitution even permits setting a variable to the contents of afile, using either redirection or
the cat command.

vari abl el="<fil el
vari abl e2="cat file2"

#

Set "variablel” to contents of "filel".
Set "variable2" to contents of "file2".
This, however, forks a new process,
+ so the line of code executes slower than the above vers

H H HH

Note that the variables may contain enbedded whitespace,

#+ or even (horrors), control characters.

1t is not necessary to explicitly assign a variable.
echo "° <%0 " # Echoes the script itself to stdout.
Excerpts fromsystemfile, /etc/rc.d/rc.sysinit

#+ (on a Red Hat Linux installation)

i f

i f

fi

[-f /fsckoptions]; then
fsckopti ons="cat /fsckoptions’

[-e "/proc/idel/${disk[$device]}/nedia"] ; then
hdnedi a="cat /proc/ide/ ${di sk[$devi ce]}/ nedi a’

[! -n
kt ag=""cat /proc/version

unane -r | grep -- "-"""]; then

[$usb = "1"]; then
sleep 5
nouseout put =" cat /proc/bus/usb/devices 2>/ dev/null|grep -E ""l.*C s=03. *Prot =0
kbdout put =" cat /proc/bus/usb/devices 2>/dev/null|grep -E "*I.*d s=03. *Prot =01"

Caution

Do not set a variable to the contents of a long text file unless you have a very good reason for
doing so. Do not set avariable to the contents of abinary file, even as ajoke.

115

Command Substitution

Example 12.1. Stupid script tricks

#!1/ bi n/ bash
stupid-script-tricks.sh: Don't try this at hone, folKks.
From "Stupid Script Tricks," Volume I.

exit 99 ### Comment out this line if you dare.
danger ous_vari abl e="cat /boot/vnlinuz’ # The conpressed Linux kernel itself.

echo "string-length of \$dangerous_variabl e = ${#dangerous_vari abl e}"
string-length of $dangerous_variable = 794151

(Newer kernels are bigger.)
Does not give sane count as

we -c /boot/vminuz'.

echo "$danger ous_vari abl e"
Don't try this! It would hang the script.

The docunent author is aware of no useful applications for
#+ setting a variable to the contents of a binary file.

exit O

Notice that a buffer overrun does not occur. This is one instance where an interpreted language,
such as Bash, provides more protection from programmer mistakes than a compiled language.

Command substitution permits setting a variable to the output of a loop. The key to thisis grabbing the
output of an echo command within the loop.

Example 12.2. Generating a variable from aloop

#1/ bi n/ bash
csubl oop.sh: Setting a variable to the output of a | oop

variablel="for i in12 345
do

echo -n "$i " # The 'echo' conmmand is critica
done’ #+ to command substitution here.

echo "variabl el = $variablel” # variablel = 12345

i =0

vari abl e2="while ["$i" -1t 10]

do
echo -n "$i" # Again, the necessary 'echo'
let "i += 1" # I ncrenent.

done’

echo "variabl e2 = $vari abl e2" # variable2 = 0123456789

116

Command Substitution

Denonstrates that it's possible to enbed a | oop
#+ inside a variable declaration.

exit O

Command substitution makesit possibleto extend the tool set availableto Bash. It issimply a matter
of writing aprogram or script that outputsto st dout (like awell-behaved UNIX tool should) and
assigning that output to avariable.

#i ncl ude <stdi o. h>
/* "Hello, world.” C program */

int main()

{
printf("Hello, world.\n");

return (0);

}

bash$ gcc -0 hello hello.c

#! [/ bi n/ bash
hell 0. sh

greeting="./hello
echo $greeting

bash$ sh hel |l 0. sh
Hel |l o, worl d.

Note

The $(...) form has superseded backticks for command substitution.
out put=$(sed -n /"$1"/p $file) # From "grp.sh" exanple.

Setting a variable to the contents of a text file.
File_contentsl=$(cat $filel)
Fil e_contents2=$(<$fil e2) # Bash permts this al so.

The $(...) form of command substitution treats a double backslash in a different way than "...".

bash$ echo “echo \\"

bash$ echo $(echo \\)
\

117

Command Substitution

The $(...) form of command substitution permits nesting. 3
word_count=$(wc -w $(echo * | awk '{print $8}'))

Or, for something a bit more elaborate . . .

Example 12.3. Finding anagrams

#!/ bi n/ bash
agran®. sh
Exanpl e of nested command substitution.

Uses "anagram' utility

#+ that is part of the author's "yaw " word |ist package.
http://ibiblio.org/pub/Linux/libs/yaw -0.3.2.tar.gz

http://bash.deta.in/yaw-0.3.2.tar.gz

E_NOARGS=86
E_BADARG=87
M NLEN=7

if [-z "$1"]
t hen
echo "Usage $0 LETTERSET"
exit $E_NOARGS # Script needs a comand-|ine argument.
elif [${#1} -1t $M NLEN]
t hen
echo "Argument nust have at |east $M NLEN letters."
exit $E_BADARG
fi

FILTER=" ' # Must have at least 7 letters.
1234567
Anagr ans=($(echo $(anagram $1 | grep $FILTER)))
$($(nested command sub.))
(array assi gnnent)
echo
echo "${#Anagrans[*]} 7+ letter anagranms found"
echo
echo ${Anagrans[0]} # First anagram
echo ${Anagrans[1]} # Second anagram

Etc.

echo "${Anagrans[*]}" # To list all the anagrans in a single line .

Look ahead to the Arrays chapter for enlightennment on
#+ what's going on here.

3 Infact, nesti ng with backticksis also possible, but only by escaping the inner backticks, as John Default points out.

word_count=" wc -w \ echo * | awk '{print $8}'\" °

118

Command Substitution

See al so the agram sh script for an exercise in anagram finding.

exit $?

Examples of command substitution in shell scripts:

1

2.

8.

9.

Example 11.8, “A grep replacement for binary files’

Example 11.27, “Using command substitution to generate the case variable”

. Example 9.16, “Reseeding RANDOM”

. Example 16.3, “ Badname, eliminatefile namesin current directory containing bad charactersand white-

space.

. Example 16.22, “lowercase: Changes all filenames in working directory to lowercase.”
. Example 16.17, “Emulating grep in a script”

. Example 16.54, “Using seq to generate loop arguments’

Example 11.14, “Using efax in batch mode”

Example 11.11, “Listing the symbolic links in a directory”

10.Example 16.32, “ Stripping comments from C program files’

11.Example 20.8, “Redirected for loop”

12 Example A.16, “tree: Displaying a directory tree”

13.Example 29.3, “Finding the process associated with a PID”

14.Example 16.47, “Monthly Payment on a Mortgage’

15.Example 16.48, “Base Conversion”

16.Example 16.49, “Invoking bc using a here document”

119

Chapter 13. Arithmetic Expansion

Arithmetic expansion provides a powerful tool for performing (integer) arithmetic operations in scripts.
Trandlating astring into anumerical expressionisrelatively straightforward using backticks, double paren-
theses, or let.

Variations

Arithmetic expansion with back-
ticks (often used in conjunction
with expr)

Arithmetic expansion with double
parentheses, and using let

120

Chapter 14. Recess Time

This bizarre little intermission gives the reader a chance to relax and maybe laugh a bit.

Fellow Linux user, greetings! Y ou are reading something which
will bring you luck and good fortune. Just e-mail a copy of

this document to 10 of your friends. Before making the copies,
send a 100-line Bash script to the first person on the list

at the bottom of thisletter. Then delete their name and add
yours to the bottom of the list.

Don't break the chain! Make the copies within 48 hours.
Wilfred P. of Brooklyn failed to send out his ten copies and
woke the next morning to find his job description changed

to "COBOL programmer." Howard L. of Newport News sent
out histen copies and within a month had enough hardware
to build a 100-node Beowulf cluster dedicated to playing
Tuxracer. AmeliaV. of Chicago laughed at this letter

and broke the chain. Shortly thereafter, afire broke out

in her terminal and she now spends her days writing
documentation for MS Windows.

Don't break the chain! Send out your ten copies today!

Courtesy 'NIX "fortune cookies', with some alterations and many apologies

121

Part Part 4. Commands

Mastering the commands on your Linux machine is an indispensable prelude to writing effective shell scripts.
This section covers the following commands:

* . (Seedso source)

e ac

» adduser

- agetty

* agrep

* arch

o at

* autoload
» awk (See aso Using awk for math operations)
* badblocks
* banner

* basename
* batch

* bc

* by

e bind

* bison

¢ builtin

e bzgrep

e bzip2

o caler

chattr
chfn
chgrp
chkconfig
chmod
chown
chroot
cksum
clear
clock
cmp

col

colrm
column
comm
command
compgen
complete
compress
coproc
cp

cpio

cron
crypt
csplit

cu

cut

date

dc

dd

debugfs
declare
depmod
df

dialog
diff

diff3
diffstat
dig
dirname
dirs
disown
dmesg
doexec
dos2unix
du

dump
dumpe2fs
e2fsck
echo
egrep
enable
enscript
env

eqn

eva

exec

exit (Related topic: exit status)
expand

export

expr
factor

false
fdformat
fdisk

fg

fgrep

file

find

finger

flex

flock

fmt

fold

free

fsck

ftp

fuser

getfacl

getopt
getopts
gettext

getty
gnome-mount
grep

groff
groupmod
groups (Related topic: the SGROUPS variable)
gs

gzip

halt

hash
hdparm
head

help
hexdump
host
hostid
hostname (Related topic: the SHOSTNAME variable)
hwclock
iconv

id (Related topic: the $UID variable)
ifconfig
info
infocmp
init
insmod
install

ip

ipcalc
iptables
iwconfig
jobs

join

jot

kill

killall

last
lastcomm

lastlog

Idd

locate
lockfile
logger
logname
|logout
logrotate
look

|osetup

Ip

Itrace
lynx
|zcat
Izma

m4

mall
mailstats
mailto

make

MAKEDEV
man
mapfile
mcookie
md5sum
merge
mesg
mimencode
mkbootdisk
mkdir
mkdosfs
mke2fs
mkfifo
mkisofs
mknod
mkswap
mktemp
mmencode
modinfo
modprobe
more
mount
msgfmt

mv

nc
netconfig
netstat
newgrp
nice

nl

nm
nmap

nohup

nslookup

objdump

od

openss|

passwd

paste

patch (Related topic: diff)
pathchk

pax

pgrep

pidof

ping

pkill

popd

pr

printenv

printf

procinfo

ps

pstree

ptx

pushd

pwd (Related topic: the $PWD variable)
quota

rcp

rdev

rdist

read
readelf
readlink
readonly
reboot
recode
renice
reset
resize
restore
rev
rlogin
rm
rmdir
rmmod
route
rpm
rpma2cpio
rsh
rsync
runlevel
run-parts
rx

rz

sar

Scp
script

soliff

service

setfacl
setquota
setserial
setterm
shalsum
shar
shopt
shred
shutdown
size

skill
seep
slocate
snice
sort

source

stat
strace
strings
strip
stty

su
sudo

sum

suspend
swapoff

swapon

sync

tac

tail

tar

thl
tcpdump
tee
telinit
telnet
Tex
texexec
time
times
tmpwatch
top
touch
tput

tr
traceroute
true

tset

tsort

tty
tune2fs

type

typeset
ulimit
umask
umount
uname
unarc
unarj
uncompress
unexpand
uniq
units
unlzma
unrar
unset
unsqg
unzip
uptime
usbmodules
useradd
userdel
usermod
users
usleep
uucp
uudecode
uuencode
uux
vacation
vdir

vmstat

vrfy

wait
wall
watch
wc
wget
whatis
whereis
which
who
whoami
whois
write
Xargs
xrandr
Xz
yacc
yes
zcat
zdiff
zdump
zegrep
zfgrep
zgrep
zZip

Table of Contents

15. Internal Commands and BUITINSooniiniiiii e 136
JOD CoNtrol COMMANGSvuieiiitie e et e e e e e e e e e e e e e aeaneenns 138
16. External Filters, Programs and COmMMANGSc..uviiuuieiuneiii e e e e e e e e e eeees 140
BaSIC COMMANGS ... ouiiiitiiiiit e e e et e e e e e e e e e e e e e e e e e eneeneenns 140
CompPlEX COMMENGSeieeieee ettt e et et et e e et e e e eea e e eenans 142
Time / Date COMMANGSceuiinieiiiei e e e et r e e eaeeans 142
Text Processing COMMIBINGScouuuneiiiiiiee ettt e et e e e s 142
File and Archiving COMMENGSuuiiiiiteieiii et e et e et e e e e e enaans 143
CommuNiCationS COMIMEBNAScvuieiiie e e e e e e e et e e et eaeaeaeanaanns 144
Terminal Control COMIMANGSiviieiitiii e e e e e e e e e ee e e ens 145
Math COMMANAS . .ueiiiiiie et e e e e e e e e e e aeans 145
MiSCElaNEOUS COMIMEBNAScvieiteitiit ittt ettt et e et e e et e e e e e e ea e e e eneeneeneeneenees 145
17. System and Administrative COMMANDSccouuuiieiiiiie it 147
ANBIYZING @ SYSLEM SCHIPE ...eueieeei ettt et e e e e 149

135

Chapter 15. Internal Commands and
Builtins

A builtinisacommand contained within the Bash tool set, literally built in. Thisiseither for performance
reasons -- builtins execute faster than external commands, which usually require forking off ! a separate
process -- or because a particular builtin needs direct access to the shell internals.

IAs Nathan Coulter points out, "while forking a processis a low-cost operation, executing a new program in the newly-forked child process adds
more overhead.”

136

Internal Commands and Builtins

When acommand or the shell itself initiates (or spawns) anew subprocessto carry out atask, thisis
called forking. This new process is the child, and the process that forked it off is the parent. While
the child process is doing its work, the parent processis still executing.

Note that while a parent process gets the process ID of the child process, and can thus pass argu-
mentsto it, the reverseis not true. This can create problems that are subtle and hard to track down.

Example 15.1. A script that spawns multiple instances of itself

#!1/ bi n/ bash
spawn. sh

P_array=($PIDS) # Put themin an array (why?).

let "instances = ${#P_array[*]} - 1" # Count elenents, |less 1.
Why subtract 17

echo "$i nstances instance(s) of this script running."

echo "[Ht Cl-Cto exit.]"; echo

After exiting with a Cl-C
#+ do all the spawned instances of the script die?
|If so, why?

Not e:

H o----

Be careful not to run this script too |Iong.

1t will eventually eat up too many system resources.
|s having a script spawn nultiple instances of itself
#+ an advi sabl e scripting techni que.

Wiy or why not?

Generally, a Bash builtin does not fork a subprocess when it executes within a script. An external
system command or filter in a script usually will fork a subprocess.

Pl DS=$(pi dof sh $0) # Process IDs of the various instances of this

echo $PI DS # Show process | Ds of parent and child processd

sleep 1 # Wait.

sh $0 # Play it again, Sam

exit O # Not necessary; script will never get to here.
Why not ?

A builtin may be a synonym to a system command of the same name, but Bash reimplementsit internally.
For example, the Bash echo command is not the same as/ bi n/ echo, athough their behavior is almost

identical.
#! / bi n/ bash

echo "This line uses the \"echo\" builtin."
/bin/echo "This |ine uses the /bin/echo system comand. "

137

script.

S.

Internal Commands and Builtins

A keyword isareserved word, token or operator. Keywords have a special meaning to the shell, and indeed
are the building blocks of the shell's syntax. As examples, for, while, do, and ! are keywords. Similar to
a builtin, a keyword is hard-coded into Bash, but unlike a builtin, a keyword is not in itself a command,
but a subunit of a command construct. 2

/10

pwd

pushd,
popd,

dirs
Variables
let

eval

Set

unset
export

declare,
typeset

readonly

getopts

Script Behavior

source, . (dot com-
mand)

exit
exec

shopt

2An exception fedf)igis the time command, listed in the official Bash documentation as a keyword (“reserved word”).

Commands 138

true

Internal Commands and Builtins

times

kill

killall
command
builtin
enable

autoload

Table 15.1. Job identifiers

Notation M eaning

9N Job number [N]

%5 Invocation (command-line) of job beginswith string
S

%S Invocation (command-line) of job containswithin it
string S

%0 “current” job (last job stopped in foreground or
started in background)

Yo+ “current” job (last job stopped in foreground or
started in background)

% Lastjob

$! Last background process

139

Chapter 16. External Filters, Programs
and Commands

Standard UNIX commands make shell scripts more versatile. The power of scripts comes from coupling
system commands and shell directives with simple programming constructs.

Basic Commands

Thefirst commands a novice learns

Is
cat, tac
rev
cp
mv Thisisthe file move command. It is equivalent to a combination of cp and rm. It may be used
to move multiple files to a directory, or even to rename a directory. For some examples of
using mv in a script, see Example 10.11, “Renaming file extensions.” and Example A.2, “rn:
A simple-minded file renaming utility”.
Note
When used in a non-interactive script, mv takesthe - f (force) option to bypass user
input.
When a directory is moved to a preexisting directory, it becomes a subdirectory of
the destination directory.
bash$ mv source directory target _directory
bash$ |Is -IF target _directory
total 1
dr wWxr wxr - X 2 bozo bozo 1024 May 28 19: 20 source_directory/
rm
rmdir
mkdir
chmod
chattr
In Creates links to pre-existings files. A “link” is a reference to afile, an alternate name for it.

The In command permits referencing the linked file by more than one name and is a superior
aternative to aliasing (see Example 4.6, “wh, whois domain name lookup”).

Theln creates only areference, a pointer to the file only afew bytesin size.

140

The In command is most often used with the - s, symbolic or “soft” link flag. Advantages of
using the - s flag are that it permits linking across file systems or to directories.

External Filters, Pro-
grams and Commands

man, in-
fo

Caution

If afilenamed newf i | e has previously existed, an error message will result.

Which type of link to use?
As John Macdonald explainsit:

Both of these [typesof links] provide acertain measure of dual reference-- if you edit the
contents of the file using any name, your changes will affect both the original name and
either ahard or soft new name. The differences between them occurs when you work at a
higher level. The advantage of ahard link is that the new name istotally independent of
the old name -- if you remove or rename the old name, that does not affect the hard link,
which continues to point to the data while it would leave a soft link hanging pointing to
the old name which is no longer there. The advantage of a soft link is that it can refer
to a different file system (since it is just a reference to afile name, not to actual data).
And, unlike a hard link, a symbolic link can refer to a directory.

Links give the ability to invoke ascript (or any other type of executable) with multiple names,
and having that script behave according to how it was invoked.

Example 16.2. Hello or Good-bye

#!/ bi n/ bash
hello.sh: Saying "hello" or "goodbye"
#+ dependi ng on how script is invoked.

Make a link in current working directory ($PWD) to this script:
In -s hello.sh goodbye

Now, try invoking this script both ways:

./hello.sh

./ goodbye

HELLO CALL=65
GOODBYE_CALL=66

if [$0 = "./goodbye"]

t hen
echo " Good- bye!"
Sonme ot her goodbye-type comands, as appropriate.
exit $GOODBYE_CALL

fi

echo "Hello!"
Sonme ot her hello-type commands, as appropriate.
exit $HELLO CALL

141

External Filters, Pro-
grams and Commands

Complex Commands

Commands for mor e advanced users

find

xargs

expr

Theabove scriptillustrates how expr usesthe escaped parentheses-- \(... \) -- grouping operator intandem
with regular expression parsing to match asubstring. Here is aanother example, thistime from “redl life.”

Strip the whitespace fromthe begi nning and end.
LRFDATE="expr "$LRFDATE" : '[[:space:]]*\(.*\)[[:space:]]*$" "

From Peter Know es' "booklistgen.sh" script
#+ for converting files to Sony Librie/PRS-50X format.
(http://booklistgensh. peterknow es. com

Perl, sed, and awk have far superior string parsing facilities. A short sed or awk “subroutine” within a
script (see the section called “ Shell Wrappers') is an attractive alternative to expr.

See the section called “Manipulating Strings’ for more on using expr in string operations.

Time / Date Commands

Text

Time/date and timing
date

zdump

time

touch

at

batch

cal

sleep

usleep

hwclock,
clock

Processing Commands

Commands affecting text and text files

sort 142

tsort

External Filters, Pro-
grams and Commands

awk Programmable file extractor and formatter, good for manipulating and/or extracting fields
(columns) in structured text files. Its syntax issimilar to C.

wc
tr

fold
fmt

col
column
colrm
nl

pr
gettext
msgfmt
iconv
recode
TeX, gs
texexec
enscript

groff, tbl,
eqn

lex, yacc

File and Archiving Commands

Archiving
tar

shar

ar

rpm

cpio
rpm2cpio

pax

Compression 143

9zip

External Filters, Pro-
grams and Commands

diff3,
mer ge

sdiff
cmp

comm

Utilities
basename

dirname

split, csplit

Encoding and Encryption

sum, cksum,
md5sum,
shalsum

uuencode
uudecode

mimencode,
mmencode

crypt
openss|

shred

Miscellaneous
mktemp

make

install

dos2unix

ptx

more, less

Communications Commands

Certain of the following commands find use in network data transfer and analysis, as well asin chasing
spammers.

Information and Statistics 144

host

External Filters, Pro-
grams and Commands

rsync
ssh

scp

L ocal Network
write

netconfig

Mail
mail
mailto
mailstats

vacation

Terminal Control Commands

Command affecting the console or terminal
tput

infocmp

reset

clear

resize

script

Math Commands

“Doing the numbers’
factor

bc

dc

awk

Miscellaneous Commands

145
Command that fit in no special category

jot, seq

External Filters, Pro-
grams and Commands

xmessage
zenity
doexec
dialog

SOX

146

Chapter 17. System and Administrative
Commands

The startup and shutdown scriptsin/ et ¢/ r c. d illustrate the uses (and usefulness) of many of these
comands. These are usualy invoked by root and used for system maintenance or emergency filesystem
repairs. Use with caution, as some of these commands may damage your system if misused.

Usersand Groups
users
groups

chown,
chgrp

useradd,
userdel

usermod
groupmod
id

lid

who
logname

sudo
passwd
ac

last

newgrp

Terminals
tty

stty

setterm

tset

cat 1al

Ll Tal

147
getty, agetty

mesg

System and Admin-
istrative Commands

hostid
sar
readelf

size

System Logs
logger

logr otate

Job Control
ps

porep,
pkill

pstree
top
nice
nohup
pidof
fuser

cron

Process Control and Booting
init

telinit

runlevel

halt, shut-
down, reboot

service

Networ k
nmap
ifconfig

netstat

. . 148
iwconfig

ip

System and Admin-
istrative Commands

mkbootdisk
mkisofs
chroot
lockfile
flock
mknod
MAKEDEV

tmpwatch

Backup

dump, re-
store

fdfor mat

System Resour ces
ulimit

quota

setquota

umask

rdev

Modules
Ismod
insmod
rmmod
modpr obe
depmod

modinfo

Miscellaneous

env

OThekillall syﬁfam script should not be confused with the killall command in/ usr / bi n.

wateh
vvatCr

149
strip

nm

System and Admin-
istrative Commands

--> This particular script seens to be Red Hat / FC specific
--> (may not be present in other distributions).

Bring down all unneeded services that are still running
#+ (there shouldn't be any, so this is just a sanity check)

for i in /var/lock/subsys/*; do
--> Standard for/in | oop, but since "do" is on sane line,
-->1it is necessary to add ";"
Check if the script is there.
[' -f $i] && continue
--> This is a clever use of an "and list", equivalent to:
#-->if [! -f "$i"]; then continue

Cet the subsystem namne.

subsys=%{i #/ var /| ock/ subsys/}

--> Match variable nanme, which, in this case, is the file nane.
--> This is the exact equival ent of subsys= basenane $i .

--> It gets it fromthe lock file name

-->+ (if there is a lock file,

-->+ that's proof the process has been running).
--> See the "lockfile" entry, above.

H H HH

Bring the subsystem down.

if [-f /etc/rc.d/init.d/$subsys.init]; then
letc/rc.d/init.d/ $subsys.init stop

el se
/etc/rc.d/init.d/ $subsys stop

--> Suspend running jobs and daenons.

--> Note that "stop"” is a positional paraneter,

-->+ not a shell builtin.

f

done

That wasn't so bad. Aside from a little fancy footwork with variable matching, there is no new material
there.

Exercisel. In/etc/rc.d/init.d,anayzethehalt script. Itisabit longer than killall, but similar
in concept. Make acopy of this script somewherein your home directory and experiment with it (do not run
it asroot). Do asimulated run with the- vn flags(sh -vn scri pt name). Add extensive comments.
Change the commands to echos.

Exercise 2. Look at some of the more complex scriptsin/etc/rc. d/init.d. Try to understand
at least portions of them. Follow the above procedure to analyze them. For some additional insight, you
might also examine the filesysvi nitfil es in/usr/share/ doc/initscripts-?.??,which
is part of the “initscripts’ documentation.

150

Part Part 5. Advanced Topics

At this point, we are ready to delve into certain of the difficult and unusual aspects of scripting. Along the way, we
will attempt to “push the envelope” in various ways and examine boundary conditions (what happens when we move
into uncharted territory?).

Table of Contents

18.

19

20

21
22
23

24.

25.

26
27
28
29

30
31
32
33

34.

35

36

37.

REGUIAI EXPIESSIONS ... eeiiitieeeett e et e ettt e ettt e ettt e et et e e e ettt s e e ee et reeeestaeeeenanaaeees 154
A Brief Introduction to Regular EXPreSSiONScccuuuiiiiiiiiieiiiiie e 154
GlOBDING ..o 156

HEIE DOCUMENES ...ttt ettt ettt e e n e et e e e e e e e e e ena s 158
HEIE SITNGS ..ttt ettt ettt e et e e e b 170

Ol = s [= ot 1o R TSP PUPPPTRPPPPIN 174
USING BXEC ..ttt ettt ettt e e et e ettt e et et e et e e 177
Redirecting Code BIOCKScoouiiiiiiie e 181
APPHICALTIONS ...ttt ettt 186

SUBSNEIIS . e 189

RESICIEA SNEIIS ... e e e 195

ProCess SUDSHITULIONccoiutiieiiiii ettt e e e 197

FUNCEIONS ..ttt ettt e ettt et et et e e e e e na e eeneas 203
Complex Functions and Function Complexitiesveiiiiiiieiiiiiieei e 208
LOCEl VaATADIES ... e e 213

Local variables and FECUISION.uuiieiiiiiieiiii et e 216
Recursion Without Local Variablesoooeiuiiiiiiiiiiecie e 219

AT BSES e ettt e een 223

LSt CONSITUCES ...t ettt ettt et e et e ettt e e et et e e e e ab e e e e raa s 226

L (= 7 T TSP 230

INGITECt REFEIENCES ... ettt 263

J o LoV 0o I A o] oo T TSP UP P PPPRT R 268
L OBV e et 268
J o] oo TP PP PP PPPPTP 271

NEtWOrK Programiming oottt e e e e 278

OF Zer0s aNd NUIIScoouiiii et e s 281

D= o8 (oo] oo R PP PPPPPTI 285

1001100 T PP TUPPTTR 297

€01 (17 PSP PP PTPP 300

SCrPtNG WIth SEYIE oo e e et e 311
Unofficial Shell Scripting Stylesheetooviiiiiii e 311

IVHISCEITBNY ...ttt ettt ettt e et e e e e e eaaas 315
Interactive and non-interactive shells and SCHPLSc.vvveiiiiiiieii e 315
S WIGPPEIS ettt r e 316
Tests and Comparisons: AIEINELIVESiciiiiiieiiii e 323
Recursion: a script Calling itSElT ... oiiieii e 323
“COIOMZING” SCIIPES vttt ettt ettt e et e et e e et e e e e et eeenaa s 326
1® 0111 411 (oo PP P PR PPPPTT 341
F s o (= o I T o TSSO SUPPPPRUPPPIN 345

Ideas for more POWEITUl SCIIPES ..ovveueiiiii e 345
MVEGELS <.ttt et et 357
SECUIMEY ISSUBS ...ttt et ettt e ettt e e e et e e e enb s e eeentnaeeees 359
INfected SNEl SCHPLSoovvi e e 359
Hiding Shell SCript SOUMCEiiiiiii e 360
Writing Secure SNEl SCHPLScevueiiiii e 360
POFEDITITY ISSUBSeeieee et 360
A TESE SUITE L. 361
Shell Scripting Under WINGOWScuuuiiiiiieeiii e 362

Bash, VErSIONS 2, 3, @N0 4 ...ceniniiiiii e e 364
Bash, VEISION 2 ..ooieiiiiii i e e 364
Bash, VEISION B ..oiiuiiiiii i e 369

152

Advanced Topics

Bash, VEISION 3.1 ...iuiiiiiiii ittt 372
Bash, VEISION 3.2 ..uiuiiiiiii it e ettt 373
BaASh, VEISION 4oviiiiiiiiie e et e e 373
Bash, VEISION 4.1ouiiiiiiiii ettt 381
Bash, VEISION 4.2 ...ouiiiiii ettt 382

153

Chapter 18. Regular Expressions

... theintellectual activity associated with software development is largely one of gaining insight.

--Stowe Boyd

To fully utilize the power of shell scripting, you need to master Regular Expressions. Certain commands
and utilities commonly used in scripts, such as grep, expr, sed and awk, interpret and use REs. As of
version 3, Bash has acquired its own RE-match operator: =~.

A Brief Introduction to Regular Expressions

An expression is astring of characters. Those characters having an interpretation above and beyond their
literal meaning are called metacharacters. A quote symbol, for example, may denote speech by a person,
ditto, or a meta-meaning L for the symbols that follow. Regular Expressions are sets of characters and/or
metacharacters that match (or specify) patterns.

A Regular Expression contains one or more of the following:

» A character set. These are the characters retaining their literal meaning. The simplest type of Regular
Expression consists only of a character set, with no metacharacters.

An anchor. These designate (anchor) the position in theline of text that the RE isto match. For example,
A, and $ are anchors.

» Modifiers. These expand or narrow (modify) the range of text the RE isto match. Modifiersinclude the
asterisk, brackets, and the backslash.

The main uses for Regular Expressions (RES) are text searches and string manipulation. An RE matches
asingle character or aset of characters -- a string or a part of a string.

a meta-meaning is the meaning of aterm or expression on a higher level of abstraction. For example, the literal meaning of regular expressionis
an ordinary expression that conforms to accepted usage. The meta-meaning is drastically different, as discussed at length in this chapter.

154

Regular Expressions

The only way to be certain that a particular RE works isto test it.

TEST FILE: tstfile # No match.

No match.
Run grep "1133*" on this file. # Mat ch.

No match.

No match.
This line contains the nunber 113. # Mat ch.
This line contains the nunber 13. # No match.
This line contains the nunber 133. # No match.
This line contains the nunber 1133. # Mat ch.
This line contains the nunber 113312. # Mat ch.
This line contains the nunber 1112. # No match.
This line contains the nunber 113312312. # Mat ch.
This line contains no nunbers at all. # No match.
bash$ grep "1133*" tstfile
Run grep "1133*" on this file. # Mat ch.
This line contains the nunber 113. # Mat ch.
This line contains the nunber 1133. # Mat ch.
This line contains the nunber 113312. # Mat ch.
This line contains the nunber 113312312. # Mat ch.

Extended REs. Additional metacharacters added to the basic set. Used in egrep, awk, and Perl.

Note

Some versions of sed, ed, and ex support escaped versions of the extended Regular Expressions
described above, as do the GNU utilities.

POSIX Character Classes. [:class:]

Thisis an aternate method of specifying arange of charactersto match.

155

Regular Expressions

The standard reference on this complex topic is Friedl's Mastering Regular Expressions. Sed & Awk, by
Dougherty and Robbins, also gives a very lucid treatment of RES. See the Bibliography for more infor-

mation on these books.

Globbing

Bash itself cannot recognize Regular Expressions. Inside scripts, it is commands and utilities -- such as

sed and awk -- that interpret RE's.

Bash does carry out filename expansion .. a process known as globbing -- but this does not use the
standard RE set. Instead, globbing recognizes and expands wild cards. Globbing interprets the standard
wild card characters # -- * and ?, character lists in square brackets, and certain other special characters
(such as ” for negating the sense of a match). There are important limitations on wild card charactersin
globbing, however. Strings containing * will not match filenames that start with a dot, as, for example,

. bashr c. ° Likewise, the ? has a different meaning in globbing than as part of an RE.

bash$ Is -I

total 2

STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
bash$ Is -1 t?.sh

STW W -- 1 bozo bozo
bash$ Is -1 [ab]*

STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
bash$ I's -1 [a-c]*

STW W -- 1 bozo bozo
STW W -- 1 bozo bozo
STW W -- 1 bozo bozo

SFilename expansion means expanding filename patterns or templates containing special characters. For example, exanpl e. ??? might expand

toexanpl e. 001 and/or exanpl e. t xt .
“A wild card character, anal ogous to awild card in poker, can represent (almost) any other character.

0 Aug
0 Aug
0 Aug
466 Aug
758 Jul

466 Aug

0 Aug
0 Aug

0 Aug
0 Aug
0 Aug

18: 42
18: 42
18: 42
17: 48
09: 02

o oW
N

t2.sh
testl. txt

(@<l e) o))

6 17:48 t2.sh

6 18:42 a.1l
6 18:42 b. 1

6 18:42 a.1l
6 18:42 b. 1
6 18:42 c.1

5 Filename expansion can match dotfiles, but only if the pattern explicitly includes the dot as aliteral character.

~/[.]bashrc
~/ ?bashrc

~/.[b]ashrc
~/ . ba?hrc
~/ . bashr*

Setting the

Thanks, S.C.

#
#
#
#+

#
#
#

W11l not expand to ~/.bashrc
Neither will this.

W1ld cards and netacharacters will

expand to a dot in gl obbing.

W11l expand to ~/.bashrc
Li kewi se.
Li kewi se.

"dot gl ob" option turns this off.

NOT

156

Regular Expressions

bash$ I's -1 ["ab]*

STW- WA - - 1 bozo bozo 0 Aug 6 18:42 c.1

STW- WA - - 1 bozo bozo 466 Aug 6 17:48 t2.sh
STW WY - - 1 bozo bozo 758 Jul 30 09:02 testl.txt
bash$ I's -1 {b*,c*, *est*}

STW- WA - - 1 bozo bozo 0 Aug 6 18:42 b.1

STW- WA - - 1 bozo bozo 0 Aug 6 18:42 c.1

STW WY - - 1 bozo bozo 758 Jul 30 09:02 testl.txt

Bash performs filename expansion on unquoted command-line arguments. The echo command demon-
strates this.

bash$ echo *
a.1 b.1c.1t2.sh testl.txt

bash$ echo t*
t2.sh testl.txt

bash$ echo t?.sh
t2.sh

Note

It is possible to modify the way Bash interprets special charactersin globbing. A set -f command
disables globbing, and thenocasegl ob and nul | gl ob optionsto shopt change globbing be-
havior.

See also Example 11.5, “Operating on files with afor loop”.

Caution

Filenames with embedded whitespace can cause globbing to choke. David Wheeler [http://
www.dwheel er.com/essays/filenames-in-shell.html] shows how to avoid many such pitfalls.

| FS="$(printf "\n\t')" # Renpbve space.

Correct glob use:
Always use for-loop, prefix glob, check if exists file.

for filein ./* ; do # Use ./* ... NEVER bare *
if [-e"$file"] ; then # Check whether file exists.
COWAND ... "$file"
fi
done

This exanple taken from David Wheeler's site, with perm ssion.

157

http://www.dwheeler.com/essays/filenames-in-shell.html
http://www.dwheeler.com/essays/filenames-in-shell.html
http://www.dwheeler.com/essays/filenames-in-shell.html

Chapter 19. Here Documents

Here and now, boys.

--Aldous Huxley, Island

A here document is a special-purpose code block. It uses aform of 1/O redirection to feed acommand list
to an interactive program or acommand, such as ftp, cat, or the ex text editor.

COMVAND <<I nput ConesFr omHERE

| nput ComesFr omHERE

A limit string delineates (frames) the command list. The special symbol << precedes the limit string. This
has the effect of redirecting the output of a command block into the st di n of the program or command.
Itissimilartoi nt eracti ve- program < conmand- fi | e, wherecomuand-fi | e contains

command #1
command #2

The here document equivalent looks like this:

i nteractive-program<<LimtString
comand #1
comand #2

LimtString

Choose alimit string sufficiently unusual that it will not occur anywhere in the command list and confuse
matters.

Note that here documents may sometimes be used to good effect with non-interactive utilities and com-
mands, such as, for example, wall.

Example 19.1. broadcast: Sends message to everyone logged in

#!/ bi n/ bash

wal | <<zzz23EndOf Messagezzz23

E-mai | your noontine orders for pizza to the system adm nistrator.
(Add an extra dollar for anchovy or nushroom t opping.)

Additional nessage text goes here.

Note: 'wall' prints conment |ines.

zz723EndOf Messagezzz23

Coul d have been done nore efficiently by
wal | <message-file
However, enbedding the nessage tenplate in a script

158

Here Documents

#+ is a quick-and-dirty one-off solution.

exit

Even such unlikely candidates as the vi text editor lend themselves to here documents.

Example 19.2. dummyfile: Createsa 2-linedummy file

#!/ bi n/ bash

Noninteractive use of 'vi' to edit a file.

Emul ates 'sed'.

E BADARGS=85
if [-z "$1"]
t hen

echo "Usage: "~basenane $0° fil enane"
exit $E_BADARGS
fi

TARGETFI LE=$1

Insert 2 lines in file, then save.
L Begi n here docunent----------- #
vi $TARGETFI LE <<x23LinitStringx23

[

This is line 1 of the exanple file.

This is line 2 of the exanple file.

il

zz
x23LimtStringx23
R End here document----------- #

Note that ~[above is a literal escape
#+ typed by Control -V <Esc>.

Bram Mool enaar points out that this may not work with 'vini
#+ because of possible problens with terminal interaction.

exit

The above script could just as effectively have been implemented with ex, rather than vi. Here documents
containing alist of ex commands are common enough to form their own category, known as ex scripts.

#!/ bi n/ bash
Replace all instances of "Smith" with "Jones”
#+ in files with a ".txt" filenane suffix.

ORI G NAL=Smi t h
REPLACEMENT=Jones

for word in $(fgrep -1 $ORIGA NAL *.txt)

159

Here Documents

ex $word <<EOF
: %/ $ORI A NAL/ $REPLACEMENT/ g
- Wg
ECF
% is the "ex" substitution conmand.
#:wg is wite-and-quit.

Analogousto “ex scripts’ are cat scripts.

Example 19.3. Multi-line message using cat

#!/ bi n/ bash

‘'echo' is fine for printing single line nessages,
#+ but sonmewhat problematic for nessage bl ocks.
A 'cat' here docunent overcones this linitation

cat <<End- of - nessage
1 of the nessage.
This is line 2 of the nessage.
[3 of the nessage.
This is line 4 of the nessage.
This is the last Iine of the nessage.

End- of - nessage

Replacing line 7, above, with
#+ cat > $Newfil e <<End-of - nessage
#+ NANNNNNNNNNN

#+ wites the output to the file $Newfile, rather than to stdout.

exit O

Code bel ow di sabl ed, due to "exit 0" above.

S.C. points out that the foll ow ng al so works.
€ChO M- - s e

This is line 1 of the nessage.

This is line 2 of the nessage.

This is line 3 of the nessage.

This is line 4 of the nessage.

This is the last Iine of the nessage.

However, text nay not include double quotes unless they are escaped.

160

Here Documents

The- option to mark ahere document limit string (<<- Li m t St r i ng) suppresses leading tabs (but not
spaces) in the output. This may be useful in making a script more readable.

Example 19.4. M ulti-line message, with tabs suppressed

#1/ bi n/ bash
Same as previous example, but...

The - option to a here document <<-
#+ suppresses leading tabs in the body of the docunent,
#+ but *not* spaces.

cat <<- ENDOFMESSAGE

This is line 1 of the nessage.

This is line 2 of the nessage.

This is line 3 of the nessage.

This is line 4 of the nessage.

This is the last Iine of the nessage.

ENDOFMESSAGE
The output of the script will be flush left.
Leading tab in each line will not show.

Above 5 lines of "nmessage" prefaced by a tab, not spaces.
Spaces not affected by <<-

Note that this option has no effect on *enbedded* tabs.

exit O

A here document supports parameter and command substitution. It is therefore possible to pass different
parameters to the body of the here document, changing its output accordingly.

Example 19.5. Here document with replaceable parameters

#1/ bi n/ bash
Another 'cat' here docunent, using paraneter substitution.
Try it with no conmand-1ine paraneters, ./ scriptnane
Try it with one command-|ine paraneter, ./scriptname Mortinmer
Try it with one two-word quoted command-|ine paraneter,
./scriptname "Mortinmer Jones”
CVDLI NEPARAME1L # Expect at |east conmmand-I|ine paraneter.
if [$# -ge $CVDLI NEPARAM]
t hen

NAMVE=$1 # |If nore than one command-|ine param

#+ then just take the first.

el se

NAVE="John Doe" # Default, if no comrand-line paraneter.
fi

RESPONDENT="t he aut hor of this fine script"

161

Here Documents

cat <<Endof nessage

Hel 1 o, there, $NAME
Greetings to you, $NAME, from $RESPONDENT

This comrent shows up in the output (why?).
Endof nessage

Note that the blank Iines show up in the output.
So does the conment.

exit

Thisisauseful script containing a here document with parameter substitution.

Example 19.6. Upload afile pair to Sunsite incoming directory

#!/ bi n/ bash
upl oad. sh

Upload file pair (Filename.lsm Filenane.tar.gz)
#+ to incomng directory at Sunsite/UNC (ibiblio.org).

Filename.tar.gz is the tarball itself.
Filename.lsmis the descriptor file.
Sunsite requires "lsm file, otherwise will bounce contributions.

E_ARCGERROR=85

if [-z "$1"]

t hen
echo "Usage: " basenane $0° Fil enane-to-upl oad"
exit $E_ARGERROR

f

Fi | ename="basenane $1° # Strips pathname out of file nane.
Server="ibi blio.org"

Di rectory="/incom ng/ Li nux"

These need not be hard-coded into script,

#+ but may instead be changed to comrand-|ine argunent.

Passwor d="your . e-mai | . addr ess" # Change above to suit.

ftp -n $Server <<End- O - Session
-n option disables auto-logon

user anonynous "$Password" # If this doesn't work, then try:

162

Here Documents

quote user anonynous "$Password"
bi nary
bel | # Ring 'bell' after each file transfer.
cd $Directory
put "$Fil enane. | snf
put "$Fil enane.tar.gz"
bye
End- O - Sessi on

exit O

Quoting or escaping the “limit string” at the head of a here document disables parameter substitution
within its body. The reason for this is that quoting/escaping the limit string effectively escapes the $, °,
and\ specia characters, and causes them to beinterpreted literally. (Thank you, Allen Halsey, for pointing
thisout.)

Example 19.7. Parameter substitution turned off

#1/ bi n/ bash
A 'cat' here-docunent, but with paraneter substitution disabled.

NAMVE=" John Doe"
RESPONDENT="t he aut hor of this fine script"

cat <<' Endof nessage’

Hel l o, there, $NAME
Greetings to you, $NAME, from $RESPONDENT.

Endof nessage

No paraneter substitution when the "limt string” is quoted or escaped.
Either of the follow ng at the head of the here docunent woul d have

#+ the same effect.

cat <<"Endof nessage"

cat <<\ Endof nessage

And, |ikew se:

cat <<"Speci al Char Test"

Directory listing would follow

if limt string were not quoted.

s -1

Arithnetic expansion woul d take pl ace
if limt string were not quoted.

$((5 + 3))

A a single backslash woul d echo

163

Here Documents

if limt string were not quoted.
\\

Speci al Char Test

exit

Disabling parameter substitution permits outputting literal text. Generating scripts or even program code
isone usefor this.

Example 19.8. A script that generates another script

#1/ bi n/ bash
generate-script.sh
Based on an idea by Al bert Reiner.

OUTFI LE=gener at ed. sh # Name of the file to generate.
B o o o o o o o o o o o e e e e e e e e e e e e e e e e e e e
'Here docunent containing the body of the generated script.
(

cat <<' ECF

#1/ bi n/ bash

echo "This is a generated shell script.”
Note that since we are inside a subshell,
#+ we can't access variables in the "outside" script.

echo "Generated file will be naned: $COUTFILE"

Above line will not work as normally expected
#+ because paraneter expansion has been di sabl ed.
Instead, the result is literal output.

a=7

b=3

let "c = $a * $b"

echo "c = $c"

exit O

EOF

) > $QUTFI LE
o
Quoting the 'Iimt string' prevents variabl e expansion

#+ within the body of the above 'here docunent.'’
This permts outputting literal strings in the output file.

if [-f "$OUTFILE"]
t hen

164

Here Documents

chnod 755 $OUTFI LE

Make the generated file executable.
el se

echo "Problemin creating file: \"$OUTFILE\""
f

This nethod al so works for generating
#+ C prograns, Perl prograns, Python prograns, Mkefiles,
#+ and the |ike.

exit O

It is possible to set a variable from the output of a here document. This is actually a devious form of
command substitution.

vari abl e=$(cat <<SETVAR
This variable

runs over nultiple lines.
SETVAR

)

echo "$vari abl e"

A here document can supply input to a function in the same script.

Example 19.9. Here documents and functions

#!/ bi n/ bash
here-function. sh

Get Per sonal Data ()
{
read firstnane
read | ast name
read address
read city
read state
read zi pcode
} # This certainly appears to be an interactive function, but

Supply input to the above function.
CGet Per sonal Dat a <<RECORD0O01

Bozo

Bozeman

2726 Nondescript Dr.

Bozeman

Mr

21226

RECORDO01

165

Here Documents

echo

echo "$firstnane $l ast nane"
echo "$address”

echo "$city, $state $zi pcode”
echo

exit O

Itispossibleto use: asadummy command accepting output from a here document. This, in effect, creates
an “anonymous’ here document.

Example 19.10. “ Anonymous’ Here Document

#!/ bi n/ bash

<<TESTVARI ABLES
${ HOSTNAMVE?} ${ USER?} ${ MAI L?} # Print error nessage if one of the variables not se
TESTVARI ABLES

exit $?

Tip
A variation of the above technique permits “commenting out” blocks of code.

Example 19.11. Commenting out a block of code

#!/ bi n/ bash
comment bl ock. sh

<<COMVENTBLOCK
echo "This Iine will not echo.”
This is a comment line mssing the "#" prefix.
This is another comment |ine mssing the "#" prefix.

& @! ++=

The above line will cause no error nessage,

because the Bash interpreter will ignore it.
COMMVENTBLOCK

echo "Exit val ue of above \"COMVENTBLOCK\" is $?." #0
No error shown.

echo

The above techni que al so comes in useful for commenting out
#+ a bl ock of working code for debuggi ng purposes.

This saves having to put a "#" at the beginning of each line,
#+ then having to go back and del ete each "#" |ater

Note that the use of colon, above, is optional

166

Here Documents

echo "Just before comment ed-out code bl ock."

The lines of code between the doubl e-dashed lines will not execute.
s ——————————————————————————
. <<DEBUGXXX
for filein*
do
cat "$file"
done
DEBUGXXX
s ——————————————————————————

HUBHBHSEHEH YR YRR R R R R R R R R
Note, however, that if a bracketed variable is contained within

#+ t he conment ed- out code bl ock

#+ then this could cause probl ens.

for exanple:

#/ !/ bi n/ bash

<<COMVENTBLOCK
echo "This line wll not echo."
&@! ++=

${foo_bar_bazz?}

$(rm-rf /tnp/foobar/)

$(touch my_buil d_directory/ cups/ Makefil e)
COMVENTBLOCK

$ sh comment ed- bad. sh

comment ed- bad. sh: line 3: foo_bar_bazz: parameter null or not set

The renedy for this is to strong-quote the ' COMMENTBLOCK' in |ine 49,
<<' COVMENTBLOCK!

Thank you, Kurt Pfeifle, for pointing this out.

Tip
Y et another twist of this nifty trick makes “ self-documenting” scripts possible.

Example 19.12. A self-documenting script

#1/ bi n/ bash
sel f-docunent.sh: self-docunenting script

167

above.

Here Documents

Modification of "colmsh".
DOC_REQUEST=70

if ["$1" ="-h" -0 "$1" = "--help"] # Request hel p.

t hen
echo; echo "Usage: $0 [directory-nane]"; echo
sed --silent -e '/ DOCUVENTATI ONXX$/, / ~DOCUMENTATI ONXX$/ p' " $0" |
sed -e '/ DOCUVENTATI ONXX$/ d'; exit $DOC_REQUEST; fi

. <<DOCUMENTATI ONXX

List the statistics of a specified directory in tabular format.
The conmand-I1ine paranmeter gives the directory to be |isted.

If no directory specified or directory specified cannot be read,
then list the current working directory.

DOCUMENTATI ONXX

if [-z "$1" -0 ! -r "$1"]
t hen
directory=.
el se
di rectory="$1"
fi

echo "Listing of "$directory":"; echo

(printf "PERM SSI ONS LI NKS OANER GROUP Sl ZE MONTH DAY HH MM PROG NAME\ n" '\
; I's -1 "$directory" | sed 1d) | colum -t

exit O

Using acat script is an alternate way of accomplishing this.
DOC_REQUEST=70

if ["$1" ="-h" -0 "$1" = "--help"] # Request hel p.

t hen # Use a "cat script"”
cat <<DOCUMENTATI ONXX

List the statistics of a specified directory in tabular format.

The conmand-1ine paranmeter gives the directory to be |isted.

If no directory specified or directory specified cannot be read,

then list the current working directory.

DOCUVENTATI ONXX
exit $DOC_REQUEST
fi

See also Example A.28, “Spammer Identification”, Example A.40, “Petals Around the Rose”, Exam-
ple A.41, “Quacky: a Perquackey-type word game”, and Example A.42, “Nim” for more examples of self-
documenting scripts.

168

Here Documents

Note

Here documents create temporary files, but these files are deleted after opening and are not ac-
cessible to any other process.

bash$ bash -c¢ 'Isof -a -p $$ -d0' << ECF
> EOF
| sof 1213 bozo or REG 3,5 0 30386 /tnp/t1213-0-sh (del eted)

Caution

Some utilities will not work inside a here document.

Warning

The closing limit string, on the final line of a here document, must start in the first character
position. There can be no leading whitespace. Trailing whitespace after the limit string likewise
causes unexpected behavior. The whitespace prevents the limit string from being recognized. *

#1/ bi n/ bash
< To] oo I e "
cat <<LimtString

echo "This is line 1 of the nessage inside the here docunent.”
echo "This is line 2 of the nessage inside the here docunent.”

echo "This is the final line of the nessage inside the here docunent."”
LimtString

#rnnnindented limt string. Error! This script will not behave as expected.

< To] oo B e e "

These comments are outside the 'here docunent',
#+ and shoul d not echo.

echo "CQutside the here docunent."”
exit O

echo "This line had better not echo." # Follows an 'exit' conmmand.

Caution

Some people very cleverly use asingle! asalimit string. But, that's not necessarily a good idea.

Thi s worKks.

cat <<!

Hel | o!

I Three nore exclanations !!!

1Except, as Dennis Benzinger points out, if using <<- to suppress tabs.

169

Here Documents

But

cat <<I

Hel | o!

Si ngl e excl amati on point foll ows!
|

]

Crashes with an error nessage.

However, the followng will work.

cat <<EOF

Hel | o!

Si ngl e excl amati on point foll ows!

|

EOF

It's safer to use a multi-character limt string.

For those tasks too complex for a here document, consider using the expect scripting language, which
was specifically designed for feeding input into interactive programs.

Here Strings

A here string can be considered as a stripped-down form of a here document.
It consists of nothing more than COMMAND <<< $WORD,
where $WORD is expanded and fed to the st di n of COMMAND.

As asimple example, consider this alternative to the echo-grep construction.

I nstead of:
if echo "$VAR' | grep -q txt #if [[$VAR = *txt*]]

etc.

Try:

if grep -g "txt" <<< "$VAR'
t hen # ANN

echo "$VAR contains the substring sequence \"txt\""
fi
Thank you, Sebastian Kam nski, for the suggestion.

Or, in combination with read:
String="This is a string of words."

read -r -a Wirds <<< "$String"
The -a option to "read"

170

Here Documents

#+ assigns the resulting values to successive nenbers of an array.

echo "First word in String is:

echo "Second word in String is:

echo "Third word in String is:

echo "Fourth word in String is:

echo "Fifth word in String is:
echo "Sixth word in String is:
echo "Seventh word in String i

Thank you, Francisco Lobo, for the suggestion.

S:

${Words[0]}"
${Wwords[1]}"
${Wwords[2]}"
${Wwords[3]}"
${Words[4]}"
${Words[5]}"
${Words[6]}"

HHHHHHHH

Thi s

is

a

string

of

wor ds.

(null)

Past end of $String.

Itis, of course, possible to feed the output of ahere string into the st di n of aloop.

As Seanus points out

ArrayVar=(element0 elenmentl elenent2 {A .D})

while read el enent ; do
echo "$el ement" 1>&2
done <<< $(echo ${ArrayVar[*]}

)

element0 elementl elenent2 A B CD

Example 19.13. Prepending alineto afile

#!/ bi n/ bash

prepend. sh: Add text at beginning of file.

#

Exanple contributed by Kenny Stauffer,
#+ and slightly nodified by docunment author.

E_NOSUCHFI LE=85

read -p "File:
if [! -e"$file"]

t hen # Bail out if no such file.

echo "File $file not found."
exit $E_NOSUCHFI LE
fi

read -p "Title: " title

cat - $file <<<$title > $file. new

echo "Modified file is $file. new'

exit # Ends script execution.

from' man bash':
Here Strings

file # -p arg to 'read' displays pronpt.

171

Here Documents

A variant of here docunents, the format is:
<<<wor d

The word is expanded and supplied to the conmand on its standard input.

O course, the follow ng al so works:
sed -e "1i\
Title: ' $file

Example 19.14. Parsing a mailbox

#1/ bi n/ bash

Script by Francisco Lobo,

#+ and slightly nodified and comented by ABS Cui de aut hor
Used in ABS CGuide with perm ssion. (Thank you!)

This script will not run under Bash versions -It 3.0.

E_M SSI NG ARG=87
if [-z "$1"]
t hen
echo "Usage: $0 mail box-file"
exit $E_M SSI NG ARG
f

nbox_grep() # Parse mailbox file.
{

declare -i body=0 mat ch=0

decl are -a date sender

decl are mai |l header val ue

while IFS= read -r mmi
ANNA Reset $I FS.
Oherwise "read” will strip leading & trailing space fromits input.

do
if [[$mail =~ "From]] # Match "From field in nessage.
t hen
((body
((match
unset date

"Zero out" vari abl es.

0))
0))

elif ((body))
t hen
(match))
echo "$mai |
Uncoment above line if you want entire body
+ of message to display.

H H H

elif [[$mail]]; then

172

Here Documents

| FS=: read -r header value <<< "$mil"
ANN "here string”

case "$header" in

[FFII[Rr][Co]l[M) [[$value =~ "$2"]] && ((match++)) ;;

Match "From' |ine.

[Dd][Aa][Tt][Ee]) read -r -a date <<< "$val ue" ;

NNAN

Match "Date" |ine

[Rr][Ee][Ccl[Ee][li][W][Ee][Dd]) read -r -a sender <<< "$val ue" ;
NNAN

Match | P Address (may be spoofed).

esac

el se

((body++))

((mtch)) &&

echo "MESSAGE ${date: +of: ${date[*]} }"
Entire $date array "

echo "I P address of sender: ${sender[1]}"
Second field of "Received" |ine n

f

done < "$1" # Redirect stdout of file into | oop

nbox_grep "$1" # Send nmil box file to function

exit $?

Exerci ses:

1) Break the single function, above, into multiple functions,

#+ for the sake of readability.
2) Add additional parsing to the script, checking for various keywords.

$ nmmi | box_grep. sh scam nai
MESSAGE of Thu, 5 Jan 2006 08:00:56 -0500 (EST)
| P address of sender: 196.3.62.4

Exercise: Find other uses for here strings, such as, for example, feeding input to dc.

173

Chapter 20. I/O Redirection

There are always three default files 1 open, st di n (the keyboard), st dout (the screen), and st derr
(error messages output to the screen). These, and any other open files, can beredirected. Redirection simply
means capturing output from a file, command, program, script, or even code block within a script (see
Example 3.1, “Code blocks and 1/0 redirection” and Example 3.2, “ Saving the output of a code block to
afile”) and sending it asinput to another file, command, program, or script.

Each openfile getsassigned afiledescriptor.2Thefi|ed@criptorsforst di n,stdout ,andst derr are
0, 1, and 2, respectively. For opening additional files, there remain descriptors 3to 9. It is sometimes useful
to assign one of these additional file descriptorstost di n, st dout , or st der r asatemporary duplicate
link. 3 This simplifies restoration to normal after complex redirection and reshuffling (see Example 20.1,
“Redirecting st di n using exec”).

COWAND_QUTPUT >
Redirect stdout to a file.
Creates the file if not present, otherwi se overwites it.

Is -IR > dir-tree. list
Creates a file containing a listing of the directory tree.

> fil ename

The > truncates file "filename" to zero | ength.

If file not present, creates zero-length file (same effect as 'touch').
The : serves as a dummy pl acehol der, produci ng no out put.

> fil ename
The > truncates file "filename" to zero | ength.
If file not present, creates zero-length file (same effect as 'touch').

(Sane result as ": >", above, but this does not work with sonme shells.)

COWAND_QUTPUT >>
Redirect stdout to a file.
Creates the file if not present, otherw se appends to it.

Single-line redirecti on comands (affect only the line they are on):

1>fil ename

Redirect stdout to file "filenane."
1>>fil enane

Redirect and append stdout to file "filenane."
2>fil enane

1By convention in UNIX and Linux, data streams and peripherals (device files) are treated asfiles, in afashion analogousto ordinary files.

A file descriptor issimply anumber that the operating system assigns to an open file to keep track of it. Consider it asimplified type of file pointer.
Itisanalogousto afile handlein C.

3Using file descriptor 5 might cause problems. When Bash creates a child process, as with exec, the child inherits fd 5 (see
Chet Ramey's archived e-mail, SUBJECT: RE: File descriptor 5 is held open [http://groups.google.com/group/gnu.bash.bug/browse_thread/
thread/13955daaf ded3b5¢/18¢17050087f9f37]). Best leave this particular fd alone.

174

http://groups.google.com/group/gnu.bash.bug/browse_thread/thread/13955daafded3b5c/18c17050087f9f37
http://groups.google.com/group/gnu.bash.bug/browse_thread/thread/13955daafded3b5c/18c17050087f9f37
http://groups.google.com/group/gnu.bash.bug/browse_thread/thread/13955daafded3b5c/18c17050087f9f37

I/0 Redirection

Redirect stderr to file "filename."
2>>fil enane
Redirect and append stderr to file "filenane.”
&fil enane
Redirect both stdout and stderr to file "filenane.”
This operator is now functional, as of Bash 4, final release.

M>N
"M is a file descriptor, which defaults to 1, if not explicitly set.
"N is a filenane.
File descriptor "M is redirect to file "N."
M>&N
"M is a file descriptor, which defaults to 1, if not set.
"N' is another file descriptor

Redirecting stdout, one line at a tinme.
LOGFI LE=scri pt. | og

echo "This statenment is sent to the log file, \"$LOGFILE\"." 1>$LOGFI LE
echo "This statenment is appended to \"$LOGFI LE\"." 1>>$LOGFI LE

echo "This statement is al so appended to \"$LOGFI LE\"." 1>>$LOGFI LE

echo "This statement is echoed to stdout, and will not appear in \"$LOGFI LE\

These redirection commands automatically "reset" after each line.

Redirecting stderr, one line at a tinme.
ERRORFI LE=script.errors

bad_commandl 2>$ERRORFI LE # FError nmessage sent to $ERRORFI LE
bad_command2 2>>$ERRORFI LE # Error nessage appended to $ERRORFI LE
bad_commuand3 # FError message echoed to stderr

#+ and does not appear in $ERRORFILE
These redirection commands al so automatically "reset" after each line.

2>&1
Redirects stderr to stdout.
Error nessages get sent to sane place as standard output.
>>f il ename 2>&1
bad command >>fil enane 2>&1
Appends both stdout and stderr to the file "fil enane"”
2>81 | [command(s)]
bad_command 2>&1 | awk '{print $5}" # found
Sends stderr through a pipe.
| & was added to Bash 4 as an abbreviation for 2>&1 |.

i >&]
Redirects file descriptor i to j.

175

I/0 Redirection

Al output of file pointed to by i gets sent to file pointed to by j.

>&j
Redirects, by default, file descriptor 1 (stdout) to j.
Al stdout gets sent to file pointed to by j.

0< FI LENAMVE
< FI LENAMVE
Accept input froma file.
Compani on command to “>", and often used in conmbination with it.
#
grep search-word <fil ename

[j]<>fil enane
Open file "filename" for reading and witing,
#+ and assign file descriptor "j" to it.
|If "filenanme" does not exist, create it.
If file descriptor "j" is not specified, default to fd 0, stdin
#
An application of this is witing at a specified place in a file.

echo 1234567890 > File # Wite string to "File".

exec 3<> File # Open "File" and assign fd 3 to it.
read -n 4 <&3 # Read only 4 characters.

echo -n . >&3 # Wite a decimal point there.

exec 3>&- # Close fd 3.

cat File # ==> 1234. 67890

Random access, by golly.

Pi pe.

Ceneral purpose process and conmand chai ni ng tool.

Simlar to “>", but nore general in effect.

Useful for chaining conmands, scripts, files, and prograns together.
cat *.txt | sort | uniq > result-file

Sorts the output of all the .txt files and del etes duplicate lines,
finally saves results to “result-file”.

Multiple instances of input and output redirection and/or pipes can be combined in asingle command line.
conmand < input-file > output-file

Or the equivalent:
< input-file command > output-file # Al though this is non-standard.

conmandl | command2 | command3 > output-file

See Example 16.31, “Unpacking an rpm archive’ and Example A.14, “fifo: Making daily backups, using
named pipes’.

Multiple output streams may be redirected to onefile.

176

I/0 Redirection

I's -yz >> command. | og 2>&1

Capture result of illegal options "yz" in file "conmand. | og."
Because stderr is redirected to the file,

#+ any error nessages will also be there.

Note, however, that the followi ng does *not* give the same result.
I's -yz 2>&1 >> conmand. | og

Qutputs an error nessage, but does not wite to file.

More precisely, the command output (in this case, null)

#+ wites to the file, but the error nessage goes only to stdout.

|If redirecting both stdout and stderr,
#+ the order of the commands nakes a difference.

Closing File Descriptors

n<&- Close input file descriptor n.
0<&-, Closest di n.

<&-

n>&- Close output file descriptor n.
1>&-, Close st dout .

>&-

Child processesinherit open file descriptors. Thisiswhy pipeswork. To prevent an fd from being inherited,
closeit.

Redirecting only stderr to a pipe.

exec 3>&1 # Save current "value" of stdout.

s -1 2>&1 >&3 3>& | grep bad 3>& # Close fd 3 for 'grep' (but not 'Is').

NNNN NNNN

exec 3>&- # Now close it for the remni nder of the scr

Thanks, S.C.

For a more detailed introduction to 1/0 redirection see Appendix F, A Detailed Introduction to 1/0 and
I/O Redirection.

Using exec

An exec <filename command redirects st di n to afile. From that point on, all st di n comes from that
file, rather than its normal source (usually keyboard input). This provides a method of reading afile line
by line and possibly parsing each line of input using sed and/or awk.

Example 20.1. Redirecting st di n using exec

#1/ bi n/ bash
Redirecting stdin using 'exec'.

177

I/0 Redirection

exec 6<&0 # Link file descriptor #6 with stdin
Saves stdin.

exec < data-file # stdin replaced by file "data-file"

read al # Reads first line of file "data-file".
read a2 # Reads second line of file "data-file

echo

echo "Following lines read fromfile."
echo "----------m -
echo $al

echo $a2

echo; echo; echo

exec 0<&6 6<&-

Now restore stdin fromfd #6, where it had been saved,

#+ and close fd #6 (6<&) to free it for other processes to use.
#

<86 6<&- al so wor ks.

echo -n "Enter data
read bl # Now "read" functions as expected, reading fromnormal stdin
echo "I nput read fromstdin."

echo "----------------------

echo "bl = $b1"

echo

exit O

Similarly, an exec >filename command redirects st dout to a designated file. This sends all command
output that would normally go to st dout to that file.

I mportant

exec N > filename affects the entire script or current shell. Redirection in the PID of the script
or shell from that point on has changed. However . . .

N > filename affects only the newly-forked process, not the entire script or shell.

Thank you, Ahmed Darwish, for pointing this out.

Example 20.2. Redirecting st dout using exec

#1/ bi n/ bash
reassign-stdout. sh

LOGHI LE=l ogfil e. t xt

exec 6>&1 # Link file descriptor #6 with stdout.
Saves stdout.

178

I/0 Redirection

exec > $LOGFI LE # stdout replaced with file "logfile.txt".

Al output fromcommands in this block sent to file $LOGFI LE
echo -n "Logfile: ™

dat e

echo "--------m e
echo

echo "Qutput of \"Is -al\" comuand"
echo

Is -al

echo; echo

echo "Qutput of \"df\" conmand”
echo

df

exec 1>86 6>&- # Restore stdout and close file descriptor #6.

echo

echo "== stdout now restored to default ==
echo

ls -al

echo

exit O

Example 20.3. Redirecting both st di n and st dout in the same script with exec

#1/ bi n/ bash
upperconv. sh
Converts a specified input file to uppercase.

E_FI LE_ACCESS=70
E_WRONG_ARGS=71

if [! o-r "$1"] # 1s specified input file readabl e?
t hen
echo "Can't read frominput file!"
echo "Usage: $0 input-file output-file"
exit $E_FI LE_ACCESS
fi # WII exit with sane error
#+ even if input file ($1) not specified (why?).

if [-z "$2"]

t hen
echo "Need to specify output file."
echo "Usage: $0 input-file output-file"
exit $E_WVRONG_ARGS

f

179

I/0 Redirection

exec 4<&0

exec < $1 # WIl read frominput file

exec 7>&l1

exec > $2 # WIl wite to output file

Assumes output file witable (add check?).

i
cat - | tr a-z A-Z # Uppercase conversion

ANNNN # Reads fromstdin

ANNNNNNNNN # Wites to stdout.

However, both stdin and stdout were redirected.

Note that the 'cat' can be omtted

i

exec 1>&7 7>&- # Restore stout.

exec 0<&4 4<&- # Restore stdin

After restoration, the following line prints to stdout as expected.
echo "File \"$1\" witten to \"$2\" as uppercase conversion."

exit O

I/O redirection is a clever way of avoiding the dreaded inaccessible variables within a subshell problem.

Example 20.4. Avoiding a subshell

#!/ bi n/ bash
avoi d- subshel | . sh
Suggested by Matthew WAl ker

Li nes=0
echo

cat nyfile.txt | while read |ine;
do {
echo $line
((Lines++)); # Incremented values of this variable
#+ inaccessi bl e outside |oop
Subshel |l problem
}

done

echo "Nunber of |ines read = $Li nes” # 0
Wong!

exec 3<> nyfile.txt
while read |ine <&3

180

I/0 Redirection

do {
echo "$line"
((Lines++)); # Increnented values of this variable
#+ accessi bl e outside | oop
No subshell, no problem
}
done
exec 3>&
echo "Nunber of lines read = $Lines" # 8
echo
exit O

Lines bel ow not seen by script.
$ cat nmyfile.txt

Li ne
Li ne
Li ne
Li ne
Li ne
Li ne
Li ne
Li ne

Redirecting Code Blocks

Blocks of code, such aswhile, until, and for loops, even if/then test blocks can also incorporate redirection
of st di n. Even afunction may use this form of redirection (see Example 24.11, “Real name from user-
name”). The < operator at the end of the code block accomplishesthis.

N RWNE

Example 20.5. Redirected while loop

#1/ bi n/ bash
redir2.sh
if [-z "$1"]
t hen
Fi | ename=nanes. dat a # Default, if no filename specified.
el se

_FilenanE:$1
LL Fi | enane=${ 1: - nanes. dat a}
can replace the above test (parameter substitution).
count =0
echo

while ["$nane" != Smith] # Wiy is variable $nane in quotes?

181

I/0 Redirection

do
read nane # Reads from $Fil enane, rather than stdin
echo $nane
|l et "count += 1"

done <" $Fil enane" # Redirects stdin to file $Fi | enane.
NANNNNANNNNNANNNANNN

echo; echo "$count nanes read"; echo
exit O

Note that in sone older shell scripting |anguages,

#+ the redirected | oop would run as a subshell

Therefore, $count would return O, the initialized value outside the |oop
Bash and ksh avoid starting a subshell *whenever possi bl e*,

#+ so that this script, for exanple, runs correctly.

(Thanks to Heiner Steven for pointing this out.)

However
Bash *can* sonetinmes start a subshell in a PIPED "while-read" |oop
#+ as distinct froma RED RECTED "while" | oop

abc=hi
echo -e "1\n2\n3" | while read
do abc="$I"
echo $abc
done
echo $abc

Thanks, Bruno de O iveira Schneider, for denonstrating this
#+ with the above snippet of code.
And, thanks, Brian Onn, for correcting an annotation error

Example 20.6. Alternate form of redirected while loop

#1/ bi n/ bash
This is an alternate form of the preceding script.

Suggested by Hei ner Steven

#+ as a workaround in those situations when a redirect |oop

#+ runs as a subshell, and therefore variables inside the |oop
+do not keep their values upon | oop termnation.

if [-z "$1"]
t hen

Fi | ename=nanes. dat a # Default, if no filename specified.
el se

Fi | ename=$1
f

exec 3<&0 # Save stdin to file descriptor 3.

182

I/0 Redirection

exec 0<"$Fil enane” # Redirect standard input.
count =0
echo
while ["$name" !'= Smith]
do
read nane # Reads fromredirected stdin ($Fil enane).

echo $nane
let "count += 1"
done # Loop reads fromfile $Fil enanme
#+ because of |ine 20.

The original version of this script term nated the "while"” loop with
#+ done <"$Filenanme"

Exercise
Wiy is this unnecessary?

exec 0<&3 # Restore old stdin
exec 3<& # Close tenporary fd 3.
echo; echo "$count nanmes read"; echo

exit O

Example 20.7. Redirected until loop

#1/ bi n/ bash
Same as previous exanple, but with "until" | oop.
if [-z "$1"]
t hen
Fi | ename=nanes. dat a # Default, if no filename specified.
el se

Fi | ename=$1
f

while ["$name" !'= Smith]

until ["$nane" = Smith] # Change != to =

do
read nane # Reads from $Fi |l enane, rather than stdin
echo $nanme

done <"$Fil enane” # Redirects stdin to file $Fil enane.

NANNNANNNNNNNNN

Same results as with "while"” loop in previous exanple.
exit O

Example 20.8. Redirected for loop

#! / bi n/ bash

183

I/0 Redirection

if [-z "$1"]
t hen

Fi | ename=nanes. dat a # Default, if no filenane specified
el se

Fi | ename=$1
fi

line_count="wc $Filenane | awk '{ print $1 }'"°

Nunber of lines in target file.

#

Very contrived and kl udgy, neverthel ess shows t hat
#+ it's possible to redirect stdin within a "for" |oop..
#+ if you're clever enough

#

More concise is l'ine_count=$(wc -1 < "$Fil ename")

for name in “seq $line_count™ # Recall that "seq" prints sequence of nunbers.

while ["$name" != Smith] -- nore conplicated than a "while" |oop --
do
read nane # Reads from $Fi |l enane, rather than stdin
echo $name
if ["$nane" = Snith] # Need all this extra baggage here
t hen
br eak
f
done <"$Fil enane" # Redirects stdin to file $Fil enane.
NANNNNNNNNNNN
exit O

We can modify the previous example to also redirect the output of the loop.

Example 20.9. Redirected for loop (both st di n and st dout redirected)

#1/ bi n/ bash
if [-z "$1"]
t hen
Fi | ename=nanes. dat a # Default, if no fil enane specified
el se

Fi | ename=$1
f

Savefi |l e=$Fi | enane. new # Filenane to save results in
Fi nal Nane=Jonah # Name to termnate "read" on
line_count="wc $Filenane | awk '{ print $1 }'" # Nunber of lines in target file.

for name in “seq $line_count’
do
read nane

184

I/0 Redirection

echo "$name"

if ["$nane" = "$Final Nane"]
t hen
br eak
f
done < "$Fil enane" > "$Savefil e" # Redirects stdin to file $Fil enane,
NANNNNNNNNNNNNNNNNNNNNNNNNNNN and SaveS | t to backup fl I e
exit O

Example 20.10. Redirected if/then test

#! / bi n/ bash
if [-z "$1"]
t hen

Fi | ename=nanmes. data # Default, if no filename specified.
el se

Fi | enane=$1
f

TRUE=1

if ["$TRUE"] #if true and if : al so work.
t hen

read nane

echo $nane

fi <"$Fi | enane"
NANNNNNNANNNNNANNN

Reads only first line of file.
An "if/then" test has no way of iterating unless enbedded in a | oop

exit O

Example 20.11. Data file names.data for above examples

Aristotle
Arr heni us
Bel i sari us
Capabl anca
Di ckens

Eul er

Goet he

Hege

Jonah

Lapl ace

Mar oczy
Purcel |
Schm dt
Schopenhauer
Senmel wei ss
Smth

St ei nnet z

185

I/0 Redirection

Tukhashevsky
Turi ng

Venn

War shawsk
Znosko- Bor owski

This is a data file for
#+ "redir2.sh", "redir3.sh", "redir4.sh", "redir4a.sh", "redir5.sh".

Redirecting the st dout of a code block has the effect of saving its output to a file. See Example 3.2,
“Saving the output of a code block to afile”.

Here documents are a special case of redirected code blocks. That being the case, it should be possible to
feed the output of a here document into the st di n for awhileloop.

This example by Al bert Siersemm
Used with permnission (thanks!).

function doesCQut put ()
Coul d be an external command too, of course.
Here we show you can use a function as well.

{
Is -al *.jpg | awk '{print $5, $9}"
}
nr=0 # We want the while |oop to be able to mani pul ate these and

total Size=0 #+ to be able to see the changes after the 'while' finished.

while read fileSize fileNane ; do
echo "$fileNanme is $fil eSize bytes"
et nr++
total Size=$((total Si ze+fil eSi ze)) # O: "let total Size+=fil eSi ze"
done<<EOF
$(doesQut put)
EOF

echo "$nr files totaling $total Si ze bytes"

Applications

Clever use of /O redirection permits parsing and stitching together snippets of command output (see
Example 15.7, “Using read with file redirection”). This permits generating report and log files.

Example 20.12. L ogging events

#1/ bi n/ bash

| ogevents. sh

Aut hor: Stephane Chazel as.

Used in ABS Guide with perm ssion.

Event logging to a file.
Must be run as root (for wite access in /var/log).

186

I/0 Redirection

ROOT_Ul D=0 # Only users with $U D 0 have root privileges.
E_NOTROOT=67 # Non-root exit error

if ["$U D" -ne "$ROOT_UI D']

t hen
echo "Must be root to run this script.”
exit $E_NOTROOT

f

FD_DEBUGL=3
FD_DEBUG2=4
FD_DEBUG3=5

=== Uncoment one of the two lines below to activate script. ===
LOG_EVENTS=1
LOG VARS=1

log() # Wites tine and date to log file.
echo "$(date) $*" >&7 # This *appends* the date to the file.

ANNANNA - command substitution
See bel ow.

}

case $LOG LEVEL in

1) exec 3>& 4> [dev/null 5> /dev/null;
2) exec 3>& 4>82 5> /dev/null;
3) exec 3>&2 4>82 5>82;

*) exec 3> /dev/null 4> /dev/null 5> /dev/null;
esac

FD_LOGVARS=6

if [[$LOG _VARS]]

then exec 6>> /var/log/vars.|og

el se exec 6> /dev/null # Bury out put.
f

FD_LOGEVENTS=7

if [[$LOG EVENTS]]

t hen
exec 7 >(exec gawk '{print strftine(), $0}' >> /var/log/event.| og)
Above line fails in versions of Bash nore recent than 2.04. Wy?

exec 7>> /var/| og/event.| og # Append to "event.| og"
| og # Wite time and date.
el se exec 7> /dev/null # Bury out put.

f

echo "DEBUG3: begi nni ng" >&${ FD_ DEBUG3}

187

I/0 Redirection

s -1 >& 2>84 # commandl >&5 2>&4
echo "Done" # command?2
echo "sending mail" >&${ FD_LOGEVENTS}

Wites "sending mail" to file descriptor #7.

exit O

188

Chapter 21. Subshells

Running a shell script launches a new process, a subshell.

Def i ni ti on: A subshell isachild process launched by ashell (or shell script).

A subshell is a separate instance of the command processor -- the shell that gives you the prompt at the

console or in an xtermwindow. Just as your commands are interpreted at the command-line prompt, ssim-

ilarly does a script batch-process a list of commands. Each shell script running is, in effect, a subprocess

(child process) of the parent shell.

A shell script canitself launch subprocesses. These subshells et the script do parallel processing, in effect

executing multiple subtasks simultaneously.

#!/ bi n/ bash
subshel | -test. sh

(

I nsi de parentheses, and therefore a subshell

while [1] # Endl ess | oop.
do

echo "Subshell running . "
done
)
Script will run forever,

#+ or at least until term nated by a ¢l -C

exit $? # End of script (but will

Now, run the script:
sh subshel |l -test.sh

never get here).

And, while the script is running, froma different xterm

ps -ef | grep subshell-test.sh

u D PID PPID C STIME TTY TI ME C\VD

500 2698 2502 0 14:26 pts/4 00: 00: 00 sh subshell-test. sh

500 2699 2698 21 14:26 pts/4 00: 00: 24 sh subshell-test. sh
NNANNN

Anal ysi s:

PI D 2698, the script, launched PID 2699, the subshell.

Note: The "UD..." line would be filtered out by the "grep" comrand,

but is shown here for illustrative purposes.

189

Subshells

In general, an external command in a script forks off a subprocess, ! whereas a Bash builtin does not. For
this reason, builtins execute more quickly and use fewer system resources than their external command
equivalents.

Command List within Parentheses

(commandl; command2; com- A command list embedded between par ent heses runsasasub-
mand3; ...) shell.

Variables in a subshell are not visible outside the block of code in the subshell. They are not accessible
to the parent process, to the shell that launched the subshell. These are, in effect, variables local to the
child process.

Example 21.1. Variable scopein a subshell

#!/ bi n/ bash
subshel | . sh

echo

echo "W are outside the subshell.™

echo "Subshell |evel OUTSIDE subshell = $BASH SUBSHELL"

Bash, version 3, adds the new $BASH_SUBSHELL vari abl e
echo; echo

outer _vari abl e=Qut er

gl obal _vari abl e=

Define global variable for "storage" of
#+ val ue of subshell vari able.

(

echo "W are inside the subshell.”
echo "Subshell [evel |INSIDE subshell = $BASH SUBSHELL"
i nner _vari abl e=l nner

echo "Frominside subshell, \"inner_variable\" = $inner_variabl e"
echo "Frominsi de subshell, \"outer\" = $outer variabl e"
gl obal _vari abl e="$i nner _vari abl e" # WII this allow "exporting"

#+ a subshel |l vari abl e?

)

echo; echo

echo "W are outside the subshell."”

echo "Subshell |evel QOUTSIDE subshell = $BASH SUBSHELL"
echo

if [-z "S$inner_variable"]
t hen

echo "inner_variabl e undefined in main body of shell™
el se

echo "inner_variable defined in main body of shell”

AN external command invoked with an exec does not (usually) fork off a subprocess/ subshell.

190

Subshells

fi

echo "From nmain body of shell, \"inner_variable\" = $inner_variabl e"
$inner_variable will show as blank (uninitialized)

#+ because vari abl es defined in a subshell are "local variables".

1s there a renedy for this?

echo "gl obal _variable = "$gl obal _vari able"" # Wy doesn't this work?

echo

echo "----------------- ", echo

var =41 # G obal variable
(let "var+=1"; echo "\$var |INSIDE subshell = $var") # 42

echo "\ $var QUTSI DE subshel |l = $var" # 41

Variabl e operations inside a subshell, even to a GLOBAL vari abl e

#+ do not affect the value of the variabl e outside the subshell!

exit O
Question:
H o oo

Once having exited a subshell,
#+ is there any way to reenter that very same subshell
#+ to nodify or access the subshell variabl es?

See also $BASHPID and Example 34.2, “ Subshell Pitfalls’.

Def i ni ti on: The scope of avariable is the context in which it has meaning, in which it has a
valuethat can be referenced. For example, the scope of alocal variable lies only within the function,
block of code, or subshell within which it is defined, while the scope of a global variable is the
entire script in which it appears.

Note

While the $BASH_SUBSHELL internal variable indicates the nesting level of a subshell, the
$SHL VL variable shows no change within a subshell.

echo " \$BASH SUBSHELL out si de subshel | = $BASH_SUBSHELL" #
(echo " \$BASH SUBSHELL i nsi de subshell = $BASH SUBSHELL") #
((echo " \$BASH SUBSHELL i nsi de nested subshell = $BASH SUBSHELL")) #
N N * k% nested * k% N N

191

N~ O

Subshells

echo
echo " \$SHLVL outside subshell = $SHLVL" # 3
(echo " \$SHLVL inside subshell = $SHLVL") # 3 (No change!)

Directory changes made in a subshell do not carry over to the parent shell.

Example 21.2. List User Profiles

#!/ bi n/ bash
allprofs.sh: Print all user profiles.

This script witten by Heiner Steven, and nodified by the docunent author.

FI LE=. bashrc # File containing user profile,
#+ was ".profile" in original script.

for hone in "awk -F. '{print $6}' /etc/passwd

do
[-d "$home"] || continue # |If no home directory, go to next.
[-r "$home"] || continue # | f not readable, go to next.
(cd $hone; [-e $FILE] && | ess $FILE)

done

When script termnates, there is no need to 'cd" back to original directory,
#+ because 'cd $home' takes place in a subshell.

exit O
A subshell may be used to set up a*dedicated environment” for acommand group.

COVIVANDL
COVIVAND2
COVIVAND3
(
| FS=:
PATH=/ bi n
unset TERM NFO
set -C
shift 5
COMIVAND4
COVIVANDS
exit 3 # Only exits the subshel !
)
The parent shell has not been affected, and the environment is preserved.
COVIVANDG
COVVANDY?

As seen here, the exit command only terminates the subshell in which it is running, not the parent shell
Or script.

One application of such a*“dedicated environment” istesting whether avariable is defined.

if (set -u; : S$variable) 2> /dev/null
t hen

192

Subshells

echo "Variable is set.”
fi # Variable has been set in current script,
#+ or is an internal Bash vari abl e,
#+ or is present in environment (has been exported).

Could also be witten ${vari abl e- x}

[[= x || ${variable-y} =y]]
or [[${variable-x} !

[=

[l !

x$variabl e]]
x 1]
= x 1]

or ${vari abl e+x}
or ${vari abl e- x}

Another application is checking for alock file;

if (set -C : > lock file) 2> /dev/null

t hen
lock file didn't exist: no user running the script
el se
echo "Anot her user is already running that script."”
exit 65

fi

Code snippet by Stéphane Chazel as,
#+ with nodifications by Paul o Marcel Coel ho Aragao.

+

Processes may execute in parallel within different subshells. This permits breaking a complex task into
subcomponents processed concurrently.

Example 21.3. Running parallel processesin subshells

(cat listl list2 list3 | sort | uniq > 1ist123) &
(cat listd4 list5 1list6 | sort | uniq > list456) &
Merges and sorts both sets of lists simultaneously.
Runni ng i n background ensures parallel execution.

H*

cat listl list2 list3 | sort | unig > list123 &

#

#

Same effect as

#

cat list4 list5 list6 | sort | unig > list456 &

wai t # Don't execute the next command until subshells finish.

diff 1istl123 |ist456

Redirecting 1/0 to a subshell usesthe “|” pipe operator, asinl s -al | (command).

Note

A code block between curly brackets does not launch a subshell.
{ commandl; command2; command3; . . . commandN; }

var 1=23
echo "S$var 1" # 23

193

Subshells

{ var1=76; }
echo "S$var 1" # 76

194

Chapter 22. Restricted Shells

Disabled commandsin restricted shells

Running a script or portion of a script in restricted mode disables certain commands that would
otherwise be available. Thisis a security measure intended to limit the privileges of the script user and
to minimize possible damage from running the script.

The following commands and actions are disabled:

» Using cd to change the working directory.

+ Changing the values of the $PATH, $SHELL, $BASH_ENV, or $ENV environmental variables.
 Reading or changing the $SHEL LOPTS, shell environmental options.

» Output redirection.

* Invoking commands containing one or more /'s.

* Invoking exec to substitute a different process for the shell.

» Various other commands that would enable monkeying with or attempting to subvert the script for an
unintended purpose.

* Getting out of restricted mode within the script.

Example 22.1. Running a script in restricted mode

#!/ bi n/ bash

Starting the script with "#!/bin/bash -r"
#+ runs entire script in restricted node.

echo

echo "Changing directory.”
cd /usr/| ocal

echo "Now in ~pwd "

echo "Com ng back hone.™
cd

echo "Now in ~pwd "

echo

Everything up to here in normal, unrestricted node.

set -r

set --restricted has sane effect.
echo "==> Now in restricted node. <=="
echo

echo

195

Restricted Shells

echo "Attenpting directory change in restricted node."
cd ..
echo "Still in ~pwd "

echo
echo

echo "\ $SHELL = $SHELL"

echo "Attenpting to change shell in restricted node."
SHELL="/ bi n/ ash"
echo

echo "\ $SHELL= $SHELL"

echo
echo

echo "Attenpting to redirect output in restricted node."
Is -1 /fusr/bin > bin.files
Is -1 bin.files # Try to list attenpted file creation effort.

echo

exit O

196

Chapter 23. Process Substitution

Piping the st dout of acommand into the st di n of another is a powerful technique. But, what if you
need to pipethe st dout of multiple commands? Thisiswhere pr ocess substit uti on comesin.

Process substitution feeds the output of a process (or processes) into the st di n of another process.

Template
Command list enclosed within >(command_list)
parentheses

<(command_list)

Process substitution uses / dev/ f d/ <n> files to send the results
of the process(es) within parentheses to another process. !

Caution

Thereisno space betweenthethe” <" or “>" and the paren-
theses. Space there would give an error message.

bash$ echo >(true)
/ dev/fd/ 63

bash$ echo <(true)
/ dev/fd/ 63

bash$ echo >(true) <(true)
/ dev/ fd/ 63 /dev/fd/ 62

bash$ wc <(cat /usr/share/dict/Ilinux.words)
483523 483523 4992010 /dev/fd/ 63

bash$ grep script /usr/share/dict/linux.wrds | wc

262 262 3601
bash$ wc <(grep script /usr/share/dict/Ilinux.words)
262 262 3601 /dev/fd/ 63
Note

Bash creates a pipe with two file descriptors, - - f | nand f Qut - - . The st di n of true connects
to f Qut (dup2(fOut, 0)), then Bash passes a/ dev/ f d/ f | n argument to echo. On systems
lacking / dev/ f d/ <n> files, Bash may use temporary files. (Thanks, S.C.)

Process substitution can compare the output of two different commands, or even the output of different
options to the same command.

bash$ conmm <(ls -1) <(ls -al)

1This has the same effect as a named pipe (temp file), and, in fact, named pipes were at one time used in process substitution.

197

Process Substitution

total 12
STWFWT-- 1 bozo bozo 78 Mar 10 12:58 FileO
STWFWT-- 1 bozo bozo 42 Mar 10 12:58 File2
STWFWT-- 1 bozo bozo 103 Mar 10 12:58 t2.sh
total 20
dr wxr wxr wx 2 bozo bozo 4096 Mar 10 18:10 .
drwx------ 72 bozo bozo 4096 Mar 10 17:58 ..
STWFWT-- 1 bozo bozo 78 Mar 10 12:58 FileO
STWFWT-- 1 bozo bozo 42 Mar 10 12:58 File2
STWFWT-- 1 bozo bozo 103 Mar 10 12:58 t2.sh

Process substitution can compare the contents of two directories -- to see which filenames are in one, but
not the other.

diff <(Is $first _directory) <(ls $second_directory)

Some other usages and uses of process substitution:

read -a list < <(od -Ad -w24 -t u2 /dev/urandom)
Read a list of random nunbers from /dev/urandom
#+ process with "od"

#+ and feed into stdin of "read"

From"insertion-sort.bash" exanple script.
Courtesy of JuanJo C arl ante.

PORT=6881 # bittorrent

Scan the port to make sure nothing nefarious is going on.
netcat -1 $PORT | tee>(nd5sum ->nydata-orig. nd5) |
gzip | tee>(nmd5sum- | sed 's/-$/nydata.lz2/' >nydat a- gz. nd5) >nydat a. gz

Check the deconpression:
gzi p -d<nydata.gz | nd5sum -c nydata-orig. nmd5)
The MD5sum of the original checks stdin and detects conpression issues.

Bill Davidsen contributed this exanple
#+ (wWith light edits by the ABS Guide author).

cat <(ls -1)
Same as s -1 | cat

sort -k 9 <(ls -I /bin) <(Is -1 [Jusr/bin) <(ls -1 /[usr/X11R6/ bi n)

Lists all the files inthe 3 main "bin' directories, and sorts by fil enane.
Note that three (count 'en) distinct coonmands are fed to 'sort'.

di ff <(commandl) <(comand2) # G ves difference in conmmand out put.

198

Process Substitution

tar cf >(bzip2 -c > file.tar.bz2) $directory_nanme
Calls "tar cf /dev/fd/?? $directory_nane", and "bzip2 -c > file.tar.bz2".

#
#
Because of the /dev/fd/<n> system feature,

the pi pe between both commands does not need to be naned.

#

This can be emul at ed.

#

bzip2 -c < pipe > file.tar.bz2&

tar cf pipe $directory_nane

rm pi pe

or

exec 3>&1

tar cf /dev/fd/4 $directory_nane 4>&1 >&3 3>& | bzip2 -c¢c > file.tar.bz2 3>&
exec 3>&

Thanks, Stéphane Chazel as

Hereisamethod of circumventing the problem of an echo piped to awhile-read loop running in asubshell.

Example 23.1. Code block redirection without forking

#1/ bi n/ bash
wr-ps. bash: while-read | oop with process substitution

This exanple contributed by Tomas Pospi sek
(Heavily edited by the ABS Gui de author.)

echo

echo "randominput” | while read

do
gl obal =3D": Not avail abl e outside the |oop."
... because it runs in a subshell

done

echo "\ $gl obal (from outside the subprocess) = $gl obal "
$gl obal (from outside the subprocess) =

echo; echo "--"; echo
whi |l e read
do
echo $
gl obal =3D": Avail abl e outside the | oop.™
... because it does NOT run in a subshell.
done < <(echo "random i nput")
N N

echo "\ $gl obal (using process substitution) = $gl obal"
Random i nput
$gl obal (using process substitution) = 3D: Avail abl e outside the | oop

199

Process Substitution

echo; echo "#######H###"; echo

And | i kew se .

declare -a inloop
i ndex=0
cat $0 | while read line
do
i nl oop[$i ndex] ="$l i ne"
((i ndex++))

It runs in a subshell, so ..
done
echo "QUTPUT = "
echo ${i nl oop[*]} # ... nothing echoes.
echo; echo "--"; echo

decl are -a outl oop

i ndex=0
while read |ine
do

out | oop[$i ndex] =" $l i ne"
((i ndex++))
It does NOT run in a subshell, so ..
done < <(cat $0)
echo "QUTPUT = "
echo ${outl oop[*]} # ... the entire script echoes.

exit $?

Thisisasimilar example.

Example 23.2. Redirecting the output of process substitution into a loop.

#!/ bi n/ bash
psub. bash

As inspired by D ego Mlina (thanks!).

declare -a array0
while read
do
arrayO[${#array0[@}] =" $SREPLY"
done < <(sed -e 's/bash/CRASH BANG /' $0 | grep bin | awk '{print $1}')
Sets the default 'read' variable, $REPLY, by process substitution
#+ then copies it into an array.

echo "${arrayo[@}"

200

Process Substitution

exit $?

bash psub. bash
#!/ bi n/ CRASH BANG done #!/bi n/ CRASH BANG
A reader sent in the following interesting example of process substitution.

Script fragnent taken from SuSE distribution

while read des what nask iface; do

Sonme conmands . ..

done < <(route -n)

NN First <is redirection, second is process substitution

To test it, let's make it do sonething.
while read des what nmsk iface; do

echo $des $what $mask $iface
done < <(route -n)

Qut put :

Kernel 1P routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.0 0.0.0.0 255.0.0.0 U0 OO Io

As Stéphane Chazel as points out,
#+ an easi er-to-understand equivalent is:
route -n |
whi |l e read des what mask iface; do # Variabl es set from output of pipe.
echo $des $what $mask $iface
done # This yields the same output as above.
However, as U rich Gayer points out
#+ this sinplified equival ent uses a subshell for the while |oop
#+ and therefore the variabl es di sappear when the pipe terni nates.

However, Filip Miritz comrents that there is a subtle difference
#+ between the above two exanples, as the foll owi ng shows.

(
route -n | while read x; do ((y++)); done
echo $y # $y is still unset

while read x; do ((y++)); done < <(route -n)
echo $y # $y has the nunber of lines of output of route -n

)

More general |y spoken

(

201

Process Substitution

| x=x
seens to start a subshell like
(o x=x)
while
X=X < <(:)
does not

)

This is useful, when parsing csv and the |ike.
That is, in effect, what the original SuSE code fragment does.

202

Chapter 24. Functions

Like “real” programming languages, Bash has functions, though in a somewhat limited implementation.
A function is a subroutine, a code block that implements a set of operations, a*“black box” that performs
a specified task. Wherever there is repetitive code, when a task repeats with only slight variationsin pro-
cedure, then consider using a function.

functionfunction_nane {
comand...

}

or

function_nane () {
conmand...

}

This second form will cheer the hearts of C programmers (and is more portable).
Asin C, the function's opening bracket may optionally appear on the second line.

function_nane ()

{

comand...

}
Note

A function may be “compacted” into asingleline.

fun () { echo "This is a function"; echo; }
N N

In this case, however, a semicolon must follow the final command in the function.

fun () { echo "This is a function"; echo } # Error!

N
fun2 () { echo "Even a single-conmand function? Yes!"; }
N

Functionsare called, triggered, simply by invoking their names. Afunction call isequivalent toa command.

Example 24.1. Simple functions

#!/ bi n/ bash
ex59.sh: Exercising functions (sinple).

JUST_A SECOND=1
funky ()

{ # This is about as sinple as functions get.
echo "This is a funky function."”

203

Functions

echo "Now exiting funky function.”
} # Function declaration nmust precede call

fun ()

{ # A sonmewhat nore conplex function
i =0
REPEATS=30

echo
echo "And now the fun really begins.™
echo

sl eep $JUST_A SECOND # Hey, wait a second!
while [$i -1t $REPEATS]

do
echo "---------- FUNCTI ONS- - = === = - - - >"
echo "<------------ ARE- - - = - e ememe e "
echo "<------------ =1 N >n
echo
let "i+=1"

done

Now, call the functions.

f unky
fun

exit $?

The function definition must precede the first call to it. There is no method of “declaring” the function,
as, for example, in C.

f1
WIIl give an error nessage, since function "f1" not yet defined.

declare -f f1 # This doesn't help either
fl # Still an error message.

However. ..

f1()
{

echo "Calling function \"f2\" fromwi thin function \"f1\".
f2

}
f2 ()
{
echo "Function \"f2\"."
}

204

Functions

f1 # Function "f2" is not actually called until this point,
#+ although it is referenced before its definition
This is perm ssible.
Thanks, S.C.

Note
Functions may not be empty!

#1/ bi n/ bash
enpty-function.sh

enpty ()

{

}

exit O # WIIl not exit here!

$ sh enpty-function.sh

enpty-function.sh: line 6: syntax error near unexpected token "}’

enpty-function.sh: line 6: "}’

$ echo $?
2

Note that a function containing only coments is enpty.

func ()
{

Comment 1.

Comment 2.

This is still an enpty function

Thank you, Mark Bova, for pointing this out.
}

Results in same error nessage as above

However

not _quite_empty ()
{
illegal _conmmand

} # A script containing this function will *not* bomb
#+ as long as the function is not called.

not _enpty ()
{

} # Contains a : (null command), and this is okay.

205

Functions

Thank you, Dom nick Geyer and Thieno Kell ner

It is even possible to nest a function within another function, although thisis not very useful.

f1 ()
{
f2 () # nested
{
echo "Function \"f2\", inside \"f1\"."
}
}

f2 # Gves an error nessage.
Even a preceding "declare -f f2" wouldn't help.

echo

f1 # Does nothing, since calling "f1" does not automatically call "f2"
f2 # Now, it's all right to call "f2"
#+ since its definition has been nmade visible by calling "f1".

Thanks, S.C.

Function declarations can appear in unlikely places, even where a command would otherwise go.

Is -1 | foo() { echo "foo"; } # Permssible, but useless.

if ["$USER' = bozo]
t hen
bozo_greet () # Function definition enmbedded in an if/then construct.

echo "Hell o, Bozo."
}
f

bozo_greet # Works only for Bozo, and other users get an error

Something like this mght be useful in some contexts.
NO _EXI T=1 # WIIl enable function definition bel ow.

[[SNOEXIT -eq 1]] & exit() { true; } # Function definition in an "and-1i st
If SNOEXIT is 1, declares "exit ()".
This disables the "exit" builtin by aliasing it to "true"

exit # Invokes "exit ()" function, not "exit" builtin.

O, simlarly:

206

Functions

filename=filel

[-f "$filenane"] &&

foo () { rm-f "$filename"; echo "File "$filename" deleted."; } ||
foo () { echo "File "$filenane" not found."; touch bar; }
f oo

Thanks, S.C. and Chri st opher Head
Function names can take strange forms.

_(O){ for i in {1..10}; do echo -n "$FUNCNAME"; done; echo; }
AN No space between function nane and parent heses.
Thi s doesn't always work. Wiy not?

Now, let's invoke the function.

_ #
ANNNNNNNNN 10 underscores (10 x function nane)!
A "naked" underscore is an acceptable function nane.

In fact, a colon is |ikewi se an acceptable function nane.
:(){ echo ":"; };

O what use is this?
It's a devious way to obfuscate the code in a script.

See also Example A.56, “ The Gronsfeld Cipher”

Note

What happens when different versions of the same function appear in a script?

As Yan Chen points out,

when a function is defined nmultiple tinmes,
the final version is what is invoked.
This is not, however, particularly useful.

H H HH

func ()

{

echo "First version of func ()."

}

func ()

{

echo "Second version of func ()."

}

func # Second version of func ().
exit $?

1t is even possible to use functions to override

207

Functions

#+ or preenpt system comands.
O course, this is *not* advi sabl e.

Complex Functions and Function Complexities

Functions may process arguments passed to them and return an exit status to the script for further pro-
cessing.

function_nanme $argl $arg2

The function refers to the passed arguments by position (as if they were positional parameters), that is,
$1, $2, and so forth.

Example 24.2. Function Taking Parameters

#1/ bi n/ bash
Functions and paraneters
DEFAULT=def aul t # Default param val ue.
func2 () {
if [-z "$1"] # |s paraneter #1 zero |ength?
t hen
echo "-Paranmeter #1 is zero length.-" # O no paraneter passed.
el se

echo "-Parameter #1 is \"$1\".-"
f

vari abl e=${ 1- $DEFAULT} # \What does
echo "variable = $variabl e" #+ paraneter substitution show?
H o o e eeeeas

1t distinguishes between
#+ no param and a null param

if ["$2"]
t hen

echo "-Parameter #2 is \"$2\".-"
f

return O

}

echo

echo "Not hi ng passed."
func2 # Called with no parans
echo

echo "Zero-length paraneter passed.”
func2 "" # Called with zero-Iength param
echo

208

Functions

echo "Null paraneter passed.™
func2 "$uninitialized_parant # Called with uninitialized param
echo

echo "One paraneter passed.”
func2 first # Called with one param
echo

echo "Two paraneters passed.”
func2 first second # Called with two parans
echo

echo "\"\" \"second\" passed."”

func2 "" second # Called with zero-length first paraneter
echo # and ASCI| string as a second one.
exit O

In1portant

The shift command works on arguments passed to functions (see Example 36.18, “Return value
trickery”).

But, what about command-line arguments passed to the script? Does a function see them? Well, let's clear
up the confusion.

Example 24.3. Functions and command-line ar gs passed to the script

#1/ bi n/ bash

func-cndl i nearg. sh

Call this script with a conmand-I|ine argunent,
#+ something like $0 argl

func ()

{

echo "$1" # Echoes first arg passed to the function
} # Does a conmand-line arg qualify?

echo "First call to function: no arg passed.™
echo "See if conmand-line arg is seen.”

func

No! Conmand-line arg not seen.

eC ho S S S S S S S S S S S S S S S S S S s s s o
echo

echo "Second call to function: conmand-line arg passed explicitly."
func $1

Now it's seen

209

Functions

exit O

In contrast to certain other programming languages, shell scripts normally pass only value parameters
to functions. Variable names (which are actually pointers), if passed as parameters to functions, will be
treated as string literals. Functions interpret their arguments literally.

Indirect variable references (see Example 37.2, “Indirect variable references - the new way”) provide a
clumsy sort of mechanism for passing variable pointers to functions.

Example 24.4. Passing an indirect referenceto a function

#! / bi n/ bash
ind-func.sh: Passing an indirect reference to a function.

echo_var ()

{
echo "$1"

}

nmessage=Hel | o
Hel | o=CGoodbye

echo_var "$message" # Hello

Now, let's pass an indirect reference to the function.
echo_var "${!nessage}" # CGoodbye

echo M e e e e e e e e e e n

What happens if we change the contents of "hello" variable?
Hel | o="Hel |l o, again!"

echo_var "$message" # Hello
echo_var "${!nessage}" # Hell o, again!
exit O

The next logical question iswhether parameters can be dereferenced after being passed to a function.

Example 24.5. Der eferencing a parameter passed to a function

#1/ bi n/ bash

dereference. sh

Dereferenci ng paraneter passed to a function.
Script by Bruce W C are.

dereference ()

{

y=\$"$1" # Name of variable (not value!).

echo $y # $Junk

x="eval "expr \"$y\" "°

echo $1=%x

eval "$1=\"Sone Different Text \"" # Assign new val ue.
}

210

Functions

Junk="Sonme Text"
echo $Junk "before" # Some Text before

der ef erence Junk
echo $Junk "after" # Some Different Text after

exit O

Example 24.6. Again, dereferencing a parameter passed to a function

#1/ bi n/ bash

ref-params. sh: Dereferencing a paraneter passed to a function
(Compl ex Exanpl e)

| TERATI ONS=3 # How many times to get input.

i count =1

ny_read () {

Called with nmy_read var nane,
#+ outputs the previous val ue between brackets as the default val ue,
#+ then asks for a new val ue.

| ocal |ocal var

echo -n "Enter a value "
eval 'echo -n "[$ $1'] "' # Previous val ue.
eval echo -n "[\$$1] " # Easier to understand,
#+ but loses trailing space in user pronpt.
read | ocal _var
[-n "$local _var"] && eval $1=\$local var

"And-list": if "local _var" then set "$1" to its val ue

}

echo

while ["Sicount” -le "$I TERATI ONS"]
do

ny_read var

echo "Entry #$i count = $var”

let "icount += 1"

echo
done

Thanks to Stephane Chazelas for providing this instructive exanple.
exit O

Exit and Return

exit status Functions return a value, called an exit status. This is analogous to the exit status re-
turned by acommand. The exit status may beexplicitly specified by ar etur n statement,

211

Functions

otherwise it is the exit status of the last command in the function (0 if successful, and
anon-zero error code if not). This exit status may be used in the script by referencing
it as $?. This mechanism effectively permits script functions to have a “return vaue”
similar to C functions.

return

Redirection

Redi recting the stdin of

a function A functionis essentially a code block, which meansitsst di n can
be redirected (as in Example 3.1, “Code blocks and 1/O redirec-
tion”).

Example 24.11. Real name from username

#!/ bi n/ bash
real name. sh
#

From usernane, gets "real name" from/etc/passwd.

ARGCOUNT=1 # Expect one arg.
E_VRONGARGS=85

file=/etc/passwd
pattern=$1

if [$# -ne "$ARGCOUNT"]

t hen
echo "Usage: "~basenane $0° USERNAME"
exit $E_VRONGARGS

fi

file_excerpt () # Scan file for pattern,

{ #+ then print relevant portion of Iine
while read line # "while" does not necessarily need |
do

echo "$line" | grep $1 | awk -F":" '{ print $5 }'
Have awk use ":" delinmiter
done

} <%$file # Redirect into function's stdin.

file_excerpt $pattern

Yes, this entire script could be reduced to

grep PATTERN /etc/passwd | awk -F":" '"{ print $5
or

awk -F: '/PATTERN {print $5}'

or

awk -F. ' ($1 == "username") { print $5 }' # real
However, it mght not be as instructive.

exit O

212

Functions

There is an aternate, and perhaps less confusing method of redi-
recting a function's st di n. This involves redirecting the st di n
to an embedded bracketed code block within the function.

I nstead of:
Function ()

{
} < file

Try this:
Function ()

{
{

} < file

}
Simlarly,

Function () # This works.

{
{

echo $*
} | tr ab

}

Function () # This doesn't work.
{
echo $*

} | tr ab # A nested code bl ock is mandatory here.

Thanks, S.C.

Note

Emmanuel Rouat'ssamplebashr ¢ file contains somein-
structive examples of functions.

Local Variables

What makes avariablelocal?

local variables
A variable declared aslocal isonethat is visible only within the block of codein
which it appears. It has local scope. In afunction, alocal variable has meaning
only within that function block. 2

2However, as Thomas Braunberger points out, alocal variable declared in afunction is also visible to functions called by the parent function.

#!/ bi n/ bash

213

Functions

functionl ()

| ocal funclvar=20

Example 24.12. L ocal variable visibility

#!/ bi n/ bash
ex62.sh: d obal and | ocal variables inside a function
func ()
| ocal |oc_var=23 # Declared as | ocal variable.
echo # Uses the 'local' builtin.
echo "\"loc_var\" in function = $loc_var"
gl obal _var =999 # Not decl ared as | ocal

Therefore, defaults to gl obal
echo "\"global _var\" in function = $gl obal _var"

}

func
Now, to see if local variable "loc_var" exists outside the funct

echo
echo "\"loc_var\" outside function = $loc_var"
$l oc_var outside function
No, $loc_var not visible
echo "\"gl obal _var\" outside function = $gl obal _var"
$gl obal _var outside functi
$gl obal _var is visible gl¢
echo

exit O

echo "Wthin functionl, \$funclvar = $funclvar."

function2

}

function2 ()

{

echo "Wthin function2, \$funclvar = $funclvar."

}

functionl

exit O

Qutput of the script:

Wthin functionl, $funclvar
Wthin function2, $funclvar

Thisis documented in the Bash manual:

20.
20.

“Local can only be used within afunction; it makes the variable name have a visible scope restricted to that function and its children.” [emphasis
added] The ABS Guide author considers this behavior to be a bug.

214

Functions

#

In contrast to C, a Bash variable declared inside a function

#+ is |local ONLY if declared as such

Caution

Before a function is called, all variables declared within the function
are invisible outside the body of the function, not just those explicitly
declared aslocal.

#!/ bi n/ bash

func ()

{

gl obal _var =37 # Visible only within the function bl ock
#+ before the function has been call ed.

} # END OF FUNCTI ON

echo "gl obal _var = $gl obal _var" # gl obal _var =
Function "func" has not yet
#+ so $gl obal _var is not visil

func
echo "gl obal _var

$gl obal _var™ # gl obal _var = 37
Has been set by function ca

Note

As Evgeniy Ivanov points out, when declaring and setting a local vari-
able in a single command, apparently the order of operationsisto first
set the variable, and only afterwards restrict it to local scope. Thisis
reflected in the return value.

#!/ bi n/ bash
echo "==QUTSI DE Function (gl obal)=="
t=$(exit 1)
echo $? # 1
As expect ed.
echo

functionO ()

{
echo "==I NSI DE Functi on=="
echo "d obal "
t0=$(exit 1)
echo $? # 1

As expect ed.
echo

echo "Local declared & assigned in sane comuand.”
local tl1=$(exit 1)

215

Functions

echo $? # 0
Unexpect ed!
Apparently, the variable assignnent takes place before
#+ the local declaration
#+ The return value is for the latter

echo
echo "Local declared, then assigned (separate conmands)."
| ocal t2
t2=%(exit 1)
echo $? # 1
As expect ed.
}
functionO

Local variables and recursion.

216

Functions

Recursion is an interesting and sometimes uselele!e;grm of self-reference. Herbert Mayer defineis1 it
gohsi dexpiessinid an dejonetinmiderosingf atsetipleaneqmassiahangahuetaigosthmn expression, * a
&ﬁmnm@é&g@m&r@tl%ﬂmﬁmmgﬁum function

recursi on-deno. sh
Denonstrati on of recursion

RECURSI ONS=9 # How many tines to recurse
r _count =0 # Must be gl obal . Why?

recurse ()

{

var =" $1"

while ["$var" -ge 0]
do
echo "Recursion count = "$r_count" +-+ \$var = "S$var
((var--)); ((r_count++))
recurse "$var" # Function calls itself (recurses)
done #+ until what condition is net?

}

recur se $RECURSI ONS

Eyamnpbe 24Hl4. Another simple demonstration
recursion-def.sh
A script that defines "recursion" in a rather graphic way.

RECURS| ONS=10

r _count =0
sp=" "
define_recursion ()
{
((r_count ++))
sp="%sp"" "
echo -n "$sp"
echo "\"The act of recurring ... \"" # Per 1913 Webster's dictid
while [$r_count -le $RECURSI ONS]
do
define_recursion
done
}
echo

echo "Recursi on:
define_recursion
echo

3Otherwise known as redundancy.
40therwise known as tautol ogy.
SOtherwise known as a metaphor.
80therwise known as a recursive function.

217

nary.

Functions

Local variablesare auseful tool for writing recursive code, but this practice generally involves agreat deal
of computational overhead and is definitely not recommended in a shell script. !

Example 24.15. Recursion, using a local variable
#!/ bi n/ bash

factori al
e aaaaaa

Does bash permt recursion?
Vell, yes, but...
It's so slow that you gotta have rocks in your head to try it.

MAX_ARG=5
E_WRONG_ARGS=85
E_RANGE_ERR=86

if [-z "$1"]

t hen
echo "Usage: " basenane $0° nunber”
exit $E_WRONG_ARGS

fi

if ["$1" -gt $SMAX_ ARG]
t hen
echo "Qut of range ($MAX_ARG is maxinmun."

"Too many levels of recursion may crash a script with a segfauilt.
#!/ bi n/ bash

Warning: Running this script could possibly | ock up your system
|If you're lucky, it will segfault before using up all available nmenory.

recursive_function ()

{

echo "$1" # Makes the function do sonething, and hastens the segfault.
(($1 < $2)) && recursive_function $(($1 + 1)) $2;

As long as 1lst paraneter is |less than 2nd,

#+ increnment 1st and recurse.

}

recursive_function 1 50000 # Recurse 50,000 |evel s!
Most likely segfaults (depending on stack size, set by ulimt -n).

Recursion this deep m ght cause even a C programto segfault,
#+ by using up all the nmenory allotted to the stack.
echo "This will probably not print."

exit O # This script will not exit normally.

Thanks, Stéphane Chazel as.

218

Functions

Let's get real now.
|1f you want greater range than this,
#+ rewite it in a Real Programm ng Language.
exit $E_RANGE_ERR
fi

fact ()
{
| ocal nunber=$1
Variable "nunber" nust be declared as |ocal,
#+ ot herwi se this doesn't work.
if ["$nunber" -eq 0]
t hen
factorial =1 # Factorial of 0 =1
el se
|l et "decrnum = nunber - 1"
fact $decrnum # Recursive function call (the function calls itself).
let "factorial = $nunber * $?"
f

return $factorial

}

fact $1
echo "Factorial of $1 is $2."

exit O

Also see Example A.15, “ Generating prime numbers using the modul o operator” for an example of recur-
sionin ascript. Be aware that recursion is resource-intensive and executes slowly, and is therefore gener-
ally not appropriate in a script.

Recursion Without Local Variables

A function may recursively call itself even without use of local variables.

Example 24.16. The Fibonacci Sequence

#1/ bi n/ bash

fibo.sh : Fibonacci sequence (recursive)
Author: M Cooper

License: GPL3

A algorithm-------------

Fibo(0) =0

Fibo(1l) =1

el se

Fibo(j) = Fibo(j-1) + Fibo(j-2)
o

MAXTERM=15 # Number of terms (+1) to generate.

M NI DX=2 # If idx is less than 2, then Fibo(idx) = idx.

219

Functions

Fi bonacci ()

{
i dx=$1 # Doesn't need to be local. Wiy not?
if ["$idx" -1t "$M N DX"]
t hen
echo "$idx" # First two terns are 0 1 ... see above.
el se

((--idx)) #]j-1
terml=$(Fibonacci $idx) # Fibo(j-1)

((--idx)) #j-2
term2=$(Fi bonacci $idx) # Fibo(j-2)

echo $((ternl + ternR))
f
An ugly, ugly kludge.
The nore el egant inplenmentation of recursive fibo in C

#+ is a straightforward translation of the algorithmin lines 7 -

}

for i in $(seq 0 $MAXTERM
do # Cal cul ate $MAXTERM1 terns.
FI BO=$(Fi bonacci $i)
echo -n "$FI BO "
done
#0112 358 13 21 34 55 89 144 233 377 610
Takes a while, doesn't it? Recursion in a script is slow

echo

exit O

Example 24.17. The Towers of Hanoi
/ bi n/ bash

#!
#
The Towers O Hanoi

Bash scri pt

Copyright (C) 2000 Amit Singh. Al Rights Reserved.
http://hanoi.kernelthread. com
#
#
#
#
#

Tested under Bash version 2.05b. 0(13)-rel ease.
Al so wor ks under Bash version 3.X.

Used in "Advanced Bash Scripting CGui de"
#+ with perm ssion of script author
Slightly nodified and commented by ABS aut hor

The Tower of Hanoi is a mathematical puzzle attributed to
#+ Edouard Lucas, a nineteenth-century French mathematici an

10.

220

Functions

#

There are three vertical posts set in a base.

The first post has a set of annular rings stacked on it.

These rings are disks with a hole drilled out of the center

#+ so they can slip over the posts and rest flat.

The rings have different dianeters, and they stack in ascending
#+ order, according to size.

The smallest ring is on top, and the | argest on the bottom

#

The task is to transfer the stack of rings

#+ to one of the other posts.

You can nove only one ring at a tine to another post.

You are permtted to nove rings back to the original post.

You may place a smaller ring atop a | arger one,

#+ but *not* vice versa

Again, it is forbidden to place a larger ring atop a smaller one.
#

For a small nunber of rings, only a few noves are required

#+ For each additional ring,

#+ the required nunber of noves approxi mately doubl es,

#+ and the "strategy" becones increasingly conplicated.

#

For nore information, see http://hanoi.kernelthread.com

#+ or pp. 186-92 of _The Arnthair Universe_ by A K Dewdney.

#

#

C C

|| || ||

i || ||

|| || ||

| | || ||

| | || ||

| | || ||

| | || ||
I i .
|**|
#1 #2 #3

#
#:::#

E NOPARAM=66 # No paraneter passed to script.

E BADPARAMEG7 # 111 egal nunber of disks passed to script.

Moves= # d obal variable holding nunmber of noves.
Modi fication to original script.

dohanoi () { # Recursive function
case $1 in

0)
*)
dohanoi "$(($1-1))" $2 $4 3$3
echo nmove $2 "-->" $3
((Moves++)) # Modification to original script.

221

Functions

dohanoi "$(($1-1))" $4 $3 $2

esac
}
case $# in
1) case $(($1>0)) in # Must have at |east one disk.
1) # Nested case statenent.
dohanoi $1 1 3 2
echo "Total nobves = $Moves" # 2"n - 1, where n = # of disks.
exit O;
*) v
echo "$0: illegal value for nunber of disks";
exit $E_BADPARAM
esac
8
echo "usage: $0 N'
echo " VWere \"M" is the nunber of disks.™
exi t $E_NOPARAM
esac

Exerci ses:

1) Woul d conmands beyond this point ever be executed?

Wy not ? (Easy)

2) Explain the workings of the workings of the "dohanoi” function
(Difficult -- see the Dewdney reference, above.)

222

Chapter 25. Aliases

A Bash alias is essentially nothing more than a keyboard shortcut, an abbreviation, a means of avoiding
typing along command sequence. If, for example, weincludealiasim="Is-l | more" inthe~/ . bashrc
file, then each | m* typed at the command-line will automatically be replaced by als -l | more. This can
save agreat deal of typing at the command-line and avoid having to remember complex combinations of
commands and options. Setting aliasrm="rm -i" (interactive mode delete) may save agood deal of grief,
since it can prevent inadvertently deleting important files.

In a script, aiases have very limited usefulness. It would be nice if aliases could assume some of the
functionality of the C preprocessor, such as macro expansion, but unfortunately Bash does not expand
arguments within the alias body. 2 Moreover, a script fails to expand an alias itself within “compound
constructs,” such as if/then statements, loops, and functions. An added limitation is that an alias will not
expand recursively. Almost invariably, whatever wewould like an aliasto do could be accomplished much
more effectively with afunction.

Example 25.1. Aliases within a script

#!/ bi n/ bash
alias.sh

shopt -s expand_aliases
Must set this option, else script will not expand aliases.

First, some fun.
alias Jesse_Janes='"echo "\"Alias Jesse Janes\" was a 1959 conmedy starring Bob Hope
Jesse_Janes

echo; echo; echo;

alias II="Is -I"
May use either single (') or double (") quotes to define an ali as.

echo "Trying aliased \"II\":
[l /usr/X11R6/ bi n/ mk* #* Alias works.

echo

di rectory=/usr/ X11R6/ bi n/
prefix=nk* # See if wild card causes probl ens.

echo "Variables \"directory\" + \"prefix\" = $directoryS$prefix"
echo

alias Il1="Is -1 $directory$prefix"

echo "Trying aliased \"IlI\":"

[11 # Long listing of all files in /usr/X11R6/bin stating with nk.

1 .. asthefirst word of acommand string. Obviously, an aliasis only meaningful at the beginning of acommand.
“However, aliases do seem to expand positional parameters.

223

Aliases

An alias can handl e concatenated variables -- including wild card --
TRUE=1
echo
if [TRUE]
t hen
alias rr="Is -I"
echo "Trying aliased \"rr\" within if/then statenment:"
rr /usr/X11R6/ bi n/ mk* #* Error message results!
Aliases not expanded within conmpound statenents.
echo "However, previously expanded alias still recognized:"
[l /usr/X11R6/ bi n/ mk*
f
echo
count =0
while [$count -1t 3]
do
alias rrr="Is -I"
echo "Trying aliased \"rrr\" within \"while\" |oop:"
rrr /usr/ X11R6/ bi n/ mk* #* Alias will not expand here either.
alias.sh: [ine 57: rrr: conmand not found

| et count+=1
done

echo; echo

alias xyz='cat $0' # Script lists itself.
Note strong quotes.
Xyz
This seens to work,
#+ al though the Bash docunentation suggests that it shouldn't.
#
However, as Steve Jacobson points out,

o. k.

#+ the "$0" paraneter expands inmediately upon declaration of the ali as.

exit O

The unalias command removes a previously set alias.

Example 25.2. unalias: Setting and unsetting an alias

#!/ bi n/ bash
unal i as. sh

shopt -s expand_aliases # Enables alias expansion

224

Aliases

alias Ilme"ls -al | nore’

Il m

echo

unalias |l m
Il m

Error nessage results,

exit O

bash$./unal

total 6

dr wxr wxr - X
drwxr - Xr-x
- T WK - XTI - X

./unalias. sh

as. sh

2 bozo
40 bozo
1 bozo

Ilm conmmand not found

Unset ali as.

since 'IIm no |onger
bozo 3072 Feb
bozo 2048 Feb
bozo 199 Feb

recogni zed.

6 14:04 .
6 14:04 ..
6 14:04 unalias. sh

225

Chapter 26. List Constructs

The and list and or list constructs provide a means of processing a number of commands consecutively.
These can effectively replace complex nested if/then or even case statements.

Chaining together commands
and list command-1 && command-2 && command-3 && ... command-n

Each command executes in turn, provided that the previous command has given a return
valueof t r ue (zero). At thefirst f al se (non-zero) return, the command chain terminates
(the first command returning f al se isthe last one to execute).

An interesting use of a two-condition and list from an early version of YongYe's Tetris
game script [http://bash.detain/Tetris Game.sh]:

equation()

{ # core algorithmused for doubling and hal ving the coordi nates
[[${cdx}]] && ((y=cy+(ccy-cdy)${2}2))
eval ${1}+=\"${x} ${y} \"

}

Example 26.1. Using an and list to test for command-line arguments

#!/ bi n/ bash
and |i st

if [! -z "$1"] && echo "Argunent #1 = $1" && [! -z "$2"] && \
NN\ NN\ NN\
echo "Argument #2 = $2"
t hen

echo "At least 2 argunments passed to script."”

Al the chained commands return true.
el se

echo "Fewer than 2 argunents passed to script.”

At | east one of the chained conmands returns false.

Note that "if [! -z $1 1" works, but its alleged equival ent,
"if [-n $1 1" does not.
However, quoting fixes this.
if "[-n "$1" 1" works.
noon Careful !
It is always best to QUOTE the variabl es being tested.

HHHHHH

This acconplishes the sane thing, using "pure" if/then statenents.
if [! -z "$1"]
t hen
echo "Argument #1 = $1"
fi

226

http://bash.deta.in/Tetris_Game.sh
http://bash.deta.in/Tetris_Game.sh
http://bash.deta.in/Tetris_Game.sh

List Constructs

if [! -z "$2"]
t hen
echo "Argunent #2 = $2"
echo "At |east 2 argunents passed to script.”
el se
echo "Fewer than 2 arguments passed to script.”
fi
1t's longer and nore ponderous than using an "and list".

exit $?
Example 26.2. Another command-linearg test using an and list

#!/ bi n/ bash

ARGS=1 # Number of argunents expected.
E BADARGS=85 # Exit value if incorrect nunber of args passed.

test $# -ne $ARGS && \

NNNNNNNANNNNNN COI"IdI t | on #1
echo "Usage: " basenanme $0° $ARGS argunent (s)" && exit $E _BADARGS
NN

|If condition #1 tests true (wong nunber of args passed to script),
#+ then the rest of the |line executes, and script term nates.

Line bel ow executes only if the above test fails.
echo "Correct number of arguments passed to this script.”

exit O

To check exit value, do a "echo $?" after script term nation.

Of course, an and list can also set variables to adefault value.
argl=3@&& [-z "$argl"] && argl=DEFAULT

Set $argl to commmand-line arguments, if any.
But . . . set to DEFAULT if not specified on comuand-|i ne

or list command-1 || command-2 || command-3 || ... command-n
Each command executes in turn for as long as the previous command returns false. At the

first true return, the command chain terminates (the first command returning trueis the last
one to execute). Thisisobviously the inverse of the “and list”.

Example 26.3. Using or listsin combination with an and list
#! / bi n/ bash

delete.sh, a not-so-cunning file deletion utility.
Usage: delete filenane

227

List Constructs

E BADARGS=85
if [-z "$1"]
t hen

echo "Usage: “basenane $0° fil enane"
exit $E BADARGS # No arg? Bail out.
el se
file=$1 # Set fil enane.
fi

[! -f "$file"] & echo "File \"$file\" not found. \

Cowardly refusing to delete a nonexistent file."

AND LI ST, to give error nessage if file not present.

Note echo message continuing on to a second line after an escape.

[! -f "$file"] |] (rm-f $file; echo "File \"$file\" deleted.")
OR LIST, to delete file if present.

Note | ogic inversion above.
AND LI ST executes on true, OR LIST on fal se.

exit $?
Caution

If the first command in an or list returnstrue, itwi | | execute.

==> The followi ng snippets fromthe /etc/rc.d/init.d/single
#+==> script by M quel van Smoorenburg

#+==> illustrate use of "and" and "or" lists.

==> "Arrowed" coments added by document aut hor

[-x fusr/bin/clear] && /usr/bin/clear
==> |If [usr/bin/clear exists, then invoke it.
==> Checking for the existence of a command before calling it
#+==> avoi ds error nessages and ot her awkward consequences.

==> .

If they want to run sonething in single user node, mght as well run it...
for i in /etc/rcl.d/S[0-9][0-9]* ; do
Check if the script is there.
[-x "$i"] || continue
==> |f corresponding file in $PW *not* found,
#+==> then "continue" by junping to the top of the | oop

Reject backup files and files generated by rpm
case "$1" in
* . rpnsave| *.rpnorig|*.rpmew *~| *.orig)
conti nue; ;
esac
["$i" = "/etc/rcl.d/ SO0single"] &% continue

228

List Constructs

==> Set script nanme, but don't execute it yet.
$i start
done

#o==> .
I mportant

Theexit statusof anand | i st oranor |i st istheexit status of the last command executed.

Clever combinations of and and or lists are possible, but the logic may easily become convoluted and
require close attention to operator precedence rules, and possibly extensive debugging.

false & true || echo fal se # fal se

Sanme result as

(false & true) || echo fal se # fal se
But NOT
false & (true || echo false) # (not hi ng echoed)

Note left-to-right grouping and eval uation of statenents.
1t's usually best to avoid such conplexities.

Thanks, S.C.

See Example A.7, “ days-between: Days between two dates’ and Example 7.4, “ Testing for broken links”
for illustrationsof usingand / or |i st constructsto test variables.

229

Chapter 27. Arrays

Newer versions of Bash support one-dimensional arrays. Array elements may be initialized with the
vari abl e[xx] notation. Alternatively, ascript may introduce the entire array by an explicit decl ar e
-a vari abl e statement. To dereference (retrieve the contents of) an array element, use curly bracket
notation, that is, ${ el ement [xx] }.

Example 27.1. Simple array usage

#! / bi n/ bash

area[11] =23
area[13] =37
area[51] =UFCs

Array menbers need not be consecutive or contiguous.

Sonme menbers of the array can be left uninitialized.
Gaps in the array are okay.
In fact, arrays with sparse data ("sparse arrays")

#
#
#
#+ are useful in spreadsheet-processing software.

echo -n "area[11] "
echo ${area[11]} # {curly brackets} needed.

echo -n "area[13] "
echo ${area[13]}

echo "Contents of area[51] are ${area[51]}."

Contents of uninitialized array variable print blank (null variable).
echo -n "area[43] ="

echo ${area[43]}

echo "(area[43] unassigned)”

echo

Sum of two array vari ables assigned to third
area[5] = expr ${area[11]} + ${area[13]}"

echo "area[5] = area[11] + area[13]"

echo -n "area[5] ="

echo ${area[5]}

area[6] = expr ${area[11]} + ${area[51]}"
echo "area[6] = area[11] + area[51]"
echo -n "area[6] ="

echo ${areal 6]}

230

Arrays

This fails because adding an integer to a string is not permtted.

echo; echo; echo

Anot her array, "area2".
Anot her way of assigning array variables..
array_name=(XXX YYY ZZZ ...)

area2=(zero one two three four)

echo -n "area2[0] =
echo ${area2[0]}
Aha, zero-based indexing (first elenent of array is [0], not [1]).

echo -n "area?2[1] =
echo ${area2[1]} # [1] is second el ement of array.

echo; echo; echo

Yet another array, "area3".
Yet another way of assigning array variables..
array_name=([xx] =XXX [yy] =YYY ...)

area3=([17] =sevent een [24] =t wenty-f our)

echo -n "area3[17]
echo ${area3[17]}

echo -n "area3[24]
echo ${area3[24]}

As we have seen, a convenient way of initializing an entire array isthearray=(el enent1 el e-
ment2 ... el enmentN) notation.

base64 charset=({A .Z} {a..z} {0..9} +/ =)
Using extended brace expansion
#+ to initialize the elements of the array.
Excerpted fromvladz's "base64.sh" script
#+ in the "Contributed Scripts" appendi x.

231

Arrays

Bash permitsarray operationson variables, evenif the variablesare not explicitly declared asarrays.

stri ng=abcABC123ABCabc

echo ${string][@} # abcABCl123ABCabc

echo ${string[*]} # abcABCl123ABCabc

echo ${string[0]} # abcABCl123ABCabc

echo ${string[1]} # No out put!
Why?

echo ${#string[@} # 1
One elenent in the array.
The string itself.

Thank you, M chael Zick, for pointing this out.

Once again this demonstrates that Bash variables are untyped.

Example 27.2. Formatting a poem

#1/ bi n/ bash
poem sh: Pretty-prints one of the ABS Guide author's favorite poens.

Lines of the poem (single stanza).

Li ne[1]="1 do not know which to prefer,k™

Li ne[2] =" The beauty of inflections"

Line[3] ="Or the beauty of innuendoes,"

Li ne[4] =" The bl ackbird whistling"

Line[5]="Or just after.”

Note that quoting permts enbeddi ng whitespace.

Attribution.

Attrib[1]=" Wallace Stevens"

Attrib[2]="\"Thirteen Ways of Looking at a Bl ackbird\""
This poemis in the Public Domain (copyright expired).
echo

t put bol d # Bold print.

for index in 12 3 45 # Five |ines.

do
printf " %\ n" "${Line[index]}"
done
for index in 1 2 # Two attribution |ines.
do
printf " %\ n" "${Attrib[index]}"
done

tput sgrO # Reset termnal
See 'tput' docs.

echo

232

Arrays

exit O
Exerci se

Modify this script to pretty-print a poemfroma text data file.

Array variables have asyntax all their own, and even standard Bash commands and operators have special
options adapted for array use.

Example 27.3. Various array operations

#1/ bi n/ bash
array-ops.sh: More fun with arrays.

array=(zero one two three four five)

Element 0 1 2 3 4 5
echo ${array[0]} # zero
echo ${array: 0} # zero
Paraneter expansion of first el ement,
#+ starting at position # 0 (1st character).
echo ${array: 1} # ero
Paraneter expansion of first el ement,
#+ starting at position # 1 (2nd character).
echo "-------------- "
echo ${#array[0]} # 4
Length of first element of array.
echo ${#array} # 4
Length of first element of array.
(Aternate notation)
echo ${#array[1]} # 3
Length of second el enent of array.
Arrays in Bash have zero-based indexing.
echo ${#array[*]} # 6
Nunber of elenents in array.
echo ${#array[@} # 6
Nunber of elenents in array.

echo "-------------- "

[3]="fourth elenent")

array2=([0]="first element” [1]="second el ement
N N N N N N N N

N
Quoting permts enbeddi ng whitespace within individual array el ements.

echo ${array2[0]} # first el ement
echo ${array2[1]} # second el ement
echo ${array2[2]} #

233

Arrays

Skipped in initialization, and therefore null

echo ${array2[3]} # fourth el ement

echo ${#array2[0]} # 13 (length of first el enent)
echo ${#array2[*]} # 3 (nunber of elenents in array)
exit

Many of the standard string operations work on arrays.

Example 27.4. String operations on arrays

#1/ bi n/ bash
array-strops.sh: String operations on arrays.

Script by M chael Zick.
Used in ABS Guide with perm ssion.
Fi xups: 05 May 08, 04 Aug 08.

|n general, any string operation using the ${name ... } notation
#+ can be applied to all string elements in an array,
#+ with the ${name[@ ... } or ${name[*] ...} notation.

arrayZ=(one two three four five five)
echo

Trailing Substring Extraction
echo ${arrayz[@: 0} # one two three four five five
N

Al'l elenents.
echo ${arrayz[@: 1} # two three four five five
n Al elenments follow ng el enent[0].

echo ${arrayz[@: 1: 2} # two three
n Only the two elenments after elenment[O0].

echo "---------

Substring Renoval
Renmoves shortest match fromfront of string(s).

echo ${arrayzZ[@#f*r} # one two three five five
n # Applied to all elenments of the array.
Matches "four" and renoves it.

Longest match fromfront of string(s)

echo ${arrayZ[@##t*e} # one two four five five

AN # Applied to all elenments of the array.
Matches "three" and renoves it.

234

Arrays

Shortest match from back of string(s)
echo ${arrayZ[@ %h*e} # one two t four five five
N

Matches "hree" and renoves it.

Longest match from back of string(s)
echo ${arrayZ[@Wi*e} # one two four five five
NN

Matches "three" and renpves it.

echo "---------------------- "

Substring Repl acenment

Replace first occurrence of substring with replacenent.
echo ${arrayz[@/ fi v/ XYZ} # one two three four XYZe XYZe
n # Applied to all elenments of the

Repl ace all occurrences of substring.
echo ${arrayz[@//iv/YY} # one two three four fYYe fYYe
Applied to all elenments of the

Delete all occurrences of substring.

Not specifing a replacenment defaults to 'delete’

echo ${arrayzZ[@//fi/} # one two three four ve ve

AN # Applied to all elenments of the

Repl ace front-end occurrences of substring.
echo ${arrayz[@/ #fi/ XY} # one two three four XYve XYve
n # Applied to all elenments of the

Repl ace back-end occurrences of substring.
echo ${arrayzZ[@/ We/ 27} # one two three four fizz fizz
N

Applied to all elenments of the
echo ${arrayzZ[@/ Y%/ XX} # one twXX three four five five
A # Wy?
echo "-----------mme - "
repl acenent () {
echo -n "!11"
}
echo ${arrayz][@/ %/ $(repl acenent)}
N NNANNNNNNNNNNANNNN
#onl!! two threlll four fivl!!l fivll!

The stdout of replacenment() is the replacenment string.
QE.D. The replacenent action is, in effect, an 'assignment

Applied to all elenments of the array.

Applied to all elenments of the array.

array.

array.

array.

array.

array.

235

Arrays

Accessing the "for-each":

echo ${arrayz[@//*/$(repl acenent optional _argunents)}
NN NANNNNANNNANNNNNNNN

#Frrrorrerrrorrr o rrrored

Now, if Bash would only pass the matched string
#+ to the function being called

echo

exit O

Before reaching for a Big Hammer -- Perl, Python, or all the rest --
recall:

$(...) is commnd substitution

A function runs as a sub-process.

A function wites its output (if echo-ed) to stdout.

Assignnment, in conjunction with "echo"” and conmand substitution
#+ can read a function's stdout.

The nane[@ notation specifies (the equivalent of) a "for-each”

#+ operation.
Bash is nore powerful than you think

Command substitution can construct the individual elements of an array.

Example 27.5. L oading the contents of a script into an array
#1/ bi n/ bash

script-array.sh: Loads this script into an array.
Inspired by an e-mail from Chris Martin (thanks!).

script_contents=($(cat "$0")) # Stores contents of this script (3$0)
#+ in an array.

for element in $(seq 0 $((${#script_contents[@} - 1)))

do # ${#script_contents[@}
#+ gives nunber of elements in the array.
#
Question:

Wiy is seq 0 necessary?
Try changing it to seq 1
echo -n "${script_contents[$el enent]}"
List each field of this script on a single line.

echo -n "${script_contents[el enent]}" also works because of ${ ... }.
echo -n " -- " # Use " -- " as a field separator

done

echo

exit O

Exerci se

236

Arrays

Mdify this script so it lists itself
#+ in its original format,
#+ conplete with whitespace, |ine breaks, etc.

In an array context, some Bash builtins have a dlightly altered meaning. For example, unset deletes array
elements, or even an entire array.

Example 27.6. Some special propertiesof arrays
#!/ bi n/ bash

declare -a colors
Al subsequent commands in this script will treat
#+ the variable "colors" as an array.

echo "Enter your favorite colors (separated from each other by a space).”

read -a colors # Enter at least 3 colors to denonstrate features bel ow.
Special option to 'read" comand
#+ all owi ng assignnent of elenents in an array.

echo

el ement _count =${ #col ors[@}

Special syntax to extract number of elenments in array.
el ement _count =${#col ors[*]} works al so.

#

The "@ variable allows word splitting within quotes
#+ (extracts variabl es separated by whitespace).

#

This corresponds to the behavior of "$@ and "$*"

#+ in positional paraneters.

i ndex=0
while ["$index" -1t "$el ement_count"”]
do # List all the elenents in the array.
echo ${col ors[$i ndex] }
${colors[index]} al so works because it's within ${ ... } brackets.
let "index = $index + 1"
O:
((i ndex++))
done

Each array elenent |listed on a separate |ine.

If this is not desired, use echo -n "${col ors[$index]} "
#

Doing it with a "for" |oop instead:

for i in "${colors[@}"
do

echo "$i "

done

(Thanks, S.C.)

237

Arrays

echo

Again, list all the elenments in the array, but using a nore el egant net hod.
echo ${colors[@} # echo ${colors[*]} al so works.

echo

The "unset"” conmand del etes el enments of an array, or entire array.

unset col ors[1] # Renmove 2nd el enent of array.

Same effect as colors[1] =
echo ${colors[@} # List array again, mssing 2nd el enent.
unset colors # Delete entire array.

unset colors[*] and

#+ unset colors[@ al so work.
echo; echo -n "Colors gone."
echo ${colors[@} # List array again, now enpty.

exit O

As seen in the previous example, either ${array_name[@]} or ${array _name[*]} refers to all the
elements of the array. Similarly, to get a count of the number of elements in an array, use either
${#array_name[@]} or ${#array_name[*]}. ${#array_name} is the length (number of characters) of
$array_name[0]}, the first element of the array.

Example 27.7. Of empty arrays and empty elements

#1/ bi n/ bash
enpty-array.sh

Thanks to Stephane Chazelas for the original example,
#+ and to M chael Zick and Orair Eshkenazi, for extending it.
And to Nathan Coulter for clarifications and corrections.

An enpty array is not the same as an array with enpty el enents.

arrayO=(first second third)

arrayl=('") # "arrayl" consists of one enpty el ement.
array2=() # No elenents . . . "array2" is enpty.
array3=() # What about this array?

echo

Li stArray()

{

echo

echo "Elements in array0: ${array0[@}"
echo "Elenments in arrayl: ${arrayl[@}"

238

Arrays

echo "Elements in array2: ${array2[@}"
echo "Elenments in array3: ${array3[@}"

echo "Length of first elenent in arrayO
echo "Length of first elenent in arrayl
echo "Length of first elenent in array2
echo "Length of first elenent in array3

${#array0}"
${#arrayl}"
${#array2}"
${#array3}"

echo "Nunber of elenents in array0 = ${#arrayO[*]}" # 3
echo "Nunber of elenents in arrayl = ${#arrayl[*]}" # 1 (Surprise!)
echo "Nunmber of elenents in array2 = ${#array2[*]}" # O
echo "Nunmber of elenents in array3 = ${#array3[*]}" # O
}

=TT
Li st Array

Try extendi ng those arrays.

Adding an elenment to an array.

array0=("${array0[@}" "newl")

arrayl=("${arrayl[@}" "newl")

array2=("${array2[@}" "newl")

array3=("${array3[@}" "newl")

Li st Array

or

arrayO[${#array0[*]}] =" new2"

arrayl[${#arrayl[*]}] =" new2"

array2[${#array2[*]}] =" new2"

array3[${#array3[*]}] =" new2"

Li st Array

When extended as above, arrays are 'stacks

Above is the 'push’

The stack 'height' is:

hei ght =${#array2[@}

echo

echo "Stack height for array2 = $hei ght"

The '"pop' is:

unset array2[${#array2[@}-1] # Arrays are zero-based,
hei ght =${#array2[@} #+ whi ch means first el ement has index 0
echo

echo "POP"

echo "New stack height for array2 = $hei ght"
Li st Array

List only 2nd and 3rd el ements of array0
from=1 # Zer o-based nunberi ng.

239

Arrays

to=2

array3=(${array0[@:1:2})

echo

echo "Elenments in array3: ${array3[@}"

Wrks like a string (array of characters).
Try sone other "string" forns.

Repl acement :

array4=(${array0[@/ second/ 2nd})

echo

echo "Elements in array4: ${array4[@}"

Replace all matching wildcarded string.
array5=(${array0[@//new?/ ol d})

echo

echo "Elements in array5: ${array5[@}"

Just when you are getting the feel for this .
array6=(${array0[@ #*new})

echo # This one m ght surprise you.

echo "Elements in array6: ${array6[@}"

array7=(${array0[@ #newl})
echo # After array6 this should not be a surprise.
echo "Elenments in array7: ${array7[@}"

Which looks a lot like . .

array8=(${array0[@/ newl/})

echo

echo "Elements in array8: ${array8[@}"

So what can one say about this?

The string operations are performed on

#+ each of the elenents in var[@ in succession

Therefore : Bash supports string vector operations.

If the result is a zero length string,

#+ that el enent di sappears in the resulting assignnent.

However, if the expansion is in quotes, the null elenents remain

M chael zick: Question, are those strings hard or soft quotes?
Nathan Coulter: There is no such thing as "soft quotes."
#! VWhat's really happening is that

#1 + the pattern matchi ng happens after
#1 + all the other expansions of [word]

#1 + in cases |ike ${paraneter#word}.
zap=' new'

array9=(${array0[@/ $zap/})

echo

echo "Nunber of elenents in array9: ${#array9[@}"
array9=("${array0[@/ $zap/}")

240

Arrays

echo "Elenments in array9: ${array9[@}"
This tinme the null elenents renain.
echo "Nunber of elenents in array9: ${#array9[@}"

Just when you thought you were still in Kansas .
arrayl0o=(${arrayO[@ #$zap})
echo

echo "Elements in arrayl0: ${arraylo[@}"
But, the asterisk in zap won't be interpreted if quoted.
arrayl0o=(${arrayO[@#"$zap"})

echo
echo "Elements in arrayl0: ${arraylo[@}"
Vell, mybe we _are_ still in Kansas .

(Revi sions to above code bl ock by Nathan Coul ter.)

Conpare array7 with arrayl0.

Conpare array8 with array9.

Reiterating: No such thing as soft quotes!

Nathan Coul ter expl ai ns:

Pattern matching of 'word' in ${paranmeter#word} is done after

#+ paramet er expansi on and *before* quote renoval.
1In the nornal case, pattern matching is done *after* quote renoval.

exit

The relationship of ${array name[@]} and ${array_name[*]} is analogous to that between $@ and $*.
This powerful array notation has a number of uses.

Copyi ng an array.

array2=("${arrayl[@}")

or

array2="${arrayl[@}"

#

However, this fails with "sparse” arrays,

#+ arrays with holes (mssing elenments) in them
#+ as Jochen DeSnet points out.

arrayl[0] =0
arrayl[1] not assigned
arraylf 2] =2

array2=("${arrayl[@}") # Copy it?
echo ${array2[0]} #0
echo ${array2[2]} # (null), should be 2
i

Adding an elenment to an array.

241

Arrays

array=("${array[@}" "new el enent")
or
array[${#array[*]}]="new el ement"”

Thanks, S.C.

Tip

Thearray=(elementlelement2... elementN) initialization operation, with the help of command
substitution, makes it possible to load the contents of atext fileinto an array.

#!/ bi n/ bash
filenane=sanple file
cat sanple_file

1la
2d

H o HH

b c
e fg

declare -a arrayl

arrayl=(“cat "$filename"") # Loads contents

List file to stdout #+ of $filenane into arrayl.
#

arrayl=(“cat "S$filenanme” | tr "\n" ' ')

change linefeeds in file to spaces.

Not necessary because Bash does word splitting,
#+ changing |inefeeds to spaces.

echo ${arrayl][@} # List the array.
labc2defg
#

Each whitespace-separated "word" in the file
#+ has been assigned to an elenment of the array.

el enent _count =${#arrayl[*]}
echo $el enment _count # 8

Clever scripting makes it possible to add array operations.

Example 27.8. Initializing arrays

#! [bi n/ bash
array-assign. bash

Array operations are Bash-specific,
#+ hence the ".bash" in the script nane.

242

Arrays

Copyright (c) Mchael S. Zick, 2003, Al rights reserved.
License: Unrestricted reuse in any form for any purpose.
Version: ID
#
#

Clarification and additional coments by WIIiam Park

F*

Based on an exanpl e provi ded by Stephane Chazel as
#+ whi ch appeared in an earlier version of the
#+ Advanced Bash Scripting Guide.

Qutput format of the 'tines' comuand:
User CPU <space> System CPU
User CPU of dead chil dren <space> System CPU of dead children

Bash has two versions of assigning all elenents of an array

#+ to a new array vari abl e.

Both drop 'null reference' elenents

#+ in Bash versions 2.04 and | ater

An additional array assignnent that maintains the rel ationship of
#+ [subscript]=value for arrays may be added to newer versions.

Constructs a large array using an internal comrand,
#+ but anything creating an array of several thousand el enents
#+ will do just fine.

declare -a bigOne=(/dev/*) # Al the files in /dev .
echo

echo ' Conditions: Unquoted, default IFS, All-El enents-O"
echo "Nunber of elenents in array is ${#bigOne[@}"

set -vXx

echo
echo
times
decl are -a bi gTwo=(${bigOne[@})
Not e parens: A A
times

- testing: =(${array[@}) - -'

echo
echo
times
decl are -a bi gThree=${bi gOne[@}
No parentheses this tine.
times

- testing: =${array[@} - -'

Conparing the nunbers shows that the second form pointed out

#+ by Stephane Chazelas, is faster

#

As WIIiam Park expl ains:

#+ The bigTwo array assigned el enent by el ement (because of parentheses),

243

Arrays

#+ whereas bi gThree assigned as a single string.

So, in essence, you have:

bi gTwo=([O]="..." [1]="..." [2]="..." ...)

bi gThree=([O0]="...")

#

Verify this by: echo ${bigTwo[O0]}

echo ${bi gThree[0]}

1 will continue to use the first formin ny exanple descriptions
#+ because | think it is a better illustration of what is happening.

The reusable portions of nmy exanples will actual contain
#+ the second form where appropriate because of the speedup.

MSZ: Sorry about that earlier oversight folks.

Not e:

The "declare -a" statenents in |lines 32 and 44
+ are not strictly necessary, since it is inplicit
+inthe Array=(...) assignment form

However, elimnating these declarations slows down
#+ the execution of the follow ng sections of the script.
Try it, and see.

HHF R

exit O

Note

Adding a superfluous declare -a statement to an array declaration may speed up execution of
subsequent operations on the array.

Example 27.9. Copying and concatenating arrays

#! /[bi n/ bash
CopyArray.sh
#

This script witten by M chael Zick.
Used here with perm ssion.

How To "Pass by Nane & Return by Name"
#+ or "Building your own assignnment statenent".

CpArray_Mac() {

Assi gnnent Command St at enent Bui | der

echo -n 'eval
echo -n "$2" # Destination nane

244

Arrays

echo -n "=(${°
echo -n "$1" # Source nane

echo -n '[@})

That could all be a single conmand.
Matter of style only.

}

decl are -f CopyArray # Function "Pointer"
CopyAr ray=CpArray_Mac # Statement Buil der
Hype()

{

Hype the array named $1.
(Splice it together with array containing "Really Rocks".)
Return in array named $2.

local -a TMWP
| ocal -a hype=(Really Rocks)

$($CopyArray $1 TMP)

TMP=(${TMP[@} ${hype[@})
$($CopyArray TMP $2)

}

decl are -a before=(Advanced Bash Scripting)
declare -a after

echo "Array Before = ${before[@}"
Hype before after

echo "Array After = ${after[@}"
Too much hype?

echo "Wat ${after[@: 3:2}?"

decl are -a nodest=(${after[@:2:1} ${after[@:3:2})
---- substring extraction ----

echo "Array Mdest = ${npdest[@}"
What happened to 'before' ?
echo "Array Before = ${before[@}"
exit O

Example 27.10. M ore on concatenating arrays

#! [bi n/ bash
array-append. bash

245

Arrays

Copyright (c) Mchael S. Zick, 2003, Al rights reserved.
Li cense: Unrestricted reuse in any form for any purpose.
Version: $I D$

H H HHH

Slightly nodified in formatting by MC.

Array operations are Bash-specific.
Legacy UNI X /bin/sh | acks equival ents.

#* H*

Pipe the output of this script to 'nore'
#+ so it doesn't scroll off the term nal
O, redirect output to a file.

declare -a arrayl=(zerol onel twol)

Subscript packed.

declare -a array2=([0]=zero2 [2]=two2 [3]=three2)
Subscript sparse -- [1] is not defined.

echo

echo '- Confirmthat the array is really subscript sparse. -'
echo "Nunber of elenents: 4" # Hard-coded for illustration
for ((1 =0,; 1 <4 ; i++))

do

echo "Elenent [$i]: ${array2[$i]}"
done
See al so the nore general code exanple in basics-revi ewed. bash.

decl are -a dest

Combi ne (append) two arrays into a third array.

echo
echo ' Conditions: Unquoted, default IFS, All-Elenents-Of operator'’
echo '- Undefined el ements not present, subscripts not maintained.

The undefined el enents do not exist; they are not being dropped.

dest=(${arrayl[@} ${array2[@})

dest=${arrayl[@} ${array2[@} # Strange results, possibly a bug.
Now, list the result.

echo

echo '- - Testing Array Append - -'

cnt =${ #dest [@}

echo "Nunber of elenents: $cnt”
for ((i =0 ; i <cnt ; i++))
do
echo "Elenent [$i]: ${dest[$i]}"
done

246

Arrays

Assign an array to a single array element (twce).
dest[0] =${arrayl[@}
dest[1] =${array2[@}

List the result.

echo

echo '- - Testing nodified array - -
cnt =${ #dest [@}

echo "Nunber of elenents: $cnt”
for ((i =0 ; i <cnt ; i++))
do
echo "Elenent [$i]: ${dest[$i]}"
done

Exam ne the nodified second el enent.

echo

echo '- - Reassign and list second el enent - -'
decl are -a subArray=${dest[1]}

cnt =${ #subArray[@}

echo "Nunber of elenents: $cnt”
for ((i =0 ; i <cnt ; i++))
do
echo "Elenent [$i]: ${subArray[S$i]}"
done

The assignnent of an entire array to a single el enent

#+ of another array using the '=${ ... }' array assignnent

#+ has converted the array being assigned into a string,

#+ with the elenments separated by a space (the first character of

If the original elenents didn't contain whitespace
If the original array isn't subscript sparse
Then we could get the original array structure back again

Restore fromthe nodified second el ement.
echo

echo '- - Listing restored el enent - -'
decl are -a subArray=(${dest[1]})

cnt =${ #subArray[@}

echo "Nunber of elenents: $cnt”

for ((i =0 ; i <cnt ; i++))
do
echo "Elenent [$i]: ${subArray[$i]}"
done
echo '- - Do not depend on this behavior. - -'
echo '- - This behavior is subject to change - -'
echo '- - in versions of Bash newer than version 2.05b - -'

MSZ: Sorry about any earlier confusion folKks.

I FS).

247

Arrays

exit O

Arrays permit deploying old familiar algorithms as shell scripts. Whether this is necessarily a good idea
isleft for the reader to decide.

Example 27.11. The Bubble Sort

#!/ bi n/ bash
bubbl e. sh: Bubble sort, of sorts.

Recall the algorithmfor a bubble sort. In this particular version..

Wth each successive pass through the array to be sorted,
+ conpare two adj acent elements, and swap themif out of order
At the end of the first pass, the "heaviest" element has sunk to bottom
At the end of the second pass, the next "heaviest" one has sunk next to bottom
And so forth.
Thi s means that each successive pass needs to traverse |less of the array.
You will therefore notice a speeding up in the printing of the | ater passes.

HHHHHHH

exchange()
{
Swaps two nmenbers of the array.
[ocal tenp=${Countries[$1]} # Tenporary storage
#+ for element getting swapped out.
Countries[$1] =${ Countri es[$2] }
Countri es[$2] =$t enp

return

}

declare -a Countries # Declare array,
#+ optional here since it's initialized bel ow

1s it permssable to split an array variable over multiple |ines
#+ using an escape (\)?
Yes.

Countri es=(Net herl ands Ukrai ne Zaire Turkey Russia Yenen Syria \
Brazil Argentina N caragua Japan Mexico Venezuel a G eece England \
| srael Peru Canada Oran Denmark \Wal es France Kenya \

Xanadu Qat ar Liechtenstein Hungary)

"Xanadu" is the nythical place where, according to Col eridge,
#+ Kubl a Khan did a pl easure done decree.

cl ear # Clear the screen to start with

248

Arrays

echo "0: ${Countries[*]}" # List entire array at pass O.

nunber _of _el enent s=${#Countries[@}
| et "conparisons = $nunber_of el ements - 1"

count =1 # Pass number.

while ["$conparisons" -gt 0] # Begi nning of outer |oop
do

i ndex=0 # Reset index to start of array after each pass.

while ["$index" -It "$conparisons”] # Beginning of inner |oop
do
if [${Countries[$index]} \> ${Countries[expr $index + 1°]1}]
|If out of order..
Recalling that \> is ASCI| conparison operator
#+ wi thin single brackets.

if [[${Countries[$index]} > ${Countries[expr $index + 1°]}]]
#+ al so works.
t hen
exchange $index “expr $index + 1° # Swap.
f
et "index += 1" # O, i ndex+=1 on Bash, ver. 3.1 or newer.
done # End of inner |oop

Paul o Marcel Coel ho Aragao suggests for-loops as a sinpler altenative.
#

for ((last = $nunber_of _elements - 1 ; last > 0 ; last--))

Fix by C Y. Hunt n (Thanks!)

do

for ((i =0 ; i <last ; i++))

do

[["${Countries[$i]}" > "${Countries[S((i+1))]}" 11 \

&& exchange $i $((i+1))

done

done
o
| et "conparisons -= 1" # Since "heaviest"” el enent bubbles to bottom

#+ we need do one | ess conparison each pass.

echo
echo "$count: ${Countries[@}" # Print resultant array at end of each pass.
echo

et "count += 1" # I ncrenment pass count.
done # End of outer |oop
Al done.

249

Arrays

exit O

Isit possible to nest arrays within arrays?

#!/ bi n/ bash
"Nested" array.

M chael Zick provided this exanple,
#+ with corrections and clarifications by WIIiam Park.

AnArray=($(ls --inode --ignore-backups --alnost-all \
--directory --full-tinme --color=none --tinme=status \
--sort=time -1 ${PWD})) # Commands and opti ons.

Spaces are significant . . . and don't quote anything in the above.

SubArray=(${AnArray[@:11:1} ${AnArray[@:6:5})
This array has six el enments:

H#+ SubArray=([O0] =${AnArray[11]} [1]=%{AnArray[6]} [2] =${AnArray[7]}
[3] =%{AnArray[8]} [4] =%{AnArray[9]} [5]=${AnArray[10]})
#

Arrays in Bash are (circularly) linked lists
#+ of type string (char *).

So, this isn't actually a nested array,

#+ but it's functionally simlar.

echo "Current directory and date of |ast status change:"
echo "${SubArray[@}"

exit O

Embedded arrays in combination with indirect references create some fascinating possibilities

Example 27.12. Embedded arrays and indirect references

#1/ bi n/ bash
enbedded- arrays. sh
Enbedded arrays and indirect references.

This script by Dennis Leeuw.
Used with perm ssion.
Modi fied by docunent author.

ARRAY1=(
VAR1 1=val uell
VAR1 2=val uel2
VAR1 3=val uel3

250

Arrays

ARRAY2=(
VARl ABLE="t est "
STRI NG="VAR1=val uel VAR2=val ue2 VAR3=val ue3"
ARRAY21=${ ARRAY1[*] }

) # Enbed ARRAY1 within this second array.

function print () {
OLD_I FS="$I FS"
| FS=$'\n' # To print each array el ement
#+ on a separate |line
TEST1="ARRAY2[*]"
| ocal ${!TEST1l} # See what happens if you delete this line.
|Indirect reference.
This nmakes the conponents of $TEST1
#+ accessible to this function

Let's see what we've got so far
echo
echo "\ $TEST1 = $TEST1" # Just the name of the variable.
echo; echo
echo "{\$TEST1} = ${!TEST1}" # Contents of the variable.
That's what an indirect
#+ reference does.
echo
BChO M- mmm e ": echo
echo

Print variable
echo "Vari abl e VARI ABLE: $VARI ABLE"

Print a string el ement

| FS="$OLD_| FS"
TEST2="STRI NF *]"
l ocal ${!TEST2} # Indirect reference (as above).

echo "String el ement VAR2: $VAR2 from STRI NG'

Print an array el ement

TEST2=" ARRAY21[*]"

l ocal ${!TEST2} # Indirect reference (as above).
echo "Array elenent VARL 1: $VARL_1 from ARRAY21"

}

print
echo

exit O
As the author of the script notes,

#+ "you can easily expand it to create nanmed-hashes in bash.”
(Difficult) exercise for the reader: inplement this.

251

Arrays

Arrays enable implementing a shell script version of the Seve of Eratosthenes. Of course, a resource-in-
tensive application of this nature should really be written in a compiled language, such as C. It runs ex-
cruciatingly slowly as a script.

Example 27.13. The Sieve of Eratosthenes

#1/ bi n/ bash
sieve.sh (ex68.sh)

Si eve of Eratosthenes
Ancient algorithmfor finding prime nunbers.

This runs a couple of orders of magnitude sl ower
#+ than the equivalent programwitten in C

LONER_LIM T=1 # Starting with 1.

UPPER_LI M T=1000 # Up to 1000.

(You may set this higher . . . if you have tine on your hands.)
PRI ME=1

NON_PRI ME=0

l et SPLI T=UPPER_LIM T/ 2
Optimzation:
Need to test nunmbers only halfway to upper Iimt. Why?

declare -a Prines
Prines[] is an array.

initialize ()
{

Initialize the array.

i =$SLOVER LIM T
until ["$i" -gt "SUPPER LIM T"]
do
Prinmes[i]=$PRI ME
let "i += 1"
done

Assunme all array nmenmbers guilty (prine)
#+ until proven innocent.

}
print_primes ()

{

Print out the nenbers of the Prines[] array tagged as prime.

i =$SLOVER LIM T

252

Arrays

until ["$i" -gt "SUPPER LIM T"]
do

if ["${Primes[i]}" -eq "$PRI M"]
t hen

printf "o98d" $i

8 spaces per number gives nice, even colums.
f

let "i += 1"
done
}
sift () # Sift out the non-prines.
{

let i =$LOVER LI M T+1
Let's start with 2.

until ["$i" -gt "SUPPER LIM T"]
do

if ["${Prines[i]}" -eq "$PRI ME"]
Don't bother sieving nunbers already sieved (tagged as non-prine).
t hen

t=$
while ["$t" -le "SUPPER LIMT"]
do

let "t += $i "

Prinmes[t]=$NON_PRI ME
Tag as non-prine all multiples.
done

f

let "i += 1"

done

main ()

I nvoke the functions sequentially.

initialize

sift

print_primes

This is what they call structured progranm ng.

253

Code below line will not execute, because of 'exit.'

This inmproved version of the Sieve, by Stephane Chazel as,
#+ executes somewhat faster

Must invoke with conmand-line argurment (limt of prinmes).

UPPER LI M T=%$1 # From command- | i ne.
| et SPLI T=UPPER_LIM T/ 2 # Hal fway to nmax nunber.

Prinmes=('' $(seq $UPPER LIMT))

i=1
until (((i += 1) > SPLIT)) # Need check only hal fway.
do

if [[-n ${Prines[i]} 1]

t hen
t=$%
until (((t +=i) > UPPER.LIMT))
do

Primes[t]=

done

f

done

echo ${Prinmes[*]}

exit $?

Example 27.14. The Sieve of Eratosthenes, Optimized

#1/ bi n/ bash

Optimzed Sieve of Eratosthenes

Script by Jared Martin, with very mnor changes by ABS Cui de aut hor
Used in ABS Guide with perm ssion (thanks!).

Based on script in Advanced Bash Scripting Guide.
http://tldp.org/LDP/ abs/htm /arrays. ht M #PRI MESO (ex68. sh).

http://ww. cs. hnt. edu/ ~onei | | / paper s/ Si eve- JFP. pdf (reference)
Check results against http://prines.utmedu/lists/small/1000. txt

Necessary but not sufficient would be, e.g.,

#
(($(sieve 7919 | wc -w) == 1000)) && echo "7919 is the 1000th pri ne"

UPPER_LI M T=${1: ?"Need an upper limt of primes to search."}

254

Arrays

Primes=('' $(seq ${UPPER LIMT}))

typeset -i i t

Primes[i=1]="" # 1 is not a prine.

until (((i += 1) > (${UPPER_LIMT}/i))) # Need check only ith-way.
do # \Wy?

if ((${Primes[t=i*(i-1), i]1}))
Cbscure, but instructive, use of arithnetic expansion in subscript.
t hen
until (((t +=i) > ${UPPER LIMT}))
do Primes[t]=; done
f
done

echo ${Prinmes[*]}
echo # Change to original script for pretty-printing (80-col. display).
printf "o8d" ${Prines[*]}
echo; echo

exit $?

Compare these array-based prime number generators with aternatives that do not use arrays, Exam-
ple A.15, “Generating prime numbers using the modulo operator”, and Example 16.46, “ Generating prime
numbers’.

Arrayslend themselves, to some extent, to emulating data structures for which Bash has no native support.

Example 27.15. Emulating a push-down stack

#1/ bi n/ bash
stack.sh: push-down stack simulation

Simlar to the CPU stack, a push-down stack stores data itemns
#+ sequentially, but releases themin reverse order, last-in first-out.

BP=100 # Base Pointer of stack array.
Begin at el enment 100.

SP=$BP # Stack Pointer.
Initialize it to "base" (bottom of stack.

Dat a= # Contents of stack |ocation.
Must use gl obal vari abl e,
#+ because of limtation on function return range.

100 Base poi nter <-- Base Pointer
99 First data item
98 Second data item

255

Arrays

... More data

Last data item <-- Stack pointer
declare -a stack
push() # Push item on stack
{
if [-z "$1"] # Not hing to push?
t hen

return
f
let "SP -= 1" # Bunp stack pointer
st ack[$SP] =$1
return
}
pop() # Pop item off stack
{
Dat a= # Enpty out data item
if ["$SP" -eq "$BP"] # Stack enpty?
t hen
return

fi # This also keeps SP from getting past

#+ i.e., prevents a runaway stack

Dat a=${ st ack[$SP] }

et "SP += 1" # Bunmp stack pointer

return

}

status_report() # Find out what's happening.
{

echo "--------m e "

echo " REPORT"
echo "Stack Pointer = $SP"
echo "Just popped \""$Data"\" off the stack."

echo "--------m e
echo

See if you can pop anything off enpty stack

pop
status_report

100,

256

Arrays

echo

push gar bage

pop

status_report # Garbage in, garbage out.
val uel=23; push $val uel

val ue2=ski doo; push $val ue2

val ue3=LAST; push $val ue3

pop # LAST

status_report

pop # ski doo
status_report

pop # 23

status_report # Last-in, first-out!

Notice how the stack pointer decrenents with each push,
#+ and increnments with each pop

echo

Ho-m e e e e - o -

1) Modify the "push()" function to permt pushing

+ multiple elenment on the stack with a single function call
2) Mdify the "pop()" function to permt popping

+ multiple element fromthe stack with a single function call.
3) Add error checking to the critical functions.

That is, return an error code, depending on

+ successful or unsuccessful completion of the operation

+ and take appropriate action

4) Using this script as a starting point,

+ wite a stack-based 4-function cal cul ator

Fancy manipulation of array “subscripts’ may require intermediate variables. For projects involving this,
again consider using a more powerful programming language, such as Perl or C.

Example 27.16. Complex array application: Exploring a weird mathematical series

#!/ bi n/ bash

257

Arrays

Dougl as Hof stadter's notorious "Q series":

Q1)
Q(n)

Q2 =1
Qn - Qn-1)) + QAn - Qn-2)), for n>2

This is a "chaotic" integer series with strange
#+ and unpredi ct abl e behavi or.

The first 20 ternms of the series are:

112334556668 88109 10 11 11 12

See Hofstadter's book, _Goedel, Escher, Bach: An Eternal Colden Braid_,
#+ p. 137, ff.

LI M T=100 # Number of terms to cal cul ate.
LI NEW DTH=20 # Nunber of terms printed per |ine.

Qq1l]=1 # First two terms of series are 1.

d2]=1

echo

echo "Qseries [$LIMT terms]:"

echo -n "${Qq 1]} " # Qutput first two termns.

echo -n "${Qq 2]} "

for ((n=3; n <= $LIMT,; n++)) # C-like |oop expression.

do #Jdn] =4Q9n - gn-1]] + dn - gn-2]] for n>2

Need to break the expression into internediate ternmns,

#+ since Bash doesn't handle complex array arithnetic very well.

let "nl
let "n2

$n - 1"
$n - 2"

-1
-2

t0="expr $n - ${QInl]}" # n - Jn-1]
#n

t1="expr $n - ${dn2]}" - @n-2]
TO=${Q t 0] } # Qdn - gn-1]]
T1=${Qq t1]} #dn - dn-2]]
Q@ n] ="expr $TO + $T1" #dn - gn-1]] + dn - gn-2]]

echo -n "${Qn]} "
if [“expr $n % $LINEWDTH -eq O] # Format out put.
t hen # A nodul o
echo # Break lines into neat chunks.
f
done
echo

exit O

This is an iterative inplenentation of the Q series.

258

Arrays

The nore intuitive recursive inplenentation is left as an exerci se.
Warning: calculating this series recursively takes a VERY long tine
#+ via a script. C/ C++ would be orders of nmagnitude faster

Bash supports only one-dimensional arrays, though alittle trickery permits simulating multi-dimensional
ones.

Example 27.17. Smulating a two-dimensional array, then tilting it

#1/ bi n/ bash
twodi msh: Simulating a two-di nensional array.

A one-di nensional array consists of a single row.
A two-di nensional array stores rows sequentially.

Rows =5
Col unms=5
#5 X5 Array.

decl are -a al pha # char al pha [Rows] [Col ums];
Unnecessary decl aration. \Wy?

| oad_al pha ()
{

| ocal rc=0

| ocal i ndex

for i inABCDEFGHI JKLMNOPQRSTUVWXY
do # Use different symbols if you like.
[ocal row="expr $rc / $Col umms’
| ocal colum="expr $rc % $Rows"
let "index = $row * $Rows + $col um"
al pha[$i ndex] =$
al pha[$row [$col um]
let "rc += 1"
done

Sinpler would be
#+ declare -a alpha=(ABCDEFGHI JKLMNOPQRSTUVWXY)
#+ but this somehow | acks the "flavor" of a two-di nensional array.

}

print_al pha ()
focal r ow=0

[ocal index
echo

while ["$row' -1t "$Rows"] # Print out in "row mjor" order

259

Arrays

do #+ col ums vary,
#+ while row (outer |oop) remains the same.
| ocal col utm=0

echo -n # Lines up "square" array with rotated one.
while ["$colum" -1t "$Col ums"]
do
let "index = $row * $Rows + $col um"
echo -n "${al pha[index]} " # al pha[$row [$col um]
et "colum += 1"
done

let "row += 1"
echo

done

The sinpler equivalent is

echo ${al pha[*]} | xargs -n $Col ums

echo

}

filter () # Filter out negative array indices.
{

echo -n " " # Provides the tilt.

Expl ai n how.

if [["$1" -ge 0 && "$1" -1t "$Rows" && "$2" -ge 0 && "$2" -1t "$Col ums” 1]

t hen

let "index = $1 * $Rows + $2"

Now, print it rotated.

echo -n " ${al pha[index]}"

al pha[$rowj [$col umm]
f

}

rotate () # Rotate the array 45 degrees --

{ #+ "bal ance" it on its |ower |efthand corner
| ocal row

| ocal col um

for ((row = Rows; row > -Rows; row-))
do # Step through the array backwards. Why?

for ((colum = 0; colum < Columms; colum++))
do

260

Arrays

if ["$row' -ge 0]

t hen
let "t1 = $colum - $row
let "t2 = $col um"
el se
let "t1 = $col um"
let "t2 = $colum + $row

fi

filter $t1 $t2 # Filter out negative array indices.
What happens if you don't do this?
done

echo; echo
done

Array rotation inspired by exanples (pp. 143-146) in

#+ "Advanced C Progranmi ng on the IBMPC " by Herbert Mayer
#+ (see bibliography).

This just goes to show that much of what can be done in C
#+ can al so be done in shell scripting.

}

R T Now, |et the show begin. ------------ #
| oad_al pha # Load the array.

print_al pha # Print it out.

rotate # Rotate it 45 degrees countercl ockw se.
e #
exit O

This is a rather contrived, not to nention inelegant sinmulation.

Exerci ses:
1) Rewite the array |oading and printing functions
inanore intuitive and | ess kludgy fashion.

Figure out how the array rotation functions work.
Hint: think about the inplications of backwards-indexing an array.

3) Rewite this script to handle a non-square array,
such as a 6 X 4 one.
Try to minimze "distortion" when the array is rotated.

HHHHHHHFHHH R
N

A two-dimensional array isessentially equivalent to aone-dimensional one, but with additional addressing
modes for referencing and manipulating the individual elements by row and column position.

For an even more elaborate example of simulating a two-dimensional array, see Example A.10, “Game
of Life".

261

Arrays

For more interesting scripts using arrays, see:

» Example 12.3, “Finding anagrams’

» Example 16.46, “ Generating prime numbers’

» Example A.22, “More on hash functions”

» Example A.44, “An al-purpose shell scripting homework assignment solution”
» Example A .41, “Quacky: a Perquackey-type word game”

e Example A.42, “Nim”

262

Chapter 28. Indirect References

We have seen that referencing a variable, $var , fetches its value. But, what about the value of a value?
What about $$var ?

The actual notation is\ $$var , usually preceded by an eva (and sometimes an echo). Thisis caled an
indirect reference.

Example 28.1. Indirect Variable References

#1/ bi n/ bash
ind-ref.sh: Indirect variable referencing.
Accessing the contents of the contents of a variable.

First, let's fool around a little.
var =23

echo "\ $var = $var” # $var = 23
So far, everything as expected. But

echo "\ $\ $var = $$var” # $Svar
Not useful

\$\'$ expanded to PID of the script

-- refer to the entry on the $$ variable --

#+ and "var" is echoed as plain text.

(Thank you, Jakob Bohm for pointing this out.)

4570var

echo "\\\$\ $var = \ $$var" # \$$var = $23

As expected. The first $ is escaped and pasted on to
#+ the value of var ($var = 23).

Meaningful, but still not useful.

Now, let's start over and do it the right way.

a=l etter_of _al phabet # Variable "a" holds the nane of another vari able.
| etter_of al phabet=z

echo

Direct reference.
echo "a = $a" # a = letter_of _al phabet

Indirect reference.
eval a=\$%a

AN Forci ng an eval (uation), and ..
A Escaping the first $..
H o o o o o o o o o o o o o e e e e e e e e e e e e e e e e

263

Indirect References

The 'eval' forces an update of $a, sets it to the updated val ue of \$$a.

So, we see why 'eval' so often shows up in indirect reference notation.

U
echo "Now a = $a" # Now a = z

echo

Now, let's try changing the second-order reference.

t=table_cell 3
tabl e_cell 3=24

echo "\"table cell _3\" = $table_cell _3" # "table cell _3" = 24
echo -n "dereferenced \"t\" = "; eval echo \$%t # dereferenced "t" = 24
In this sinple case, the follow ng al so works (why?).

eval t=\$$t; echo "\"t\" = $t"

echo

t=table_cell 3

NEW VAL=387

tabl e_cel | _3=$NEW VAL

echo "Changing value of \"table_cell _3\" to $NEWVAL."

echo "\"table cell _3\" now $table cell 3"

echo -n "dereferenced \"t\" now "; eval echo \$$t

"eval " takes the two arguments "echo" and "\$$t" (set equal to $table_cell_3)

echo

(Thanks, Stephane Chazelas, for clearing up the above behavior.)

A nore straightforward nethod is the ${!t} notation, discussed in the
#+ "Bash, version 2" section.

See al so ex78. sh.

exit O

Indirect referencing in Bash is a multi-step process. First, take the name of avariable: var nane.
Then, referenceit: $var name. Then, reference the reference: $$var nane. Then, escape thefirst
$: \ $$var nane. Finaly, force a reevaluation of the expression and assign it: eval newvar=\$
$varname.

Of what practical use is indirect referencing of variables? It gives Bash a little of the functionality of
pointersin C, for instance, in table lookup. And, it aso has some other very interesting applications. . . .

Nils Radtke shows how to build “dynamic” variable names and evaluate their contents. This can be useful
when sourcing configuration files.

#!/ bi n/ bash

264

Indirect References

This could be "sourced" froma separate file.
i sdnMyPr ovi der Renpt eNet =172. 16. 0. 100

i sdnYour Pr ovi der Renot eNet =10. 0. 0. 10

i sdnOnl i neSer vi ce="MyPr ovi der "

renot eNet =$(eval "echo \$$(echo isdn${i sdnOnli neServi ce} Renot eNet)")
renot eNet =$(eval "echo \$$(echo i sdnMyProvi der Renpt eNet) ")
remot eNet =$(eval "echo \$i sdnMyProvi der Renpt eNet ")
renot eNet =$(eval "echo $i sdnMy/Provi der Renpt eNet ")

echo "$renot eNet " # 172.16.0. 100

And, it gets even better

Consider the foll owi ng snippet given a variable named get Sparc,
#+ but no such variabl e getla64:

chkMrrorArchs () {
arch="$1";
if ["$(eval "echo \${$(echo get$(echo -ne $arch
sed "s/™(.\).*/\1/g" | tr "a-z' 'A-Z'; echo $arch
sed "s/™M\N(.*\)/\1/g")):-false}")" = true]
t hen
return O;
el se
return 1,
fi;
}

get Sparc="true"
unset getl a64
chkM rror Archs sparc
echo $? # 0
True

chkM rrorArchs | a64

echo $? # 1
Fal se
Not es
-
Even the to-be-substituted variable nanme part is built explicitly.
The paraneters to the chkMrrorArchs calls are all |ower case.

The variable name is conposed of two parts: "get" and "Sparc"

Example 28.2. Passing an indirect reference to awk

#! / bi n/ bash

265

Indirect References

Anot her version of the "colum totaler"” script
#+ that adds up a specified colum (of nunbers) in the target file.
This one uses indirect references.

ARGS=2
E_WRONGARGS=85

if [$# -ne "$ARGS"] # Check for proper nunmber of command-line args.
t hen

echo "Usage: "“basename $0° fil ename col um- nunmber"

exit $E_WVRONGARGS
fi

fil ename=$1 # Nane of file to operate on.

col um_nunber =$2 # Wi ch colum to total up.

#===== Same as original script, up to this point =====#
A multi-line awk script is invoked by

awk "

#

#

.

& o

Begin awk script.

B m e o o eea o -
awk "
{ total += \$${colum_nunber} # Indirect reference
}
END {

print total

}

" "$filenane”
Note that awk doesn't need an eval preceding \$$.
B m e o o eea o -

End awk script.
Indirect variable reference avoids the hassles
#+ of referencing a shell variable within the enbedded awk script.
Thanks, Stephane Chazel as.
exit $?
Caution

This method of indirect referencing is abit tricky. If the second order variable changesits value,
then thefirst order variable must be properly dereferenced (asin the above example). Fortunately,

266

Indirect References

the ${! vari abl e} notation introduced with version 2 of Bash (see Example 37.2, “Indirect
variable references - the new way” and Example A.22, “More on hash functions’) makesindirect
referencing more intuitive.

Bash does not support pointer arithmetic, and this severely limits the usefulness of indirect refer-
encing. In fact, indirect referencing in a scripting language is, at best, something of an afterthought.

267

Chapter 29./ dev and / pr oc

A Linux or UNIX filesystem typically hasthe/ dev and/ pr oc special-purpose directories.

[dev

The/ dev directory contains entries for the physical devices that may or may not be present in the hard-
ware. ! Appropriately enough, these are called device files. As an example, the hard drive partitions con-
taining the mounted filesystem(s) have entriesin / dev, as df shows.

bash$ df

Fil esystem 1k- bl ocks Used Avail abl e Use%
Mount ed on
/ dev/ hda6 495876 222748 247527 48%/
/ dev/ hdal 50755 3887 44248 9% / boot
/ dev/ hda8 367013 13262 334803 4% [hone
/ dev/ hda5 1714416 1123624 503704 70% / usr

Among other things, the / dev directory contains loopback devices, such as/ dev/ | oop0. A loopback
deviceisagimmick that allows an ordinary file to be accessed asif it were a block device. 2 This permits
mounting an entire filesystem within a single large file. See Example 17.8, “Creating a filesystem in a
file” and Example 17.7, “Checking a CD image”.

A few of the pseudo-devicesin/ dev have other specialized uses, such as/ dev/ nul | ,/ dev/ zer o,
/ dev/ urandom/ dev/ sdal (hard drive partition), / dev/ udp (User Datagram Packet port), and /
dev/tcp.

For instance:

To manually mount a USB flash drive, append the following lineto/ et c/ f st ab. 8

/ dev/ sdal /mmt/flashdrive auto noaut o, user, noati ne 00
(See aso Example A.23, “Mounting USB keychain storage devices’.)

Checking whether adisk isin the CD-burner (soft-linked to / dev/ hdc):

head -1 /dev/ hdc

head: cannot open '/dev/hdc' for reading: No nmedium found
(No disc in the drive.)

Theentriesin/ dev provide mount points for physical and virtual devices. These entries use very little drive space.

Somedevices, suchas/ dev/ nul | ,/ dev/ zer o,and/ dev/ ur andomarevirtua. They are not actual physical devicesand exist only in software.
2A block device reads and/or writes datain chunks, or blocks, in contrast to a character device, which acesses datain character units. Examples of
block devices are hard drives, CDROM drives, and flash drives. Examples of character devices are keyboards, modems, sound cards.

30f course, the mount point/ mt / f | ashdri ve must exist. If not, then, as root, mkdir /mnt/flashdrive.

To actualy mount the drive, use the following command: mount /mnt/flashdrive

Newer Linux distros automount flash drivesin the / nedi a directory without user intervention.

268

/dev and/ proc

head: error reading '/dev/hdc': |nput/output error
(There is a disk in the drive, but it can't be read;
#+ possibly it's an unrecorded CDR bl ank.)

Stream of characters and assorted gi bberish

(There is a pre-recorded disk in the drive,

#+ and this is raw output -- a streamof ASCIl and binary data.)

Here we see the wi sdomof using 'head" to limt the output

#+ to manageabl e proportions, rather than 'cat' or sonething simlar.

Now, it's just a matter of checking/parsing the output and taking
#+ appropriate action.

When executing a command on a/ dev/ t cp/ $host / $port pseudo-device file, Bash opens a TCP
connection to the associated socket.

A socket is a communications node associated with a specific I/0O port. (This is analogous to a
hardware socket, or receptacle, for a connecting cable.) It permits data transfer between hardware
devices on the same machine, between machines on the same network, between machines across
different networks, and, of course, between machines at different |ocations on the I nternet.

The following examples assume an active Internet connection.

Getting the time from ni st . gov:

bash$ cat </dev/tcp/tine.nist.gov/13

53082 04-03-18 04:26:54 68 0 0 502.3 UTC(NIST) *
[Mark contributed this example.]

Generalizing the above into a script:

#1/ bi n/ bash
This script must run with root perm ssions.

URL="ti me. ni st. gov/ 13"

Ti me=$(cat </ dev/tcp/"SURL")

UTC=$(echo "$Tine" | awk '{print$3}") # Third field is UTC (GMI) tine.
Exercise: nodify this for different tine zones.

echo "UTC Time = "$UTC'"

Downloading aURL.:

bash$ exec 5<>/dev/tcp/ww. net.cn/ 80

bash$ echo -e "GET / HTITP/ 1.0\ n" >&5
bash$ cat <&5

269

/dev and/ proc

[Thanks, Mark and Mihai Maties.]

Example 29.1. Using/ dev/ t cp for troubleshooting

#1/ bi n/ bash
dev-tcp.sh: /dev/tcp redirection to check Internet connection.

Script by Troy Engel.
Used with perm ssion.

TCP_HOST=news- 15. net # A known spamfriendly |SP.
TCP_PORT=80 # Port 80 is http.

Try to connect. (Sonewhat simlar to a '"ping" . . .)
echo "HEAD / HTTP/1.0" >/dev/tcp/ ${ TCP_HOST}/ ${ TCP_PORT}
MYEXI T=$7

<<EXPLANATI ON
I f bash was compiled with --enable-net-redirections, it has the capability of
using a speci al character device for both TCP and UDP redirections. These
redirections are used identically as STDI N STDOUT/ STDERR. The device entries
are 30,36 for /dev/tcp:

nmknod /dev/tcp ¢ 30 36

>From t he bash reference:
/ dev/tcp/ host/ port

If host is a valid hostname or Internet address, and port is an integer
port nunber or service name, Bash attenpts to open a TCP connection to the
correspondi ng socket .

EXPLANATI ON
if ["XSMYEXIT' = "X0"]; then

echo "Connection successful. Exit code: $MYEX T"
el se

echo "Connection unsuccessful. Exit code: $MYEXI T"
fi

exit SMYEXIT

Example 29.2. Playing music

#!/ bi n/ bash
musi c. sh

Music without external files
Aut hor: Antoni o Macchi
Used in ABS Guide with perm ssion.

[dev/dsp default = 8000 frames per second, 8 bits per frane (1 byte),
#+ 1 channel (nono)

270

/dev and/ proc

dur ati on=2000 # | f 8000 bytes = 1 second, then 2000 = 1/4 second.
vol ume=$' \ xc0' # Max volume = \xff (or \x00).
mut e=$' \ x80' # No volume = \x80 (the middle).
function nknote () # $1=Note Hz in bytes (e.g. A = 440Hz ::
{ #+ 8000 fps / 440 = 16 :: A = 16 bytes per second)
for t in “seq O $duration’
do
test $(($t % $1)) = 0 & echo -n $volune || echo -n $nute
done
}
e="nknote 49°
g="nknote 41°
a="nknote 36°
b="mknote 32°

c="nknote 30°

ci s="nknote 29°
d="nknote 27°
e2="nknote 24"
n="nknote 32767

Eur opean notati on.

echo -n "$g%$e2dScdscsadgsnsgsedn$gPe2$dSccsb$cdci s$n$ci s$d \
ng$e23dscsdcPasgsn$gesnsgsasdscsbsasbdc” > /dev/ dsp
dsp = Digital Signal Processor

exit # A "bonny" exanple of an el egant shell script!

/ proc

The/ pr oc directory isactually apseudo-filesystem. Thefilesin/ pr oc mirror currently running system
and kernel processes and contain information and statistics about them.

bash$ cat /proc/devices
Char acter devices:

1 mem
2 pty

3 ttyp

4 ttyS

5 cua

7 vcs

10 m sc

14 sound
29 fb
36 netlink
128 ptm
136 pts

162 raw
254 pcnti a

271

/dev and/ proc

Bl ock devi ces:
1 randi sk
2 fd
3 ide0
9 md

bash$ cat /proc/interrupts

CPUO
0 84505 XT-PIC tiner
1: 3375 XT-PI C keyboard
2: 0 XT-PI C cascade
5: 1 XT-PI C soundbl ast er
8: 1 XT-PIC rtc
12: 4231 XT-PIC PS/ 2 Muse
14: 109373 XT-PIC ide0
NM : 0
ERR: 0

bash$ cat /proc/partitions

maj or mnor #bl ocks name rio rnerge rsect ruse wi o Wrerge wsect wuse runni ng
3 0 3007872 hda 4472 22260 114520 94240 3551 18703 50384 549710 0 11155
3 1 52416 hdal 27 395 844 960 4 2 14 180 0 800 1140
3 2 1hda2 00 0000000O00O
3 4 165280 hda4 10 0 20 210 0 0 0 O O 210 210

bash$ cat /proc/l oadavg
0.13 0.42 0.27 2/44 1119

bash$ cat /proc/apm
1.16 1.2 0x03 0x01 Oxff 0Ox80 -1%-1 ?

bash$ cat /proc/acpi/battery/BATO/info

present: yes

desi gn capacity: 43200 mMh
last full capacity: 36640 mhih
battery technol ogy: rechar geabl e
desi gn vol t age: 10800 mv
design capacity warning: 1832 mhh
design capacity | ow 200 mM

capacity granularity 1: 1 mhh
capacity granularity 2: 1 mh
nodel nunber: | BM 02K6897
serial nunber: 1133

272

/dev and/ proc

battery type: LI ON
OEM i nf o: Panasoni ¢

bash$ fgrep Mem /proc/ mem nfo
Menilot al : 515216 kB
Mentr ee: 266248 kB

Shell scripts may extract datafrom certain of thefilesin/ pr oc. 4

FS=i so # 1SO fil esystem support in kernel?

grep $FS /proc/filesystens # 1509660
kernel _version=$(awk '{ print $3 }' /proc/version)

CPU=$(awk '/nodel nane/ {print $5}' < /proc/cpuinfo)

if ["$CPU'" = "Pentium R "]
t hen
run_some_conmands

el se
run_ot her _comands

f

cpu_speed=$(fgrep "cpu MHz" /proc/cpuinfo | awk '{print $4}')
Current operating speed (in MHz) of the cpu on your nachine.
On a laptop this may vary, depending on use of battery

#+ or AC power.

#1/ bi n/ bash
get - conmandl i ne. sh
CGet the command-|ine paranmeters of a process.

OPTI ON=cndl i ne

ldentify PID.
pi d=$(echo $(pidof "$1") | awk '{ print $1 }')

CGet only first ANANNANANNANNANANN of mul tipl e instances.
echo
echo "Process ID of (first instance of) "$1" = $pid"

echo -n "Comand-|ine argunents:
cat /proc/"$pid"/"$OPTION' | xargs -0 echo
For rmt S Out put : NNANNNNNNNNNNANNNNN
(Thanks, Han Holl, for the fixup!)

4Certain system commands, such as procinfo, free, vmstat, Isdev, and uptime do this aswell.

273

/dev and/ proc

echo; echo

For exampl e:
sh get-conmmandl i ne. sh xterm

+

devfil e="/proc/ bus/ush/devices"
t ext =" Spd”

USB1=" Spd=12"

UsB2=" Spd=480"

bus_speed=$(fgrep -m1 "$text" $devfile | awk '{print $9}')
ANAN Stop after first match.

if ["$bus _speed" = "$USB1"]
t hen

echo "USB 1.1 port found."

Do sonething appropriate for USB 1. 1.
fi

Note

It is even possible to control certain peripherals with commands sent to the/ pr oc directory.
root# echo on > /proc/acpi/ibnilight

This turns on the Thinklight in certain models of IBM/Lenovo Thinkpads. (May not work on all
Linux distros.)

Of course, caution is advised when writing to/ pr oc.

The / pr oc directory contains subdirectories with unusual numerical names. Every one of these names
maps to the process ID of a currently running process. Within each of these subdirectories, there are a
number of filesthat hold useful information about the corresponding process. Thest at andst at us files
keep running statistics on the process, the cidl i ne file holds the command-line arguments the process
was invoked with, and the ex e fileisasymbolic link to the complete path name of the invoking process.
There are afew more such files, but these seem to be the most interesting from a scripting standpoint.

Example 29.3. Finding the process associated with a PID

#1/ bi n/ bash
pid-identifier.sh:
G ves conplete path nane to process associated with pid.

ARGNO=1 # Nunber of argunments the script expects.
E_WVRONGARGS=65

E_BADPI D=66

E_NOSUCHPROCESS=67

274

/dev and/ proc

E_NOPERM SSI ON=68
PROCFI LE=exe

if [$# -ne $ARGNO]

t hen
echo "Usage: "“basename $0° PID-nunber” >& # Error nessage >stderr
exit $E_WVRONGARGS

f

pi dno=$(ps ax | grep $1 | awk '{ print $1 }' | grep $1)

Checks for pid in "ps" listing, field #1.

Then makes sure it is the actual process, not the process invoked by this script
The last "grep $1" filters out this possibility.

#
pidno=$(ps ax | awk '{ print $1 }' | grep $1)
al so works, as Teemu Huovila, points out.

if [-z "$pidno”] # |If, after all the filtering, the result is a zero-length st
t hen #+ no runni ng process corresponds to the pid given

echo "No such process running."

exi t $E_NOSUCHPROCESS
f

Alternatively:

if ! ps $1 > /dev/null 2>&1

then # no runni ng process corresponds to the pid given.
echo "No such process running."

exi t $E_NOSUCHPROCESS

fi

To sinplify the entire process, use "pidof".

if [! -r "/proc/$1/$PROCFILE"] # Check for read pernmission
t hen

echo "Process $1 running, but..."

echo "Can't get read perm ssion on /proc/$1/ $PROCFI LE. "

exit $E_NOPERM SSION # Ordinary user can't access sonme files in /proc.
f

The last two tests nmay be repl aced by:

if I kill -0 $1 > /dev/null 2>&1 # '0'" is not a signal, but
this will test whether it is possible
to send a signal to the process.

then echo "PID doesn't exist or you're not its owner" >&2
exit $E_BADPI D
fi

exe_file=$(Is -1 /proc/$1 | grep "exe" | awk '{ print $11 }')
O exe_file=$(Is -1 /proc/$l/exe | awk '{print $11}')
#

[proc/pid-nunmber/exe is a symbolic |ink

275

/dev and/ proc

#+ to the conpl ete path nane of the invoking process.

if [-e "$exe_file"] # |If [proc/pid-nunber/exe exists,

t hen #+ then the correspondi ng process exists.
echo "Process #$1 i nvoked by $exe_file."
el se

echo "No such process running."
f

This el aborate script can *al nost* be repl aced by

ps ax | grep $1 | awk '{ print $5 }'

However, this will not work...

#+ because the fifth field of 'ps' is argv[0] of the process,
#+ not the executable file path.

#

However, either of the follow ng woul d work.

find /proc/ $1/exe -printf '%\n'

| sof -aFn -p $1 -d txt | sed -ne 's/”*n//p

Additional commentary by Stephane Chazel as.

exit O

Example 29.4. On-line connect status

#!/ bi n/ bash

connect-stat.sh

Note that this script may need nodification
#+ to work with a wirel ess connection.

PROCNAME=pppd # ppp daenon

PROCFI LENAME=st atus # \Were to | ook
NOTCONNECTED=85

| NTERVAL=2 # Update every 2 seconds.

pi dno=$(ps ax | grep -v "ps ax" | grep -v grep | grep $PROCNAME
awk '{ print $1}')

Finding the process nunber of 'pppd', the 'ppp daenon'.

Have to filter out the process lines generated by the search itself.
#

However, as O eg Philon points out,

#+ this could have been considerably sinplified by using "pidof".

pidno=$(pi dof $PROCNAME)

#

Moral of the story:

#+ When a command sequence gets too conplex, ook for a shortcut.

if [-z "$pidno"] # If no pid, then process is not running.
t hen

echo "Not connected.”
exit $NOTCONNECTED

276

/dev and/ proc

el se
echo "Connected."; echo
fi
while [true] # Endl ess | oop, script can be inproved here.
do

if [! -e "/proc/$pidno/ $PROCFI LENAME"]
Whil e process running, then "status" file exists.
t hen
echo "Di sconnected. "
exit $NOTCONNECTED
fi

netstat -s | grep "packets received'" # CGet sone connect statistics.
netstat -s | grep "packets delivered"

sl eep $I NTERVAL

echo; echo
done
exit O
As it stands, this script nmust be terminated with a Control -C.
Exerci ses:

I mprove the script so it exits on a "q" keystroke.
Make the script nmore user-friendly in other ways.
Fix the script to work with wirel ess/DSL connections.

H H HHH

Warning

In generdl, it is dangerous to write to the filesin / pr oc, as this can corrupt the filesystem or
crash the machine.

277

Chapter 30. Network Programming

The Net's a cross between an elephant and a white elephant sale: it never forgets, and it's always crap.

--Nemo

A Linux system has quite a number of tools for accessing, manipulating, and troubleshooting network
connections. We can incorporate some of these tools into scripts -- scripts that expand our knowledge of
networking, useful scriptsthat can facilitate the administration of a network.

Hereisasimple CGlI script that demonstrates connecting to aremote server.

Example 30.1. Print the server environment

#!/ bi n/ bash

test-cgi.sh
by M chael Zick
Used wi th permni ssion

May have to change the location for your site.

(At the ISP's servers, Bash may not be in the usual
O her places: /usr/bin or /usr/local/bin

M ght even try it w thout any path in sha-bang.

Disable fil enane gl obbing.
set -f
Header tells browser what to expect.

echo Content-type: text/plain
echo

echo CA/1.0 test script report:
echo

echo environnent settings:
set
echo

echo wherei s bash?
wher ei s bash
echo

echo who are we?
echo ${BASH _VERSI NF(*]}
echo

echo argc is $#. argv is "$*".
echo

#

Cd /1.0 expected environnment variables.

echo SERVER SOFTWARE = $SERVER SOFTWARE

pl ace.)

278

Network Programming

echo SERVER NAME = $SERVER NANME

echo GATEWAY | NTERFACE = $GATEWAY | NTERFACE
echo SERVER PROTOCOL = $SERVER PROTOCOL
echo SERVER PORT = $SERVER PORT

echo REQUEST METHOD = $REQUEST METHOD
echo HTTP_ACCEPT = "$HTTP_ACCEPT"

echo PATH | NFO = "$PATH | NFO'

echo PATH TRANSLATED = " $PATH_TRANSLATED"
echo SCRI PT_NAME = "$SCRI PT_NAMVE"

echo QUERY_STRI NG = "$QUERY_STRI NG'

echo REMOTE_HOST = $REMOTE_HOST

echo REMOTE_ADDR = $REMOTE_ADDR

echo REMOTE_USER = $REMOTE_USER

echo AUTH TYPE = $AUTH TYPE

echo CONTENT_TYPE = $CONTENT_TYPE

echo CONTENT _LENGTH = $CONTENT_LENGTH

exit O

Here docunent to give short instructions.
i<<-' _test_C4d '

1) Drop this in your http://domain.nanme/cgi-bin directory.
2) Then, open http://domain. nane/ cgi-bin/test-cgi.sh.

_test _C4A _

For security purposes, it may be helpful to identify the |P addresses a computer is accessing.

Example 30.2. | P addresses

#1/ bi n/ bash
i1 p-addresses. sh
List the I P addresses your conputer is connected to.

Inspired by Greg Bl edsoe's ddos.sh script,
Linux Journal, 09 March 2011.
URL:
http://ww.|inuxjournal.conicontent/back-dead-si npl e- bash-conpl ex- ddos
Geg licensed his script under the GPL2,
#+ and as a derivative, this script is |likew se GPL2.
connection_type=TCP # Also try UDP.
field=2 # Which field of the output we're interested in.
no_match=LI STEN # Filter out records containing this. Wy?
| sof _args=-ni # -i lists Internet-associated files.
-n preserves nunerical |P addresses.

What happens without the -n option? Try it.
router="[0-9][0-9][0-9][0-9][0-9]->"
Del ete the router info.

| sof "$lsof _args" | grep $connection_type | grep -v "$no_natch" |

279

Network Programming

HHHHHHHH

#
#
#

awk "{print $9}' | cut -d: -f $field | sort | uniq |
sed s/""$router"//

Bl edsoe's script assigns the output of a filtered IP list,
(simlar to lines 19-22, above) to a variable.

He checks for multiple connections to a single |IP address,
t hen uses:

iptables -1 INPUT -s $ip -p tcp -] REJECT --reject-with tcp-reset

within a 60-second delay |oop to bounce packets from DDCS att acks.

Exerci se:

Use the "iptables' conmmand to extend this script

#+ to reject connection attenpts fromwell-known spamer |P domains.

More examples of network programming:

1

2.

7.

8.

Getting the time from nist.gov

Downloading a URL

. A GRE tunnel
. Checking if an Internet server isup
. Example 16.41, “ Analyzing a spam domain”

. Example A.28, “Spammer |dentification”

Example A.29, “ Spammer Hunt”

Example 29.1, “Using / dev/ t cp for troubleshooting”

See aso the networking commands in the System and Administrative Commands chapter and the com-
munications commands in the External Filters, Programs and Commands chapter.

280

Chapter 31. Of Zeros and Nulls

Faultily faultless, icily regular, splendidly null
Dead perfection; no more.

--Alfred Lord Tennyson

/[dev/ zero .../ dev/ nul |

Usesof / dev/ nul | Think of / dev/ nul | asablack hole. It is essentially the equivalent
of awrite-only file. Everything written to it disappears. Attempts to
read or output from it result in nothing. All the same, / dev/ nul |
can be quite useful from both the command-line and in scripts.

Suppressing st dout .

cat $fil enane >/dev/null
Contents of the file will not list to stdout.

Suppressing st der r (from Example 16.3, “Badname, eliminate file
names in current directory containing bad characters and white-

space.”).

rm $badnane 2>/ dev/ nul |
So error nessages [stderr] deep-sixed.

Suppressing output from both st dout and st derr .

cat $fil ename 2>/dev/null >/dev/null

If "$fil enane" does not exist, there will be no error nmne:
1f "$fil enane"” does exist, the contents of the file wll
Therefore, no output at all will result fromthe above Ii
#

This can be useful in situations where the return code |1
#+ needs to be tested, but no output is desired.

#
cat $fil enane &>/ dev/null
al so works, as Baris Cicek points out.

Deleting contents of afile, but preserving the file itself, with all atten-
dant permissions (from Example 2.1, “cleanup: A script to clean up
log filesin /var/log ” and Example 2.3, “cleanup: An enhanced and
generalized version of above scripts.”):

cat /dev/null > /var/l og/ messages
. > [var/log/ messages has sane effect, but does not sj

cat /dev/null > /var/log/wnp

Automatically emptying the contents of alogfile (especially good for
dealing with those nasty “cookies’ sent by commercial Web sites):

281

Of Zeros and Nulls

Example 31.1. Hiding the cookie jar

(bsol ete Netscape browser.
Same principle applies to newer browsers.

if [-f ~/.netscape/cookies]| # Renove, if exists.
t hen

rm-f ~/.netscape/cookies
fi

In -s /dev/null ~/.netscapel/cookies
Al cookies now get sent to a black hole, rather than sa

Usesof / dev/ zero Like/ dev/ nul | ,/ dev/ zer o isapseudo-devicefile, but it actual-
ly produces a stream of nulls (binary zeros, not the ASCII kind). Out-
put writtento/ dev/ zer o disappears, and it isfairly difficult to actu-
aly read the nulls emitted there, though it can be done with od or a hex
editor. Thechief useof / dev/ zer o iscreating an initialized dummy
file of predetermined length intended as atemporary swap file.

Example 31.2. Setting up a swapfileusing/ dev/ zer o

#!/ bi n/ bash
Creating a swap file.

A swap file provides a tenporary storage cache
#+ whi ch hel ps speed up certain fil esystem operations.

ROOT_UI B=0 # Root has $U D 0.
E_WRONG_USER=85 # Not root?

FI LE=/ swap
BLOCKSI ZE=1024
M NBLOCKS=40
SUCCESS=0

This script nust be run as root.

if ["$UD' -ne "$ROOT_UI D']

t hen
echo; echo "You nmust be root to run this script.”; echo
exit $E_WVRONG_USER

fi

bl ocks=%${ 1: - $M NBLOCKS} # Set to default of 40 bl
#+ if nothing specified ol
This is the equivalent of the command bl ock bel ow

__
#if [-n "$1"]

then

bl ocks=%$1

el se

282

Of Zeros and Nulls

bl ocks=$M NBLOCKS
fi

if ["$blocks" -1t $M NBLOCKS]
t hen

bl ocks=$M NBLOCKS # Must be at | east 40 bl o
fi

HERHH I G R R T R R R R
echo "Creating swap file of size $bl ocks bl ocks (KB)."
dd if=/dev/zero of =$FI LE bs=$BLOCKSI ZE count =$bl ocks # Ze

nkswap $FI LE $bl ocks # Designate it a swap fil¢
swapon $FI LE # Activate swap file.
r et code=$? # Everythi ng worked?

Note that if one or nore of these conmmands fails,
#+ then it could cause nasty problens.
HHHHHH R R R R R R R R R R R R R R R R R

Exerci se:
Rewite the above bl ock of code so that if it does not
#+ successfully, then:

1) an error nmessage is echoed to stderr,

2) all tenporary files are cleaned up, and

3) the script exits in an orderly fashion with an
#+ appropriate error code.

echo "Swap file created and activated."
exit $retcode

Another application of / dev/ zer o isto “zero out” afile of adesig-
nated size for a special purpose, such as mounting a filesystem on a
loopback device (see Example 17.8, “ Creating afilesystem in afile”)
or “securely” deleting a file (see Example 16.61, “Securely deleting
afile”).

Example 31.3. Creating a ramdisk

#!/ bi n/ bash
randi sk. sh

A "ramdisk” is a segnment of system RAM nenory

#+ which acts as if it were a filesystem

|Its advantage is very fast access (read/wite tine).

Disadvantages: volatility, |oss of data on reboot or po
#+ | ess RAM avail able to system

#

O what use is a ramdi sk?

Keeping a |l arge dataset, such as a table or dictionary
#+ speeds up data | ookup, since nenory access is much faste

283

Of Zeros and Nulls

E_NON_ROOT_USER=70 # Miust run as root.
ROOTUSER _NAME=r oot

MOUNTPT=/ mt / r andi sk # Create with nkdir /mmt/rai
SI ZE=2000 # 2K bl ocks (change as appr
BLOCKSI ZE=1024 # 1K (1024 byte) block size
DEVI CE=/ dev/ r anD # First ram device

username="id -nu

if ["$usernane" != "$ROOTUSER NAME"]

t hen
echo "Must be root to run \" basenane $0°\"."
exit $E_NON ROOT USER

fi

if [! -d "$MOUNTPT"] # Test whether nount point
t hen #+ so no error if this scrij
nkdi r $MOUNTPT #+ mul tiple tines.

fi

HHHHBHHHHH AR R HHHHH AR TR AR TR AR R R R AR R AR
dd if=/dev/zero of =$DEVI CE count =$SI ZE bs=$BLOCKSI ZE # Zel

Wh
nke2fs $DEVI CE # Create an ext2 fil esystem
mount $DEVI CE $MOUNTPT # Mount it.
chmod 777 $MOUNTPT # Enabl es ordinary user to :

However, nust be root to I
HUBHBH B H B HEH R R S R R R R R R
Need to test whet her above commands succeed. Coul d cause
Exercise: nmodify this script to make it safer.

echo "\"$MOUNTPT\" now avail able for use."
The randi sk is now accessible for storing files, even by

Caution, the ramdisk is volatile, and its contents wl |
#+ on reboot or power | oss.
Copy anything you want saved to a regul ar directory.

After reboot, run this script to again set up randi sk.
Remounting /mt/randi sk without the other steps will not

Suitably nodified, this script can by invoked in /etc/r
#+ to set up randi sk automatically at boot up.
That may be appropriate on, for exanple, a database ser\

exit O

In addition to all the above, / dev/ zer o is needed by ELF (Exe-
cutable and Linking Format) UNIX/Linux binaries.

284

Chapter 32. Debugging

Debugging istwice ashard aswriting the codein thefirst place. Therefore, if you writethe code ascleverly
as possible, you are, by definition, not smart enough to debug it.

--Brian Kernighan
The Bash shell contains no built-in debugger, and only bare-bones debugging-specific commands and

constructs. Syntax errors or outright typos in the script generate cryptic error messages that are often of
no help in debugging a non-functional script.

Example 32.1. A buggy script

#!/ bi n/ bash
ex74. sh

This is a buggy script.
\Where, oh where is the error?

a=37
if [$a -gt 27]
t hen
echo $a
f
exit $? # 0! VWy?
Output from script:

./ ex74.sh: [37: command not found

What's wrong with the above script? Hint: after theiif.

Example 32.2. Missing keyword

#!/ bi n/ bash

m ssi ng- keyword. sh

What error nessage will this script generate? And why?

for ainl1l2 3

do
echo "$a"
done # Requi red keyword 'done' comented out in line 8.
exit O # WII not exit herel
===

From conmand |ine, after script terninates:
echo $? # 2

Output from script:

285

Debugging

m ssi ng- keyword. sh: line 10: syntax error: unexpected end of file

Note that the error message does not necessarily reference the line in which the error occurs, but the line
where the Bash interpreter finally becomes aware of the error.

Error messages may disregard comment lines in a script when reporting the line number of a syntax error.

What if the script executes, but does not work as expected? Thisisthe all too familiar logic error.

Example 32.3. test24: another buggy script
#!/ bi n/ bash

This script is supposed to delete all filenanes in current directory
#+ cont ai ni ng enbedded spaces.

|t doesn't work.

Wiy not?

badname="1s | grep '

Try this:
echo "$badnane”

rm " $badnane"

exit O

Try to find out what's wrong with Example 32.3, “test24: another buggy script” by uncommenting the
echo "$badnane" line. Echo statements are useful for seeing whether what you expect is actually
what you get.

Inthis particular case, r m " $badnane" will not give the desired results because $badnane should not
be quoted. Placing it in quotes ensures that rm has only one argument (it will match only one filename).
A partia fix isto remove to quotes from $badnane and to reset $1 FS to contain only anewline, | FS=
$' \ n' . However, there are ssmpler ways of going about it.

Correct nmethods of deleting fil enames contai ni ng spaces.

rm*\ *

rm * " LU

rm * ! "%

Thank you. S.C

Summarizing the symptoms of a buggy script,

1. It bombs with a*“syntax error” message, or

2. It runs, but does not work as expected (logic error).

3. It runs, works as expected, but has nasty side effects (logic bomb).

286

Debugging

Tools for debugging non-working scripts include

1. Inserting echo statements at critical points in the script to trace the variables, and otherwise give a
snapshot of what is going on.

Tip
Even better is an echo that echoes only when debug is on.

debecho (debug-echo), by Stefano Fal setto

W11 echo passed paraneters only if DEBUGis set to a value.

debecho () {
if [! -z "$DEBUG']; then
echo "$1" >&2
ANN to stderr
fi
}

DEBUG=0n
VWhat ever =what not
debecho $What ever # what not

DEBUG=
\What ever =not what
debecho $What ever # (WIIl not echo.)

2. Using the teefilter to check processes or data flows at critical points.
3. Setting optionflags-n -v - x

sh -n scri pt name checksfor syntax errors without actually running the script. Thisis the equiv-
alentof insertingset -norset -o noexec intothescript. Note that certain types of syntax errors
can dlip past this check.

sh -v scri pt nane echoes each command before executing it. Thisis the equivalent of inserting
set -vorset -o verbose inthescript.

The- n and - v flagswork well together. sh -nv scri pt nane givesaverbose syntax check.

sh -x scri pt nane echoes the result each command, but in an abbreviated manner. Thisis the
equivalent of insertingset -x orset -o xtrace inthescript.

Inserting set -uorset -0 nounset inthescript runsit, but gives an unbound variable error
message and aborts the script.

set -u # O set -0 nounset

Setting a variable to null will not trigger the error/abort.
unset _var=

echo $unset _var # Unset (and undecl ared) vari abl e.

echo "Shoul d not echo!”

287

Debugging

sh t2.sh
t2.sh: line 6: unset_var: unbound vari abl e

. Using an “assert” function to test a variable or condition at critical pointsin a script. (Thisis an idea
borrowed from C.)

Example 32.4. Testing a condition with an assert

#! / bi n/ bash
assert.sh

HERHHHHH T H T H T H R H R R H R R
assert () # |1f condition false,
{ #+ exit from script
#+ with appropriate error nessage.
E_PARAM ERR=98
E_ASSERT_FAI LED=99

if [-z "$2"] # Not enough paraneters passed
t hen #+ to assert() function

return $E PARAM ERR # No damage done.
f

i neno=$2

if [! $1]
t hen
echo "Assertion failed: \"$1\""
echo "File \"$0\", line $lineno" # A ve name of file and |ine nunber.
exit $E_ASSERT_FAI LED
el se
return
and continue executing the script.
f
} # Insert a simlar assert() function into a script you need to debug.
HERHHHHH TR H T H R H R H R H R R R H

a=5

b=4

condition="%a -1t $b" # Error message and exit fromscript.
Try setting "condition" to something el se
#+ and see what happens.

assert "$condition" $LI NENO
The remai nder of the script executes only if the "assert" does not fail

Some commands.

Some npbre conmmands .

echo "This statenment echoes only if the \"assert\" does not fail."
. . .

More commands .

288

Debugging

exit $?

5. Using the SLINENO variable and the caller builtin.

6. Trapping at exit.

The exit command in ascript triggers asignal 0, terminating the process, that is, the script itself. Litis
often useful to trap the exit, forcing a “printout” of variables, for example. The trap must be the first
command in the script.

Trapping signals

trap

Specifies an action on receipt of asignal; also useful for debugging.

A signal is a message sent to a process, either by the kernel or another process, telling it to
take some specified action (usualy to terminate). For example, hitting a Control-C sends
auser interrupt, an INT signal, to arunning program.

A simple instance:

trap "' 2
lgnore interrupt 2 (Control-C), with no action specified.

trap 'echo "Control-C disabled."" 2
Message when Control - C pressed.

Example 32.5. Trapping at exit

#!/ bi n/ bash
Hunting variables with a trap.

trap

"echo Variable Listing --- a=%a b =3%$b EXIT

EXIT is the nane of the signal generated upon exit froma script.

#

The conmmand specified by the "trap" doesn't execute until
#+ the appropriate signal is sent.

echo
echo
echo
a=39

b=36

"This prints before the \"trap\" --"
"even though the script sees the \"trap\" first."

exit O
Note that comenting out the '"exit' command nakes no difference,

T
1By conventi or%l?E Si gsnlap O’is assigni

ce theegt%reinpt exits in any case after running out of conmands.

289

Debugging

Example 32.6. Cleaning up after Control-C

#1/ bi n/ bash
logon.sh: A quick 'n dirty script to check whether you are on-line yet.

umask 177 # Make sure tenp files are not world readabl e.

TRUE=1

LOGFI LE=/ var/ | og/ messages

Note that $LOGFILE nmust be readabl e

#+ (as root, chnod 644 /var/| og/ nessages).

TEMPFI LE=t enp. $$

Create a "unique" tenmp file name, using process id of the script.

Using 'nktenp' is an alternative.

For exanpl e:

TEMPFI LE=" nkt enp t enp. XXXXXX

KEYWORD=addr ess

At logon, the line "renote | P address XxxX.XXX.XXX.XXx"
appended to /var/l og/ messages.
ONLI NE=22

USER_| NTERRUPT=13
CHECK_LI NES=100
How many lines in log file to check

trap 'rm-f $TEMPFILE, exit $USER | NTERRUPT' TERM | NT
Cleans up the tenp file if script interrupted by control-c.

echo

while [$TRUE] #Endl ess | oop.
do
tail -n $CHECK LI NES $LOGFI LE> $TEMPFI LE
Saves |last 100 lines of systemlog file as tenp file.
Necessary, since newer kernels generate many | og nmessages at | og on
sear ch="grep $KEYWORD $TEMPFI LE
Checks for presence of the "IP address" phrase,
#+ indicating a successful |ogon

if [! -z "$search"] # Quotes necessary because of possible spaces.
t hen

echo "On-1line"

rm-f $TEMPFILE # Cdean up temp file.

exit $ONLI NE

el se
echo -n "." # The -n option to echo suppresses new i ne,
#+ so you get continuous rows of dots.
f
sleep 1
done

Note: if you change the KEYWORD variable to "Exit",

290

Debugging

#+ this script can be used while on-line
#+ to check for an unexpected | ogoff.

Exercise: Change the script, per the above note,
and prettify it.

exit O

Nick Drage suggests an alternate nethod:

while true
do ifconfig pppO | grep UP 1> /dev/null && echo "connected" && exit O
echo -n "." # Prints dots (.....) until connected.
sleep 2

done

Problem Hitting Control-Cto termnate this process may be insufficient.
#+ (Dots may keep on echoing.)
Exercise: Fix this.

St ephane Chazel as has yet another alternative:
CHECK_| NTERVAL=1

while ! tail -n 1 "$LOGFILE" | grep -q "$KEYWORD'
do echo -n .
sl eep $CHECK | NTERVAL
done
echo "On-1i ne"

Exercise: Discuss the relative strengths and weaknesses
of each of these various approaches.

Example 32.7. A Simple Implementation of a Progress Bar

#! [bi n/ bash

progress-bar2.sh

Author: Graham Ewart (with reformatti ng by ABS Cui de aut hor).
Used in ABS Guide with perm ssion (thanks!).

Invoke this script with bash. It doesn't work with sh.

interval =1
| ong_i nterval =10

{
trap "exit" Sl GUSR1

sl eep $interval; sleep $interva
while true
do

echo -n ".' # Use dots.

291

Debugging

sl eep $interval
done; } & # Start a progress bar as a background process.

pi d=$!
trap "echo !; kill -USR1 $pid; wait $pid" EXIT # To handle "~C.

echo -n 'Long-runni ng process
sl eep $l ong_interval
echo ' Finished!"’

kill -USRL $pid

wai t $pid # Stop the progress bar.
trap EXIT

exit $?

Note

The DEBUG argument to trap causes a specified action to execute after every command in a
script. This permits tracing variables, for example.

Example 32.8. Tracing avariable
#1/ bi n/ bash

trap 'echo "VARI ABLE- TRACE> \$variable = \"$variable\""' DEBUG
Echoes the value of $variable after every command.

vari abl e=29; |ine=$LI NENO

echo " Just initialized \$variable to $variable in Iine nunber $line."
let "variable *= 3"; |ine=$LI NENO

echo " Just nultiplied \$variable by 3 in Iine nunber $line."

exit O

The "trap 'conmandl . . . command2 . . .' DEBUG' construct is

#+ nore appropriate in the context of a conplex script,
#+ where inserting nultiple "echo $variable" statements m ght be
#+ awkward and ti me-consum ng.

Thanks, Stephane Chazel as for the pointer.

Qut put of script:

VARI ABLE- TRACE> $vari abl e "
VARI ABLE- TRACE> $vari able = "29"
Just initialized $variable to 29.

VARI ABLE- TRACE> $vari able = "29"
VARI ABLE- TRACE> $variable = "87"

Just multiplied $variable by 3.
VARI ABLE- TRACE> $variable = "87"

292

Debugging

Of course, the trap command has other uses aside from debugging, such as disabling certain keystrokes
within ascript (see Example A.43, “ A command-line stopwatch”).

Example 32.9. Running multiple processes (on an SM P box)

#1/ bi n/ bash

parent.sh

Running multiple processes on an SMP box.
Aut hor: Tedman Eng

This is the first of two scripts,
#+ both of which nmust be present in the current working directory.

LIM T=$1 # Total nunber of process to start
NUMPROC=4 # Number of concurrent threads (forks?)
PROCI D=1 # Starting Process ID

echo "My PIDis $$"

function start_thread() {
if [$PROCID -l1e $LIMT] ; then
./child.sh $PRCCI D&
| et " PROCI D++"
el se
echo "Limt reached.”
wai t
exit
fi
}

while ["$NUMPRCC' -gt 0]; do
start _thread,;

| et "NUVPROC- -"
done
while true
do

trap "start_thread" SIGRTM N
done

exit O

#! / bi n/ bash
child. sh

293

Debugging

Running multiple processes on an SMP box.
This script is called by parent.sh.
Aut hor: Tedman Eng

t enp=$RANDOM

i ndex=$1

shift

let "tenp % 5"

let "tenp += 4"

echo "Starting $index Tine:$temp" "$@
sl eep ${tenp}

echo "Endi ng $i ndex"

kill -s SIGRTM N $PPI D

exit O

—=====—mm=———=——=——=—=—===== SCRI| PT AUTHOR S NOTES ================—====

1t's not conmpletely bug free.

| ran it with limt = 500 and after the first few hundred iterations,

#+ one of the concurrent threads disappeared!

Not sure if this is collisions fromtrap signals or something el se
Once the trap is received, there's a brief nonment while executing the

#+ trap handl er but before the next trap is set. During this tinme,

it may

#+ be possible to miss a trap signal, thus m ss spawning a child process.

No doubt someone may spot the bug and will be witing

#+ . . . in the future

==t
B o o o o o o o o o o o o e e e e e e e e e e e e e eeeaa s

HERHHHHH T H T H R R R
The following is the original script witten by Vernia Dam ano.
Unfortunately, it doesn't work properly.

HERHHHHH TR H T H R R

#!/ bi n/ bash

Must call script with at |east one integer paraneter
#+ (nunber of concurrent processes).

Al other parameters are passed through to the processes started.

| NDI CE=8 # Total nunmber of process to start
TEMPO=5 # Maxi mum sl eep time per process
E BADARGS=65 # No arg(s) passed to script.

294

Debugging

if [$# -eq 0] # Check for at |east one argument passed to script.
t hen
echo "Usage: "“basename $0° nunber_of _processes [passed parans]”
exit $E_BADARGS
f

NUMPROC=$1 # Nunber of concurrent process
shift
PARAMETRI =("$@) # Paranmeters of each process

function avvia() {
| ocal tenp
[ocal index
t enp=$RANDOM
i ndex=$1
shift
let "tenp % $TEMPO'
let "tenp += 1"
echo "Starting $index Tine:$tenp" "$@
sl eep ${tenp}
echo "Endi ng $i ndex"
kill -s SIGRTM N $$

}

function parti() {
if [$INDICE -gt 0] ; then
avvia $INDI CE "${ PARAMETRI[@}" &
let "IND CE--"
el se
trap : SIGRTM N
f
}

trap parti SIGRTM N

while ["$NUMPRCC' -gt 0]; do
parti;
[et "NUMPROC--"

done

wai t
trap - SIGRTM N

exit $?

<<SCRI PT_AUTHOR_COMVENTS
| had the need to run a program wth specified options, on a nunmber of
different files, using a SMP machine. So | thought [1'd] keep running
a specified nunber of processes and start a new one each tine . . . one
of these term nates.

The "wait" instruction does not help, since it waits for a given process
or *all* process started in background. So I wote [this] bash script

295

Debugging

that can do the job, using the "trap" instruction.
--Verni a Dani ano
SCRI PT_AUTHOR_COMVENTS

Note

trap '' Sl GNAL (two adjacent apostrophes) disables SIGNAL for the remainder of the script.
trap Sl GNAL restoresthefunctioning of SIGNAL once more. Thisisuseful to protect acritical
portion of a script from an undesirable interrupt.

trap '' 2 # Signal 2 is Control-C, now disabl ed.
conmand

conmand

conmand

trap 2 # Reenabl es Control -C

Version 3 of Bash adds the following internal variables for use by the debugger.
1. $BASH_ARGC

Number of command-line arguments passed to script, similar to $#.
2. $BASH ARGV

Final command-line parameter passed to script, equivalent ${ ! #} .
3. $BASH COVIVAND

Command currently executing.
4. $BASH EXECUTI ON_STRI NG

The option string following the - ¢ option to Bash.
5. $BASH LI NENO

In afunction, indicates the line number of the function call.
6. $BASH REMATCH

Array variable associated with =~ conditional regex matching.

$BASH_SOURCE
Thisis the name of the script, usually the same as $0.

8. $BASH_SUBSHEL L

296

Chapter 33. Options

Options are settings that change shell and/or script behavior.

The set command enables options within a script. At the point in the script where you want the options to
take effect, use set -0 option-nameor, in short form, set -option-abbrev. These two forms are equivalent.

#!/ bi n/ bash

set -0 verbose
Echoes all commands before executi ng.

#! / bi n/ bash
set -v
Exact sanme effect as above.

Note

To disable an option within a script, use set +o option-name or set +option-abbrev.

#!/ bi n/ bash

set -0 verbose
Command echoi ng on.
comand

comand
set +0 verbose
Command echoi ng of f.

comand
Not echoed.

set -v
Command echoi ng on.
conmand
conmand
set +v

Command echoi ng of f.
conmmand

exit O

297

Options

An alternate method of enabling optionsin ascript isto specify them immediately following the#! script

header.

#!/ bi n/ bash -x
#

Body of script follows.

It is also possible to enable script options from the command line. Some options that will not work with
set are available thisway. Among these are - i , force script to run interactive.

bash -v script-nane

bash -0 verbose script-nane

The following is alisting of some useful options. They may be specified in either abbreviated form (pre-
ceded by asingle dash) or by complete name (preceded by a double dash or by - 0).

Table 33.1. Bash options

Abbreviation

Name

Effect

-B

brace expansion

Enable brace expansion (default
setting = on)

+B

brace expansion

Disable brace expansion

-C

noclobber

Prevent overwriting of files by
redirection (may be overridden by

>))

(none)

List double-quoted strings pre-
fixed by $, but do not execute
commands in script

-a

alexport

Export al defined variables

-b

notify

Notify when jobs running in back-
ground terminate (not of much use
in ascript)

-C ...

(none)

Read commands from ...

checkj obs

Informs user of any open jobs up-
on shell exit. Introduced in ver-
sion 4 of Bash, and still “exper-
imental.” Usage: shopt -s check-
jobs (Caution: may hang!)

errexit

Abort script at first error, when a
command exits with non-zero sta-
tus (except in until or while loops,
if-tests, list constructs)

noglob

Filename expansion (globbing)
disabled

298

Options

Abbreviation Name Effect

gl obst ar globbing star-match Enables the ** globbing opera-
tor (version 4+ of Bash). Usage:
shopt -s globstar

- interactive Script runs in interactive mode

-n noexec Read commands in script, but do
not execute them (syntax check)

-0 Option-Nane (none) Invoke the Option-Name option

-0 posi X POSIX Change the behavior of Bash,
or invoked script, to conform to
POSIX standard.

-0 pipefail pipefailure Causesapipelinetoreturn the exit
status of the last command in the
pipe that returned a non-zero re-
turn value.

-p privileged Script runs as “suid” (caution!)

-r restricted Script runsin restricted mode (see
Chapter 22, Restricted Shells).

-s stdin Read commands from st di n

-t (none) Exit after first command

-u nounset Attempt to use undefined variable
outputs error message, and forces
an exit

-V verbose Print each command to st dout
before executing it

- X xtrace Similar to - v, but expands com-
mands

- (none) End of options flag. All other ar-
guments are positional parame-
ters.

-- (none) Unset positional parameters. |If

arguments given (-- argl
ar g2), positional parameters set
to arguments.

299

Chapter 34. Gotchas

Turandot: Gli enigmi sono tre, la morte una!
Caleph: No, no! Gli enigmi sono tre, una la vital

--Puccini

Here are some (non-recommended!) scripting practices that will bring excitement into an otherwise dulll
life.

Assigning reserved words or characters to variable names.

case=val ue0 # Causes probl ens.

23ski doo=val uel # Al so probl ens.

Variable nanes starting with a digit are reserved by the shell.

Try _23skidoo=valuel. Starting variables with an underscore is okay.

However . . . usi ng just an underscore will not work.

=25

echo $_ # $ is a special variable set to last arg of |ast conmand.
But . . . _is awvalid function nane!

xyz((!'*=val ue2 # Causes severe problens.

As of version 3 of Bash, periods are not allowed w thin variable nanes.
» Using a hyphen or other reserved charactersin avariable name (or function name).

var - 1=23
Use 'var_1' instead.

function-what ever () # Error
Use 'function_whatever ()' instead.

As of version 3 of Bash, periods are not allowed within function nanes.
function. whatever () # Error
Use 'functionWhatever ()' instead.

 Using the same name for avariable and a function. This can make a script difficult to understand.

do_sonething ()

{

echo "This function does sonmething with \"$1\".

}

do_sonet hi ng=do_sonet hi ng

do_sonet hi ng do_sonet hi ng

300

Gotchas

Al this is legal, but highly confusing.

Using whitespace inappropriately. In contrast to other programming languages, Bash can be quite
finicky about whitespace.

varl = 23 # 'var1=23' is correct.
On line above, Bash attenpts to execute comand "var1"

with the argunments "=" and "23".

let ¢ = $a - $b # Instead: let c=$a-$b or let "c = $a - $b"
if [$a -1e 5] #if [$a -le 5] is correct.

AN if ["$a" -le 5] is even better.

[[$a -le 5]] also works.

Not terminating with a semicolon the final command in a code block within curly brackets.

{ Is -I; df; echo "Done." }

bash: syntax error: unexpected end of file

{ Is -I; df; echo "Done."; }

A ### Final commuand needs senicol on.

Assuming uninitialized variables (variables before a value is assigned to them) are “zeroed out”. An
uninitialized variable has a value of null, not zero.

#!/ bi n/ bash

echo "uninitialized var = $uninitialized_var"
uninitialized var =

However .
if $BASH VERSION # 4.2; then

if [[! -v uninitialized_ var]]
t hen

uninitialized_var=0 # Initialize it to zero!
fi

Mixing up = and -eq in atest. Remember, = isfor comparing literal variables and -eq for integers.

if ["$a" = 273] # |s $a an integer or string?
if ["$a" -eq 273] # If $a is an integer.

Sometines you can interchange -eq and = wi thout adverse consequences.
However

301

Gotchas

a=273.0 # Not an integer.

if ["$a" = 273]

t hen

echo "Conpari son works."
el se

echo "Conpari son does not work."
fi # Compari son does not work.

Same with a=" 273" and a="0273".

Likewi se, problens trying to use "-eq" with non-integer val ues.
if ["$a" -eq 273.0]
t hen
echo "a = $a"
fi # Aborts with an error nessage
test.sh: [: 273.0: integer expression expected

Misusing string comparison operators.

Example 34.1. Numerical and string comparison are not equivalent

#! / bi n/ bash
bad-op.sh: Trying to use a string comparison on integers

echo
nunber =1

The follow ng while-loop has two errors:
#+ one bl atant, and the other subtle.

while ["$nunber” < 5] # Wong! Should be: while ["$number" -1t 5]
do
echo -n "$nunber
| et "nunber += 1"
done
Attenpt to run this bonbs with the error nessage:
#+ bad-op.sh: line 10: 5: No such file or directory
Wthin single brackets, "<" nust be escaped,
#+ and even then, it's still wong for conparing integers.

echo "---------------------

while ["$nunber” \< 5] # 1234

do #

echo -n "$nunber " # 1t *seens* to work, but

| et "nunber += 1" #+ it actually does an ASCI| conpari son
done #+ rather than a nunerical one.

302

Gotchas

echo; echo "---------------------
This can cause probl ens. For exanpl e:

| esser=5
great er =105

if ["$greater"” \< "$lesser"]
t hen
echo "$greater is |less than $l esser”
fi # 105 is less than 5
In fact, "105" actually is less than "5"
#+ in a string comparison (ASCII sort order).

echo

exit O

Attempting to use let to set string variables.

let "a = hello, you"
echo "$a" # 0

Sometimes variables within “test” brackets ([]) need to be quoted (double quotes). Failure to do so
may cause unexpected behavior. See Example 7.6, “Testing whether a string is null”, Example 20.5,
“Redirected while loop”, and Example 9.6, “arglist: Listing arguments with $* and $@".

Quoting a variable containing whitespace prevents splitting. Sometimes this produces unintended con-
sequences.

Commands issued from a script may fail to execute because the script owner lacks execute permission
for them. If a user cannot invoke a command from the command-line, then putting it into a script will
likewise fail. Try changing the attributes of the command in question, perhaps even setting the suid bit
(asroot, of course).

Attempting to use - asaredirection operator (whichitisnot) will usually result in an unpleasant surprise.

commandl 2> - | command2

Trying to redirect error output of comandl into a pipe .
. . . will not work.

commandl 2>& - | command2 # Also futile.

Thanks, S.C.

303

Gotchas

Using Bash version 2+ functionality may cause a bailout with error messages. Older Linux machines
may have version 1.XX of Bash asthe default installation.

#!/ bi n/ bash

m ni mum ver si on=2

Since Chet Raney is constantly adding features to Bash,

you may set $nmininmumuversion to 2. XX, 3.XX, or whatever is appropriate.
E_BAD_ VERSI ON=80

if ["$BASH_VERSI ON' \ < "$mi ni numversion"]

t hen
echo "This script works only with Bash, version $m ninmumor greater."
echo "Upgrade strongly reconmended. "
exit $E_BAD VERSI ON

fi

Using Bash-specific functionality in a Bourne shell script (#! / bi n/ sh) on anon-Linux machine may
cause unexpected behavior. A Linux system usually aliases sh to bash, but this does not necessarily
hold true for a generic UNIX machine.

Using undocumented features in Bash turns out to be a dangerous practice. In previous releases of this
book there were several scripts that depended on the “feature” that, although the maximum value of an
exit or return value was 255, that limit did not apply to negativeintegers. Unfortunately, in version 2.05b
and later, that loophole disappeared. See Example 24.9, “ Testing large return values in afunction”.

In certain contexts, amisleading exit statusmay bereturned. Thismay occur when setting alocal variable
within afunction or when assigning an arithmetic value to avariable.

The exit status of an arithmetic expression is not equivalent to an error code.

var=1 && ((--var)) && echo $var

ANNANANAN Here the and-list terminates with exit status 1.
$var doesn't echo!

echo $? # 1

A script with DOS-type newlines (\ r \ n) will fail to execute, since #! / bi n/ bash\ r\ n is not rec-
ognized, not the same as the expected #! / bi n/ bash\ n. The fix is to convert the script to UNIX-
style newlines.

#!/ bi n/ bash
echo "Here"
uni x2dos $0 # Script changes itself to DOS format.

chmod 755 $0 # Change back to execute perm ssion.
The 'uni x2dos' conmand renpbves execute perm ssion.

304

Gotchas

.1$0 # Script tries to run itself again.
But it won't work as a DOS file.

echo "There"

exit O

A shell script headed by #! / bi n/ sh will not runin full Bash-compatibility mode. Some Bash-specific
functions might be disabled. Scriptsthat need complete accessto all the Bash-specific extensions should
start with #! / bi n/ bash.

Putting whitespace in front of the terminating limit string of a here document will cause unexpected
behavior in a script.

Putting more than one echo statement in a function whose output is captured.

add2 ()
{

echo "Whatever ... " # Delete this |ine!
let "retval = $1 + $2"
echo $retval

}

nunml=12
nun=43
echo "Sum of $nunml and $nun2 = $(add2 $nunl $nun)"

Sum of 12 and 43 = What ever
55

The "echoes" concatenat e.

Thiswill not work.

A script may not export variables back to its parent process, the shell, or to the environment. Just aswe
learned in biology, a child process can inherit from a parent, but not vice versa.

VWHATEVER=/ hone/ bozo
export VWHATEVER
exit O

bash$ echo $WHATEVER

bash$

Sure enough, back at the command prompt, SWHATEV ER remains unset.

305

Gotchas

Setting and manipulating variables in a subshell, then attempting to use those same variables outside
the scope of the subshell will result an unpleasant surprise.

Example 34.2. Subshéell Pitfalls

#!/ bi n/ bash
Pitfalls of variables in a subshell

out er _vari abl e=out er

echo

echo "outer_variable = $outer_variable
echo

(
Begi n subshel

echo "outer _variabl e inside subshel
i nner _vari abl e=i nner # Set

$out er _vari abl e"

echo "inner_variable inside subshell = $inner_vari abl e"
outer_variable=inner # WII| value change globally?
echo "outer _variable inside subshell = $outer vari abl e"
WIIl 'exporting' make a difference?

export inner_variable

export outer_variable

Try it and see.

End subshel
)

echo
echo "inner_variabl e outside subshel
echo "outer _variabl e outside subshel
echo

$i nner_variable" # Unset.
$out er _variable” # Unchanged.

exit O

What happens if you uncoment |ines 19 and 207
Does it make a difference?

Piping echo output to aread may produce unexpected results. In this scenario, theread actsasif it were
running in a subshell. Instead, use the set command (as in Example 15.18, “Reassigning the positional
parameters’).

Example 34.3. Piping the output of echo to aread

#! / bi n/ bash

badread. sh:

Attenpting to use 'echo and 'read

#+ to assign variables non-interactively.

306

Gotchas

shopt -s |astpipe

a=aaa
b=bbb
c=ccc

echo "one two three" | read a b c
Try to reassign a, b, and c.

echo

echo "a = $a" # a = aaa
echo "b = $b" # b = bbb
echo "c = $¢" # ¢ = ccc
Reassignnment fail ed.

However

Uncomrenting line 6

shopt -s |astpipe

##+ fixes the problem

This is a new feature in Bash, version 4.2.

Try the followi ng alternative.

var="echo "one two three"’
set -- $var
a=%$1; b=%$2; c=%3

echo "------- "

echo "a = $a" # a = one
echo "b = $b" # b = two
echo "c = $¢" # c = three

Reassi gnment succeeded.

Note also that an echo to a 'read’” works within a subshell.
However, the value of the variable changes *only* within the subshell.

a=aaa # Starting all over again.
b=bbb
c=ccc

echo; echo

echo "one two three" | (read a b c;

echo "Inside subshell: "; echo "a = $a"; echo "b = $b"; echo "c = $c")
a = one

#b = two

c = three

echo "----------------- "

echo "Qutside subshell: "

echo "a = $a" # a = aaa

echo "b = $b" # b = bbb

307

Gotchas

echo "c = $c" # c = ccc
echo

exit O

In fact, as Anthony Richardson points out, piping to any loop can cause asimilar problem.

Loop piping troubles.
This exanpl e by Anthony Ri chardson,
#+ wi th addendum by W/ bert Berendsen

f oundone=f al se
find $HOVE -type f -atinme +30 -size 100k
while true
do
read f
echo "$f is over 100KB and has not been accessed in over 30 days"
echo "Consider moving the file to archives.™
foundone=true

echo "Subshell |evel = $BASH SUBSHELL"
Subshell level =1
Yes, we're inside a subshell.

foundone will always be false here since it is
#+ set to true inside a subshel
if [$foundone = false]
t hen
echo "No files need archiving."
fi

f oundone=f al se
for f in $(find $HOVE -type f -atinme +30 -size 100k) # No pipe here.
do
echo "$f is over 100KB and has not been accessed in over 30 days"
echo "Consider moving the file to archives.™
foundone=true
done

if [$foundone = false]
t hen

echo "No files need archiving."
fi

Places the part of the script that reads the variables

308

Gotchas

#+ within a code bl ock, so they share the sane subshell.
Thank you, WB.

find $HOVE -type f -atinme +30 -size 100k | {

f oundone=f al se

while read f

do
echo "$f is over 100KB and has not been accessed in over 30 days"
echo "Consider moving the file to archives.™
foundone=true

done

if ! $foundone
t hen

echo "No files need archiving."
fi

A lookalike problem occurs when trying to write the st dout of atail -f piped to grep.

tail -f /var/log/ nessages | grep "$ERROR MSG' >> error.|og
The "error.log" file will not have anything witten to it.
As Sanuli Kaipiainen points out, this results fromgrep
#+ buffering its output.

The fix is to add the "--line-buffered" paraneter to grep.

Using “suid” commands within scripts s risky, asit may compromise system security. *

Using shell scriptsfor CGI programming may be problematic. Shell script variables are not “typesafe,”
and this can cause undesirable behavior as far as CGl is concerned. Moreover, it is difficult to “crack-
er-proof” shell scripts.

 Bash does not handle the double slash (/) string correctly.

Bash scriptswritten for Linux or BSD systems may need fixupsto run on acommercial UNIX machine.
Such scripts often employ the GNU set of commands and filters, which have greater functionality than
their generic UNIX counterparts. Thisis particularly true of such text processing utilites astr.

Sadly, updates to Bash itself have broken older scripts that used to work perfectly fine. Let us recall
how risky it isto use undocumented Bash features.

Danger is near thee --

Beware, beware, beware, beware.

1Setting the suid permission on the script itself has no effect in Linux and most other UNIX flavors.

309

Gotchas

Many brave hearts are asleep in the deep.
So beware --
Beware.

--A.J. Lamb and H.W. Petrie

310

Chapter 35. Scripting With Style

Get into the habit of writing shell scripts in a structured and systematic manner. Even on-the-fly and
“written on the back of an envelope” scripts will benefit if you take a few minutes to plan and organize
your thoughts before sitting down and coding.

Herewith are a few stylistic guidelines. This is not (necessarily) intended as an Official Shell Scripting
Sylesheet.

Unofficial Shell Scripting Stylesheet

« Comment your code. This makesit easier for others to understand (and appreciate), and easier for you
to maintain.

PASS="$PASS${ MVATRI X: $((SRANDOW/G{ #VATRI X})) : 1} "

|1t nmade perfect sense when you wote it |ast year,
#+ but nowit's a conplete nmystery.

(From Antek Sawi cki's "pw. sh" script.)

Add descriptive headers to your scripts and functions.

#!/ bi n/ bash

#**#

Xyz. sh
witten by Bozo Bozeman
July 05, 2001

HHHHH

Clean up project files.
#**

#
#
#
#
#
#

E_BADDI R=85 # No such directory.
proj ect di r=/ hore/ bozo/ proj ects # Directory to clean up.

e e T #
cleanup_pfiles ()
Rempoves all files in designated directory.
Parameter: $target_directory
Returns: 0 on success, $E BADDIR i f sonething went wong.
e e T #
cl eanup_pfiles ()
{
if [! -d"$1"] # Test if target directory exists.
t hen
echo "$1 is not a directory."
return $E_BADDI R
fi
rm-f "$1"/*
return O # Success.
}

cl eanup_pfiles $projectdir

311

Scripting With Style

exit $?

» Avoid using “magic numbers,” Lthat is, “hard-wired” literal constants. Use meani ngful variable names
instead. This makes the script easier to understand and permits making changes and updates without
breaking the application.

if [-f /var/log/ nmessages |
t hen

fi

A year later, you decide to change the script to check /var/l og/sysl og.
1t is now necessary to manual ly change the script, instance by instance,
#+ and hope not hi ng breaks.

A better way:

LOGFI LE=/var /| og/ messages # Only line that needs to be changed.
if [-f "$LOGFILE"]

t hen

fi
 Choose descriptive names for variables and functions.

fl="Is -al $dirnane # Cryptic.
file_listing="ls -al $dirnane’ # Better.

MAXVAL=10 # Al caps used for a script constant.
while ["$index" -le "$MAXVAL"]

E_NOTFOUND=95 # Uppercase for an errorcode,
#+ and nane prefixed with E_ .

if [! -e "$filename"]

t hen

echo "File $fil enane not found."
exit $E_NOTFOUND
fi

MAI L_DI RECTORY=/ var/ spool / mai | / bozo # Uppercase for an environnental

export MAI L_DI RECTORY #+ vari abl e.

Get Answer () # M xed case works well for a

{ #+ function nane, especially
pronpt =$1 #+ when it inproves legibility.

echo -n $pronpt
read answer
return $answer

}

4n this context, magic numbers’ have an entirely different meaning than the magic numbers used to designate file types.

312

Scripting With Style

Get Answer "What is your favorite nunber? *
favorite_nunber=%$?
echo $favorite_nunber

_uservari abl e=23 # Perm ssible, but not reconmended.
1t's better for user-defined variables not to start with an underscore.
Leave that for systemvariabl es.

Use exit codes in a systematic and meaningful way.

E_WRONG_ARGS=95

exit $E_VRONG_ARGS
See also Appendix E, Exit Codes With Special Meanings.

Ender suggests using the exit codesin/ usr /i ncl ude/ sysexi t s. h inshdl scripts, though these
are primarily intended for C and C++ programming.

Use standardized parameter flags for script invocation. Ender proposes the following set of flags.

-a All: Return all information (including hidden file info).

-b Brief: Short version, usually for other scripts.

-C Copy, concatenate, etc.

-d Daily: Use information fromthe whole day, and not mnerely
information for a specific instance/user.

-e Ext ended/ El aborate: (often does not include hidden file info).

-h Hel p: Verbose usage w descs, aux info, discussion, help.
See also -V.

- Log out put of script.

-m Manual : Launch man-page for base command.

-n Nunbers: Numerical data only.

-r Recursive: Al files in a directory (and/or all sub-dirs).

-s Setup & File Miintenance: Config files for this script.

-u Usage: List of invocation flags for the script.

-V Ver bose: Human readabl e output, nore or |ess formatted.

-V Version / License / Copy(right|left) / Contribs (email too).

See also the section called “ Standard Command-Line Options’.

Break complex scriptsinto simpler modules. Use functions where appropriate. See Example 37.4, “Us-
ing arrays and other miscellaneous trickery to deal four random hands from a deck of cards’.

Don't use a complex construct where a simpler one will do.

COMVAND
if [$? -eq 0]

Redundant and non-intuitive.
i f COVIVAND

More concise (if perhaps not quite as |egible).

313

Scripting With Style

... reading the UNIX source code to the Bourne shell (/bin/sh). | was shocked at how much simple algo-
rithms could be made cryptic, and therefore useless, by apoor choice of code style. | asked myself, “ Could
someone be proud of this code?’

--Landon Noll

314

Chapter 36. Miscellany

Nobody really knows what the Bourne shell's grammar is. Even examination of the source code is little
help.

--Tom Duff

Interactive and non-interactive shells and
scripts

An interactive shell reads commands from user input on at t y. Among other things, such a shell reads
startup files on activation, displays a prompt, and enables job control by default. The user can interact
with the shell.

A shell running a script is aways a non-interactive shell. All the same, the script can still accessitstty.
It is even possible to emulate an interactive shell in a script.

#!/ bi n/ bash
MY _PROVPT='$
while :
do
echo -n "$MY_PROWPT"
read line
eval "$line"
done
exit O

This exanple script, and much of the above expl anation supplied by
St éphane Chazel as (thanks again).

L et usconsider aninteractive script to be onethat requiresinput from the user, usually with read statements
(see Example 15.3, “Variable assignment, using read”). “Redl life” isactually abit messier than that. For
now, assume an interactive script is bound to a tty, a script that a user has invoked from the console or
an xterm.

Init and startup scripts are necessarily non-interactive, since they must run without human intervention.
Many administrative and system maintenance scripts are likewise non-interactive. Unvarying repetitive
tasks cry out for automation by non-interactive scripts.

Non-interactive scripts can run in the background, but interactive ones hang, waiting for input that never
comes. Handle that difficulty by having an expect script or embedded here document feed input to an
interactive script running as abackground job. In the simplest case, redirect afileto supply inputtoaread
statement (read variable <file). These particular workarounds make possible general purpose scripts that
run in either interactive or non-interactive modes.

If ascript needs to test whether it isrunning in an interactive shell, it issimply amatter of finding whether
the prompt variable, $PS1 is set. (If the user is being prompted for input, then the script needs to display
aprompt.)

if [-z $PS1L] # no pronpt?
if [-v PS1] # On Bash 4.2+ ...

315

Miscellany

t hen
non-interactive

el se
interactive

fi
Alternatively, the script can test for the presence of option “i” in the $- flag.

case $- in
i) # interactive shel

;S # non-interactive shell

;#, (Courtesy of "UNIX F.A Q," 1993)

However, John Lange describes an alternative method, using the -t test operator.
Test for a termnal!

fd=0 # stdin

As we recall, the -t test option checks whether the stdin, [-t 0],

#+ or stdout, [-t 1], in a given script is running in a term nal.
if [-t "$fd"]
t hen
echo interactive
el se

echo non-interactive
fi

But, as John points out:
if [-t 0] works ... when you're logged in locally
but fails when you invoke the command renotely via ssh.
So for a true test you also have to test for a socket.

HH HH

if [[-t "$fd" || -p /dev/stdin]]
t hen
echo interactive
el se
echo non-interactive
fi

Note
Scripts may be forced to run in interactive mode with the -i option or with a#! / bi n/ bash -

i header. Be aware that this can cause erratic script behavior or show error messages even when
no error is present.

Shell Wrappers

316

Miscellany

A wrapper is a shell script that embeds a system command or utility, that accepts and passes a set of
parameters to that command. ! Wrapping a script around a complex command-line simplifiesinvoking it.
Thisis expecialy useful with sed and awk.

A sedor awk script would normally be invoked from the command-lineby ased - e ' conmmands'
or awk ' comuands' . Embedding such a script in a Bash script permits calling it more simply, and
makes it reusable. This also enables combining the functionality of sed and awk, for example piping the
output of a set of sed commands to awk. As a saved executable file, you can then repeatedly invokeiit in
its original form or modified, without the inconvenience of retyping it on the command-line.

Example 36.1. shell wrapper
#1/ bi n/ bash

This sinmple script renoves blank lines froma file.
No argunent checki ng.

You might wish to add sonething |ike:

if [-z "$1"]

t hen

echo "Usage: "“basename $0° target-file"
exit $E_NOARGS

#

#

#

#

#

E_NOARGS=85
#

#

#

#

fi

sed -e /"$/d "$1"

Sane as

sed -e '/"$/d filenane

invoked fromthe conmand-|i ne.

The '-e' means an "editing" command follows (optional here).

'~ indicates the beginning of line, '$ the end.

This matches lines with nothing between the beginning and the end --
#+ bl ank |ines.

The 'd'" is the delete commmand.

(Quoting the command-line arg pernits

#+ whi t espace and special characters in the filenane.

Note that this script doesn't actually change the target file.
|If you need to do that, redirect its output.

exit
Example 36.2. A dlightly more complex shell wrapper
#1/ bi n/ bash

subst.sh: a script that substitutes one pattern for

Quite a number of Linux utilities are, in fact, shell wrappers. Some examplesare/ usr / bi n/ pdf 2ps, / usr/ bi n/ bat ch,and/ usr/ bi n/
xrknf .

317

Miscellany

#+ another in a file,

#+ 1.e., "sh subst.sh Smith Jones letter.txt".
Jones replaces Smth.
ARGS=3 # Script requires 3 argunents.

E BADARGS=85 # Wong nunber of arguments passed to script.

if [$# -ne "$ARGS"]

t hen
echo "Usage: "“basename $0° ol d-pattern new pattern fil enanme"
exit $E_BADARGS

f

ol d_pattern=$1
new_patt er n=$2

if [-f "$3"]
t hen

file name=%$3
el se

echo "File \"$3\" does not exist."
exit $E_BADARGS
f

Here is where the heavy work gets done.
sed -e "s/ %ol d_pattern/ $new pattern/g" $file_nane

's' is, of course, the substitute conmmand in sed,

#+ and /pattern/ invokes address matching.

The 'g,' or global flag causes substitution for EVERY

#+ occurence of $old_pattern on each Iline, not just the first.
Read the 'sed' docs for an in-depth explanation

exit $? # Redirect the output of this script to wite to a file.
Example 36.3. A generic shell wrapper that writesto alogfile

#1/ bi n/ bash

| oggi ng-wrapper.sh

Generic shell wapper that perforns an operation

#+ and logs it.

DEFAULT_LOGFI LE=I ogfi |l e. t xt

Set the follow ng two vari abl es.

OPERATI ON=

Can be a conpl ex chain of conmands,
#+ for example an awk script or a pipe
LOGFI LE=

if [-z "$LOGFILE"]

318

Miscellany

t hen # |If not set, default to ..
LOGFI LE=" $DEFAULT _LOGFI LE"
f

Conmmand-1ine argunents, if any, for the operation
OPTI ONS="$@
Log it.

echo "“date’ + “whoam = + $OPERATION "$@" >> $LOGFI LE
Now, do it.
exec $OPERATION "$@

It's necessary to do the | ogging before the operation
\Wy?

Example 36.4. A shell wrapper around an awk script

#1/ bi n/ bash
pr-ascii.sh: Prints a table of ASCI| characters.

START=33 # Range of printable ASCI| characters (decimal).
END=127 # WIl not work for unprintable characters (> 127).

echo Deci mal Hex Char acter™ # Header

echo " ------- e

for ((i=START; i<=END, i++))

do
echo $i | awk '"{printf(" 9%d 92X %\n", $1, $1, $1)}'
The Bash printf builtin will not work in this context:
printf "o%" "$i"
done
exit O
Deci mal Hex Char act er
Hoo------- e e e e e e m ==
33 21 !
34 22 "
35 23
36 24 $
#
#
#
122 7a z
123 7b {
124 7c
125 7d }

Redirect the output of this script to a file
#+ or pipe it to "nore": sh pr-asc.sh | nore

319

Miscellany

Example 36.5. A shell wrapper around another awk script

#!/ bi n/ bash

Adds up a specified colum (of nunmbers) in the target file.
Fl oating-point (decimal) nunbers okay, because awk can handl e them

ARGS=2
E_WRONGARGS=85

if [$# -ne "$ARGS"] # Check for proper nunmber of command-line args.
t hen

echo "Usage: "“basename $0° fil ename col um- nunmber"

exit $E_WVRONGARGS
f

filename=%$1
col um_nunber =$2

Passing shell variables to the awk part of the script is a bit tricky.
One nmethod is to strong-quote the Bash-script variable

#+ within the awk script.

$' $BASH_SCRI PT_VAR

N N

This is done in the enbedded awk script bel ow

See the awk docunentation for nore details.

A multi-line awk script is here invoked by
awk '
#
#
.
&
Begin awk script.
o
awk '
{ total += & "${col um_nunber}"’
}
END {

print total
}
" "$fil enane”
o

End awk script.

It may not be safe to pass shell variables to an enbedded awk script,
#+ so Stephane Chazel as proposes the follow ng alternative:

320

Miscellany

{ total += $col um_nunber

0}

END {

print total

}' "$filenane”
i
exit O

For those scripts needing a single do-it-all tool, a Swiss army knife, there is Perl. Perl combines the ca-
pabilities of sed and awk, and throws in a large subset of C, to boot. It is modular and contains support
for everything ranging from object-oriented programming up to and including the kitchen sink. Short Perl
scripts lend themselves to embedding within shell scripts, and there may be some substance to the claim
that Perl can totally replace shell scripting (though the author of the ABS Guide remains skeptical).

Example 36.6. Perl embedded in a Bash script

#! / bi n/ bash

Shell commands nmay precede the Perl script.
echo "This precedes the enbedded Perl script within \"$0\"."

eCho oo ——--—-————-——————————————————————=—=—=="

perl -e "print "This line prints froman enbedded Perl script.\n";'
Li ke sed, Perl also uses the "-e" option.

eCho ":::"
echo "However, the script nmay al so contain shell and system conmmands."

exit O

It is even possible to combine a Bash script and Perl script within the same file. Depending on how the
script isinvoked, either the Bash part or the Perl part will execute.

Example 36.7. Bash and Per| scripts combined

#1/ bi n/ bash
bashandper! . sh

echo "Greetings fromthe Bash part of the script, $0."
More Bash commands may fol |l ow here.

exit
End of Bash part of the script.

#1 [usr/ bi n/ perl
This part of the script nust be invoked with
perl -x bashandperl. sh

321

Miscellany

print "Greetings fromthe Perl part of the script, $0.\n";
Per|l doesn't seemto |ike "echo"
More Perl commands may foll ow here.

End of Perl part of the script.

bash$ bash bashandperl . sh
Greetings fromthe Bash part of the script.

bash$ perl -x bashandperl.sh
Greetings fromthe Perl part of the script.

It is, of course, possible to embed even more exatic scripting languages within shell wrappers. Python,
for example ...

Example 36.8. Python embedded in a Bash script

#! / bi n/ bash
ex56py. sh

Shell commands may precede the Python script.
echo "This precedes the enbedded Python script within \"$0.\""

python -c 'print "This line prints froman enbedded Python script.\n";"'
Unli ke sed and perl, Python uses the "-c" option

python -c¢ 'k = raw_input("Hit a key to exit to outer script. ")’

eC ho ==t
echo "However, the script may al so contain shell and system conmands.”

exit O

Wrapping ascript around mplayer and the Googl€'s trandlation server, you can create something that talks
back to you.

Example 36.9. A script that speaks

#1/ bi n/ bash
Courtesy of:
http://elinux.org/ RPi _Text _to_Speech_(Speech_Synt hesi s)

You nmust be on-line for this script to work,
#+ so you can access the CGoogle translation server.
O course, nplayer must be present on your computer

speak()
{

| ocal | FS=+

322

Miscellany

I nvoke npl ayer, then connect to Google translation server.
[usr/bin/mplayer -ao alsa -really-quiet -noconsol econtrols \
"http://transl ate. google.conftranslate_tts?tl =en&q="%*""

CGoogl e transl ates, but can al so speak.

}

LI NES=4

spk=$(tail -$LINES $0) # Tail end of sanme script!
speak "$spk"

exit

Browns. Nice talking to you.

One interesting example of a complex shell wrapper is Martin Matusiak's undvd script [http://
sourceforge.net/projects/undvd/], which provides an easy-to-use command-line interface to the com-
plex mencoder [http://www.mplayerhg.hu/DOCS/HTML/en/mencoder.html] utility. Another example is
Itzchak Rehberg's Ext3Undel [http://projects.izzysoft.de/trac/ext3undel], a set of scriptsto recover deleted
file on an ext3 filesystem.

Tests and Comparisons: Alternatives

For tests, the[[]] construct may be more appropriatethan [] . Likewise, arithmetic comparisons might
benefit from the (()) construct.

a=8

Al of the conparisons bel ow are equival ent.

test "$a" -1t 16 && echo "yes, $a < 16" # "and list"
/bin/test "$a" -1t 16 &% echo "yes, $a < 16"

["$a" -It 16] && echo "yes, $a < 16"

[[$a -It 16]] && echo "yes, $a < 16" # Quoting variables within

((a<16)) & echo "yes, $a < 16" # [[11 and (()) not

ci ty="New York"
Again, all of the conmparisons bel ow are equival ent.
test "$city" \< Paris &% echo "Yes, Paris is greater than $city"
Greater ASCI| order.
/bin/test "$city" \< Paris &% echo "Yes, Paris is greater than $city"
["$city" \< Paris] & echo "Yes, Paris is greater than $city"
[[$city < Paris]] && echo "Yes, Paris is greater than $city"
Need not quote $city.

Thank you, S.C

Recursion: a script calling itself

Can ascript recursively call itself? Indeed.

Example 36.10. A (useless) script that recursively callsitself

#!/ bi n/ bash
recurse. sh

323

necessary.

http://sourceforge.net/projects/undvd/
http://sourceforge.net/projects/undvd/
http://sourceforge.net/projects/undvd/
http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://www.mplayerhq.hu/DOCS/HTML/en/mencoder.html
http://projects.izzysoft.de/trac/ext3undel
http://projects.izzysoft.de/trac/ext3undel

Miscellany

Can a script recursively call itself?
Yes, but is this of any practical use?
(See the follow ng.)

RANGE=10
MAXVAL=9
i =$RANDOM
let "i % $RANGE" # Cenerate a random nunber between O and $RANGE - 1.
if ["$i" -1t "$SMAXVAL"]
t hen
echo "i = $i"
.1 $0 # Script recursively spawns a new i nstance of itself.
fi # Each child script does the same, unti

#+ a generated $i equals $MAXVAL.

Using a "while" loop instead of an "if/then" test causes probl ens.
Explain why.

exit O

Not e:

[—

This script must have execute permission for it to work properly.
This is the case even if it is invoked by an "sh" command.

Expl ai n why.

Example 36.11. A (useful) script that recursively callsitself

#1/ bi n/ bash
pb. sh: phone book

Witten by Rick Boivie, and used with perm ssion
Modi fications by ABS Cui de aut hor

M NARGS=1 # Script needs at |east one argunent.
DATAFI LE=. / phonebook
A data file in current working directory
#+ naned "phonebook" nust exist.
PROGNAME=$0
E NOARGS=70 # No arguments error

if [$# -1t SMNARGS]; then
echo "Usage: "$PROGNAME" dat a-t o-1| ook-up"
exit $E_NOARGS

f

if [$# -eq SM NARGS]; then

grep $1 "$DATAFI LE"

'grep' prints an error nessage if $DATAFILE not present.
el se

324

Miscellany

(shift; "$PROGNAME' $*) | grep $1
Script recursively calls itself.
f

exit O # Script exits here.
Therefore, it's o.k. to put
#+ non- hashmarked comments and data after this point.

U
Sanpl e "phonebook"” datafil e:

John Doe 1555 Main St., Baltinore, MD 21228 (410) 222-3333
Mary Mbe 9899 Jones Blvd., Warren, NH 03787 (603) 898-3232
Ri chard Roe 856 E. 7th St., New York, NY 10009 (212) 333-4567
Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678
Zoe Zenobi a 4481 N. Baker St., San Francisco, SF 94338 (415) 501-1631
U
$bash pb. sh Roe

Ri chard Roe 856 E. 7th St., New York, NY 10009 (212) 333-4567
Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678

$bash pb.sh Roe Sam
Sam Roe 956 E. 8th St., New York, NY 10009 (212) 444-5678

\Wen nore than one argunent is passed to this script,
#+ it prints *only* the Iine(s) containing all the argunents.

Example 36.12. Another (useful) script that recursively callsitself

#1/ bi n/ bash
usrmt.sh, witten by Anthony Ri chardson
Used in ABS Guide with perm ssion

usage: usrmmt . sh
description: mount device, invoking user nmust be listed in the
MNTUSERS group in the /etc/sudoers file.

This is a usermount script that reruns itself using sudo.
A user with the proper perm ssions only has to type

usermount /dev/fdO /mt/fl oppy
instead of

sudo usernount /dev/fdO /mmt/fl oppy

|1 use this sane technique for all of ny
#+ sudo scripts, because | find it convenient.
B o o o o o o o o o o o e e e e e e e e e e e e e e e e oo

1f SUDO COVMAND variable is not set we are not being run through
#+ sudo, so rerun ourselves. Pass the user's real and group id

325

Miscellany

if [-z "$SUDO COMVAND']
t hen
mtusr=$(id -u) grpusr=$(id -g) sudo $0 $*
exit O
fi

W will only get here if we are being run by sudo.
/ bi n/ mount $* -0 ui d=$mt usr, gi d=$gr pusr

exit O

Additional notes (fromthe author of this script):

1) Linux allows the "users" option in the /etc/fstab

file so that any user can nount renovabl e nedi a.
But, on a server, | like to allowonly a few

i ndi vi dual s access to renovabl e nedi a.

I find using sudo gives ne nore control.

2) | also find sudo to be nore conveni ent than

acconplishing this task through groups.

3) This method gives anyone wth proper perm ssions
root access to the nount conmand, so be careful
about who you all ow access.
You can get finer control over which access can be nounted
by using this same technique in separate mtfl oppy, mmtcdrom
and mmt sanba scripts.

HHHHH R

Caution

Too many levels of recursion can exhaust the script's stack space, causing a segfault.

“Colorizing” Scripts

The ANSI 2 escape sequences set screen attributes, such as bold text, and color of foreground and back-
ground. DOS batch files commonly used ANSI escape codes for color output, and so can Bash scripts.

Example 36.13. A “colorized” address database

#! / bi n/ bash

ex30a.sh: "Colorized" version of ex30.sh.

Crude address dat abase

cl ear # Clear the screen.

2ANSI is, of course, the acronym for the American National Standards Institute. This august body establishes and maintains various technical and
industrial standards.

326

Miscellany

echo -n
echo -e "\ E[37;44m "\ 033[1nCont act

echo; echo

Li st\ 033[Ont'

White on bl ue background

echo -e "\ 033[1nChoose one of the foll ow ng persons:\033[0nt

tput sgrO

echo "(Enter only the first letter of
echo

echo -en "\ E[47;34m "\ 033[1nE\ 033[Ont
tput sgrO

echo "vans, Rol and"

echo -en "\ E[47;35m "\ 033[1nU\ 033[Ont
tput sgrO

echo "anbal aya, M| dred"

echo -en "\ E[47;32m "\ 033[1nB\ 033[Ont
tput sgrO

echo "mth, Julie"

echo -en "\ E[47;31m "\ 033[1n¥\ 033[Ont
tput sgrO

echo "ane, Morris"

echo

read person

case "$person” in
Note variable is quoted.

"E'" | "e")

Accept upper or |owercase input.
echo

echo "Rol and Evans"

echo "4321 Flash Dr."

echo "Hardscrabble, CO 80753"
echo "(303) 734-9874"

echo "(303) 734-9892 fax"

echo "revans@zy. net™

echo "Business partner & old friend"
ARV R R

echo

echo "M | dred Janbal aya"

echo "249 E. 7th St., Apt. 19"
echo "New York, Ny 10009"

echo "(212) 533-2814"

echo "(212) 533-9972 fax"

echo "mlliej @oisai da. cont

echo "Grlfriend"

echo "Birthday: Feb. 11"

Add info for Smth & Zane | ater.

Bol d
Reset attributes.
nane.)"

Bl ue

Reset colors to "normal .’
"[E] vans, Rol and"
Magent a

H H HH

F*

G een

Red

327

Miscellany

*
)
Default option.
Enpty input (hitting RETURN) fits here, too.
echo
echo "Not yet in database.™

esac

tput sgrO # Reset colors to "normal."
echo

exit O

Example 36.14. Drawing a box

#1/ bi n/ bash
Draw box.sh: Drawi ng a box using ASCI | characters.

Script by Stefano Palnmeri, with m nor editing by docunent author
Mnor edits suggested by Ji m Angst adt.
Used in the ABS CGuide with perni ssion.

HHHHBHHH B H B H R H R H R H R H R H R H R H R H R H R H R H R R R
draw _box function doc

The "draw box" function lets the user
draw a box in a term nal

+

Usage: draw_box ROW COLUWN HElI GHT W DTH [COLOR]

ROW and COLUWN represent the position

of the upper left angle of the box you' re going to draw
ROW and COLUWN nust be greater than O

and less than current term nal dinmension

HElI GHT is the nunmber of rows of the box, and nust be > 0.
HEI GHT + ROW nust be <= than current term nal height.
WDTH i s the nunber of columms of the box and nust be > 0.
W DTH + COLUWN nust be <= than current term nal wi dth.

+

+

E.g.: If your termnal dinmension is 20x80,

draw _box 2 3 10 45 is good

draw _box 2 3 19 45 has bad HElI GHT val ue (19+2 > 20)
draw _box 2 3 18 78 has bad WDTH val ue (78+3 > 80)

COLOR is the color of the box frane.

This is the 5th argunment and is optional

O=bl ack 1=red 2=green 3=tan 4=bl ue 5=purple 6=cyan 7=white.
If you pass the function bad argunents,

HFHFIFHEHFHEHEHFHHFHHHF ST HF R

#+ it will just exit with code 65,
#+ and no nessages will be printed on stderr.
#

Clear the termi nal before you start to draw a box.

328

Miscellany

The clear command is not contained within the function.
This allows the user to draw multiple boxes, even overl appi ng ones.

end of draw box function doc
HHHHBHHH B H B H R H R H R H R H R H R H R H R H R H R H R H R R R

draw_box() {

VERT="|"
CORNER_CHAR=" +"

M NARGS=4

E_BADARGS=65

ettt =

if [$# -1t "SM NARGS"]; then # If args are less than 4, exit.

exit $E_BADARGS
f

Looking for non digit chars in argunents.

Probably it could be done better (exercise for the reader?).

if echo $@| tr -d [:blank:] | tr -d [:digit:] | grep . & /dev/null; then
exit $E_BADARGS

fi

BOX_HEI GHT="expr $3 - 1° # -1 correction needed because angle char "+"

BOX_W DTH="expr $4 - 1° #+ is a part of both box height and wi dth.

T _RONB="tput |ines’ # Define current term nal dinension

T _COLS="tput cols’ #+ in rows and col ums.

if [$1 -1t 1] || [$1 -gt $T_ROANS]; then # Start checking if arguments
exit $E_BADARGS #+ are correct.

fi

if [$2 -1t 1] || [$2 -gt $T_COLS]; then
exit $E_BADARGS

fi

if [“expr $1 + $BOX HEIGHT + 1° -gt $T_ROWS]; then
exit $E_BADARGS

fi

if [“expr $2 + $BOX WDTH + 1° -gt $T_COLS]; then
exit $E_BADARGS

fi

if [$3 -1t 1] || [$4 -1t 1]; then
exit $E_BADARGS

fi # End checki ng argunents.
pl ot _char () { # Function within a function.
echo -e "\E[${1}; ${2} H'$3
}
echo -ne "\ E[3${5}nt # Set box frame color, if defined.

329

Miscellany

start draw ng the box

count =1 # Draw vertical lines using
for ((r=$1; count<=$BOX HEI GHT; r++)); do #+ pl ot _char function
pl ot _char $r $2 $VERT
| et count=count +1
done
count =1
c="expr $2 + $BOX_W DTH
for ((r=%$1; count<=$BOX HElI GHT; r++)); do
pl ot _char $r $c $VERT
| et count=count +1
done
count =1 # Draw horizontal |ines using
for ((c=%$2; count<=$BOX W DTH, c++)); do #+ pl ot _char function
pl ot _char $1 $c $HORZ
| et count=count +1
done
count =1
r="expr $1 + $BOX_HEI GHT
for ((c=%$2; count<=$BOX WDTH, c++)); do

pl ot _char $r $c $HORZ
| et count =count +1

done

pl ot _char $1 $2 $CORNER_CHAR

pl ot _char

pl ot _char “expr $1 + $BOX_HEI GHT
pl ot _char “expr $1 + $BOX_HEI GHT

echo -ne "\ E[Ont
P_ROWS="expr $T_ROWS - 1°

echo -e "\ E[${P_ROWS}; 1H"'

}

Now, let's try drawi ng a box.

cl ear # C ear
R=2 # Row

C=3 # Col umm

H=10 # Hei ght

We45 # Wdth

col =1 # Col or (red)

draw_box $R $C $H $W $col
exit O

Exerci se

Put the pronpt at

Draw box angl es.

$1 “expr $2 + $BOX_WDTH $CORNER CHAR

$2 $CORNER CHAR
“expr $2 + $BOX_WDTH $CORNER CHAR

Restore old col ors.

bottom of the term nal

the term nal

Draw t he box.

330

Miscellany

Add the option of printing text within the drawn box.

The simplest, and perhaps most useful ANSI escape sequenceis bold text, \033[1m ... \033[0Om. The \033
represents an escape, the“[1” turnson the bold attribute, whilethe“[0” switchesit off. The“m” terminates
each term of the escape sequence.

bash$ echo -e "\033[1nThis is bold text.\033[0nt

A similar escape sequence switches on the underline attribute (on an rxvt and an aterm).

bash$ echo -e "\033[4nThis is underlined text.\033[0nt

Note

With an echo, the - e option enables the escape segquences.

Other escape sequences change the text and/or background color.

bash$ echo -e '"\E[34;47nThis prints in blue."'; tput sgrO

bash$ echo -e '\ E[33;44nm "yel |l ow text on bl ue background"; tput sgrO

bash$ echo -e '\ E[1;33; 44m "BOLD yel | ow t ext on bl ue background"; tput sgrO

Note

It's usually advisable to set the bold attribute for light-colored foreground text.

The tput sgrO restores the terminal settings to normal. Omitting this lets all subsequent output from that
particular terminal remain blue.

Note

Since tput sgrO fails to restore terminal settings under certain circumstances, echo -ne \E[Om
may be a better choice.

Use the following template for writing colored text on a colored background.
echo -e '\ E[COLORL; COLOR2nSone t ext goes here.'

The “\E[” begins the escape sequence. The semicolon-separated numbers “COLOR1” and “COL-
OR2” specify aforeground and a background color, according to the table below. (The order of the
numbers does not matter, since the foreground and background numbers fall in non-overlapping
ranges.) The “m” terminates the escape sequence, and the text beginsimmediately after that.

Note also that single quotes enclose the remainder of the command sequence following the echo -e.

331

Miscellany

The numbers in the following table work for an rxvt terminal. Results may vary for other terminal emu-
lators.

Table 36.1. Numbersrepresenting colorsin Escape Sequences

Color Foreground Background
bl ack 30 40
red 31 41
green 32 42
yel | ow 33 43
bl ue 34 44
magent a 35 45
cyan 36 46
white 37 47

Example 36.15. Echoing colored text

#1/ bi n/ bash
col or-echo. sh: Echoing text messages in color.

Modify this script for your own purposes.
It's easier than hand-codi ng col or.

bl ack="\ E[30; 47ni
red="\E[31; 47m
green="\E 32;47m
yel ow="\ E[33; 47m
bl ue="\E[34; 47m
magent a="\ E[35; 47m
cyan="\E[36; 47m
whi te="\ E[37; 47m

alias Reset="tput sgrO" # Reset text attributes to normal
#+ wi t hout clearing screen.

cecho () # Col or - echo.
Argunent $1 = nessage
Argument $2 = col or

{

| ocal default_mnmsg="No nessage passed."
Doesn't really need to be a |l ocal variable.

nmessage=${ 1: - $def aul t _nsg} # Defaults to default message.
col or =${ 2: - $bl ack} # Defaults to black, if not specified.

echo -e "$col or"
echo "$nessage”

332

Miscellany

Reset # Reset to nornmal.

return

Now, let's try it out.

cecho "Feeling blue..." $blue
cecho "Magenta | ooks nore |ike purple.
cecho "Green with envy." $green
cecho "Seeing red?" $red
cecho "Cyan, nore famliarly known as aqua.
cecho "No col or passed (defaults to black)."
M ssing $col or argunent.
cecho "\"Empty\" col or passed (defaults to bl ack).
Enmpty $col or argunent.

$magent a

$cyan

cecho
M ssing $message and $col or argunents.
cecho "" ""
Enmpty $message and $col or argunents.
H m o e o e e e o eee e
echo
exit O

1) Add the "bold" attribute to the 'cecho ()' function.
2) Add options for col ored backgrounds.

Example 36.16. A “horserace” game

#1/ bi n/ bash

horserace.sh: Very sinple horserace sinulation
Aut hor: Stefano Pal nmeri

Used with perm ssion.

HERHHHHH T H T H T H R H R R
Coal s of the script:
pl aying with escape sequences and term nal col ors.

Exerci se
Edit the script to make it run | ess randomy
+ set up a fake betting shop .
Un. . . um. . . it's starting to remnd ne of a novie .

The script gives each horse a random handi cap
The odds are cal cul ated upon horse handi cap

+ and are expressed in European(?) style.
E.g., odds=3.75 neans that if you bet $1 and win,

HHFHHHHHFHHHHH

333

Miscellany

#+ you receive $3.75.

#

The script has been tested with a GNU Li nux OS

#+ using xtermand rxvt, and konsol e.

On a machine with an AVMD 900 MHz processor

#+ the average race time is 75 seconds.

On faster computers the race tine would be | ower.

So, if you want nore suspense, reset the USLEEP_ARG vari abl e.
#

Script by Stefano Pal neri.

HERHHHHH T H T H T H R H R R

E_RUNERR=65

Check if md5sum and bc are install ed.
if ! which bc & /dev/null; then
echo bc is not installed.
echo "Can\'t run . . . "
exit $E_RUNERR
f
if ! which md5sum &> /dev/null; then
echo nd5sumis not install ed.
echo "Can\'t run . . . "
exit $E_RUNERR
f

Set the follow ng variable to sl ow down script execution
1t will be passed as the argunent for usleep (man usl eep)
#+ and is expressed in mcroseconds (500000 = half a second).
USLEEP_ARG=0

Clean up the tenp directory, restore term nal cursor and
#+ termnal colors -- if script interrupted by C1-C.

trap 'echo -en "\ E ?25h"; echo -en "\E[Onf; stty echo;\

tput cup 20 0; rm-fr $HORSE RACE TMWP. DIR TERMEXIT

See the chapter on debugging for an explanation of 'trap.'

Set a unique (paranoid) name for the tenp directory the script needs.
HORSE_RACE_TMP_DI R=$HOVE/ . hor serace- "date +% - head -c¢10 /dev/urandom\
| md5sum | head -c30°

Create the tenp directory and nove right in
nkdi r $HORSE_RACE_TMP_DI R
cd $HORSE_RACE_TMP_DI R

This function nmoves the cursor to line $1 colum $2 and then prints $3.
E. g.: "move_and_echo 5 10 linux" is equivalent to
#+ "tput cup 4 9; echo linux", but with one command instead of two.
Note: "tput cup"” defines 0 O the upper left angle of the term nal
#+ echo defines 1 1 the upper left angle of the termnal
nove_and_echo() {
echo -ne "\E[${1}; ${2} H' " $3"
}

334

Miscellany

Function to generate a pseudo-random nunber between 1 and 9.
random 1 9 ()

{
}

head -c10 /dev/urandom | md5sum | tr -d [a-z] | tr -d O | cut -cl

Two functions that sinulate "novenment," when draw ng the horses.
draw_horse_one() {
echo -n " "//$MOVE_HORSE/ /
}
draw_horse_two(){
echo -n " "\\\\ $MOVE_HORSE\ \ \\

}

Define current termnal dinension.
N _COLS="t put cols’
N_LINES="tput |ines’

Need at |east a 20-LINES X 80-COLUMNS term nal. Check it.

if [SNCOS -1t 80] || [$N.LINES -1t 20]; then
echo " basenane $0° needs a 80-cols X 20-lines termnal."
echo "Your terminal is ${N COLS}-cols X ${N_LINES}-1ines."
exit $E_RUNERR

fi

Start drawing the race field.

Need a string of 80 chars. See bel ow
BLANK80="seq -s "" 100 | head -c80°

cl ear

Set foreground and background colors to white.
echo -ne "\E[37;47m

Move the cursor on the upper left angle of the term nal.
tput cup 0 O

Draw six white |ines.
for nin “seq 5; do

echo $BLANKBO # Use the 80 chars string to colorize the termnal.
done

Sets foreground col or to bl ack.
echo -ne '\ E 30m

move_and_echo 3 1 "START 1"
move_and_echo 3 75 FI NI SH
nove_and_echo 1 5 "|"
nove_and_echo 1 80 "|"
nove_and_echo 2 5 "|"

335

Miscellany

nove_and_echo 2 80 "|"

nove_and_echo 4 5 "| 2"

nove_and_echo 4 80 "|"

move_and_echo 5 5 "v 3"
58

nmove_and_echo

Set foreground color to red.
echo -ne "\ E 31m

Some ASClI art.

nmove_and_echo 1 8 ".. @00 . @O0 .
move_and echo 2 8 ". @..@..@. ...
move_and _echo 3 8 ".@@daad® .. @. . ..
move_and echo 4 8 ". @..@..@. ...
move_and echo 58 ". @..@..@. ...
move_and_echo 1 43 " @OoQ .. QOO .
move_and echo 2 43 "@..@Q@.. @ @.
nove_and_echo 3 43 " @ogp . GAood) @ .
move_and echo 4 43 "@.@.@.. @ @
move_and _echo 5 43 "@..@@.. @

Set foreground and background colors to green.

echo -ne '\ E[32; 42n

Draw el even green |ines.

tput cup 50

for nin “seq 11°;
echo $BLANK80

do

done

Set foreground color to bl ack.
echo -ne '\ E 30m

tput cup 50

Draw t he fences.
echo

e o S O S o S o S O O S S S S T S

s O o S O S O O A O T

tput cup 15 0
echo

e ot T O S S o S o S S S S R S

s O o S O S O O A O T

Set foreground and background colors to white.

echo -ne "\E[37;47m

Draw three white |ines.

for nin “seq 3; do
echo $BLANK8O

done

Set foreground color to bl ack.
echo -ne '\ E 30m

.@E3E0 @ . . @ . GBAD
.@..@..00
.. @. . CoooD GEOD
..@..@..0@
..@..0@..@.
@....@....
@. @"

336

Miscellany

Create 9 files to stores handi caps.
for nin “seq 10 7 68" ; do

t ouch $n
done

Set the first type of "horse"” the script will draw.
HORSE_TYPE=2

Create position-file and odds-file for every "horse"
#+ In these files, store the current position of the horse,
#+ the type and the odds.
for HNin “seq 9°; do

touch horse_${HN} _position

touch odds_${ HN}

echo \-1 > horse_${HN} _position

echo $HORSE TYPE >> horse_${HN} position

Define a random handi cap for horse.

HANDI CAP="random 1_9°
Check if the random1_9 function returned a good val ue.
while ! echo $HANDI CAP | grep [1-9] &> /dev/null; do
HANDI CAP="random 1_9°

done

Define | ast handi cap position for horse.

LHP="expr $HANDI CAP * 7 + 3°

for FILE in “seq 10 7 $LHP'; do

echo $HN >> $FI LE
done

Cal cul at e odds.
case $HANDI CAP in
1) ODDS="echo $HANDI CAP * 0.25 + 1.25 | bc’
echo $0ODDS > odds_${ HN\}

2 | 3) ODDS="echo $HANDI CAP * 0.40 + 1.25 | bc’
echo $0ODDS > odds_${ HN\}

4| 5| 6) ODDS="echo $HANDI CAP * 0.55 + 1.25 | bc’
echo $0ODDS > odds_${ HN\}
7 | 8) ODDS="echo $HANDICAP * 0.75 + 1.25 | bc’
echo $0ODDS > odds_${ HN\}
9) ODDS="echo $HANDI CAP * 0.90 + 1.25 | bc’
echo $0ODDS > odds_${ HN\}
esac

done

Print odds.
print_odds() {

tput cup 6 O

echo -ne '\ E 30; 42n

337

Miscellany

for HNin “seq 9°; do
echo "#$HN odds->" “cat odds_S${HN}"
done

}

Draw the horses at starting |line.
draw_horses() {
tput cup 6 O
echo -ne '\ E 30; 42n
for HNin “seq 9°; do
echo /\\$HN\\" "
done

}
print_odds

echo -ne "\ E[47n

Wait for a enter key press to start the race.

The escape sequence '\ E[?25]"' disables the cursor
tput cup 17 O

echo -e "\E[?25] "' Press [enter] key to start the race..
read -s

Disable normal echoing in the termnal

This avoids key presses that nmight "contam nate" the screen
#+ during the race.

stty -echo

Start the race.

draw_hor ses

echo -ne "\ E 37; 47n
nove_and_echo 18 1 $BLANKS80
echo -ne '\ E[30n
nove_and_echo 18 1 Starting..
sleep 1

Set the colum of the finish |line.
W NNI NG_PCS=74

Define the time the race started.
START _TI ME="date +%"

COL vari abl e needed by follow ng "while" construct.
COL=0

while [$COL -1t $WNNI NG PCS]; do
MOVE_HORSE=0
Check if the random 1 9 function has returned a good val ue.

while ! echo $MOVE_HORSE | grep [1-9] &> /dev/null; do
MOVE_HORSE="random 1_9°

338

Miscellany

done

Define old type and position of the "random zed horse”
HORSE_TYPE="cat horse_${ MOVE_HORSE} position | tail -n 1
COL=$(expr “cat horse_${MOVE_HORSE} position | head -n 1)

ADD_POS=1
Check if the current position is an handi cap position
if seq 10 7 68 | grep -w $COL & /dev/null; then
if grep -w $MOVE_HORSE $COL &> /dev/null; then
ADD_POS=0
grep -v -w $MOVE_HORSE $COL > ${COL} new
rm-f $COL
mv -f ${COL}_new $CCOL
el se ADD POS=1
f
el se ADD POS=1
f
COL="expr $COL + $ADD _PCS
echo $COL > horse_${MOVE_HORSE} position # Store new position

Choose the type of horse to draw.
case $HORSE TYPE in
1) HORSE_TYPE=2; DRAW HORSE=dr aw_hor se_two

2) HORSE TYPE=1; DRAW HORSE=dr aw_horse_one
esac
echo $HORSE TYPE >> horse_${ MOVE_HORSE} position
Store current type

Set foreground color to black and background to green
echo -ne '\ E 30; 42n

Move the cursor to new horse position.
tput cup ~expr $MOVE HORSE + 5° \
“cat horse_${MOVE_HORSE} position | head -n 1°

Draw t he horse.
$DRAW HORSE
usl eep $USLEEP_ARG

When all horses have gone beyond field line 15, reprint odds.
touch fieldlinel5
if [$COL = 15]; then
echo $MOVE HORSE >> fieldlinel5
f
if ["w -l fieldlinel5 | cut -f1 -d" "° =9 1]; then
print_odds
> fieldlinelb
f

Define the | eadi ng horse.
Hl GHEST_POS="cat *position | sort -n | tail -1°

339

Miscellany

Set background color to white.

echo -ne "\E47m

tput cup 17 O

echo -n Current |eader: “grep -w $H GHEST_PCS *position | cut -c7°\

done

Define the time the race finished.
FINISH TI ME="date +%°

Set background color to green and enabl e blinking text.
echo -ne '\ E[30; 42n
echo -en "\ E[5m

Make the wi nning horse blink.

tput cup “expr $MOVE_HORSE + 5° \

“cat horse_${MOVE_HORSE} position | head -n 1°
$DRAW HORSE

Di sable blinking text.
echo -en '\ E 25m

Set foreground and background color to white.
echo -ne "\E[37;47m
nove_and_echo 18 1 $BLANKS80

Set foreground color to bl ack.
echo -ne '\ E 30m

Make wi nner blink.

tput cup 17 O

echo -e "\ E[5mW NNER: $MOVE_HORSE\ E[25m'" (Odds: "cat odds_${ MOVE_HORSE} " "\
" Race tinme: “expr $FINISH TIME - $START_TIME secs"

Restore cursor and old col ors.
echo -en "\ E[?25h"
echo -en "\ E[Ont

Restore echoi ng.
stty echo

Renove race tenp directory.
rm-rf $HORSE_RACE_TMP_DI R

tput cup 19 0
exit O
See also Example A.21, “Colorizing text using hash functions’, Example A.44, “An all-purpose shell

scripting homework assignment solution”, Example A.52, “ Cycling through all the possible color back-
grounds’, and Example A.40, “Petals Around the Rose”.

Miscellany

Caution

Thereis, however, amajor problem with all this. ANS escape sequences are emphatically non-
portable. What works fine on some terminal emulators (or the console) may work differently,
or not at all, on others. A “colorized” script that looks stunning on the script author's machine
may produce unreadable output on someone else's. This somewhat compromises the usefulness
of colorizing scripts, and possibly relegates this technique to the status of a gimmick. Colorized
scriptsare probably inappropriatein acommercial setting, i.e., your supervisor might disapprove.

Alister's ansi-color [http://code.google.com/p/ansi-color/] utility (based on Moshe Jacobson's color utility
[http://bash.deta.in/color-1.1.tar.gz] considerably simplifies using ANSI escape sequences. It substitutes
aclean and logical syntax for the clumsy constructs just discussed.

Henry/teikedvl has likewise created a utility (http://scriptechocol or.sourceforge.net/) to simplify creation
of colorized scripts.

Optimizations

Most shell scripts are quick 'n dirty solutions to non-complex problems. As such, optimizing them for
speed is not much of an issue. Consider the case, though, where a script carries out an important task,
doesit well, but runs too slowly. Rewriting it in a compiled language may not be a palatable option. The
simplest fix would be to rewrite the parts of the script that slow it down. Isit possible to apply principles
of code optimization even to alowly shell script?

Check the loops in the script. Time consumed by repetitive operations adds up quickly. If at all possible,
remove time-consuming operations from within loops.

Use builtincommandsin preferenceto system commands. Builtins executefaster and usually do not launch
a subshell when invoked.

Avoid unnecessary commands, particularly in a pipe.
cat "$file" | grep "$word"
grep "$word" "$file"

The above command-Ilines have an identical effect,
#+ but the second runs faster since it |aunches one fewer subprocess.

The cat command seems especially prone to overuse in scripts.

341

http://code.google.com/p/ansi-color/
http://code.google.com/p/ansi-color/
http://bash.deta.in/color-1.1.tar.gz
http://bash.deta.in/color-1.1.tar.gz
http://scriptechocolor.sourceforge.net/

Miscellany

Disabling certain Bash options can speed up scripts.
As Erik Brandsberg points out:

If you don't need Unicode support, you can get potentially a 2x or more improvement in speed by
simply setting the LC_ALL variable.

export LC ALL=C

[specifies the |ocale as ANSI C,
t her eby di sabling Uni code support]

[In an exanple script ...]
Wt hout [Unicode support]:

eri k@rik-desktop: ~/capture$ tine ./cap-ngrep.sh
live2. pcap > out.txt

real OnR0. 483s
user 1nB4. 470s
Sys Onl2. 869s

Wth [Unicode support]:
eri k@rik-desktop: ~/capture$ tine ./cap-ngrep.sh
live2. pcap > out.txt

real 0nb0. 232s
user 3nb1. 118s
Sys Onmll. 221s
A large part of the overhead that is optimzed is, | believe,

regex match using [[string =~ REGEX]],

but it may help with other portions of the code as well.

| hadn't [seen it] mentioned that this optim zation hel ped
with Bash, but | had seen it helped with "grep,"

so why not try?

Note

Certain operators, notably expr, are very inefficient and might be replaced by double parentheses
arithmetic expansion. See Example A.59, “Testing execution times of various commands’.

Math tests

math via $(())

real OnD. 294s
user On0. 288s
Sys OnD. 008s

math via expr:

342

Miscellany

real 1nml7. 879s # Miuch sl ower!
user OnB8. 600s

Sys OnB. 765s

math via let:

real OnD. 364s

user OonD. 372s

Sys OnD. 000s

Condition testing constructs in scripts deserve close scrutiny. Substitute case for if-then con-
structs and combine tests when possible, to minimize script execution time. Again, refer to Ex-
ample A.59, “Testing execution times of various commands’.

Test using "case" construct:

real onD. 329s
user OmD. 320s
Sys OnD. 000s

Test with if [], no quotes:

real OonD. 438s
user OmD. 432s
Sys OnD. 008s

Test with if [], quotes:

real onD. 476s
user Om0. 452s
Sys OnD. 024s

Test with if [], using -eq:

real onD. 457s
user OmD. 456s
Sys OnD. 000s
Note

Erik Brandsberg recommends using associative arrays in preference to conventional numeric-in-
dexed arraysin most cases. When overwriting valuesin anumeric array, thereisasignificant per-
formance penalty vs. associative arrays. Running atest script confirms this. See Example A.60,
“Associative arrays vs. conventional arrays (execution times)”.

Assi gnment tests

Assigning a sinple variable

real OnD. 418s
user OnD. 416s
Sys OnD. 004s
Assigning a numeric index array entry
real onD. 582s
user OnD. 564s

Miscellany

Sys OnD. 016s

Overwriting a numeric index array entry
real OnR1. 931s

user OnR1. 913s

Sys OnD. 016s

Li near readi ng of nunmeric index array
real 0n0. 422s

user OnD. 416s

Sys OnD. 004s

Assi gni ng an associ ative array entry
real Oml. 800s

user Ontl. 796s

Sys OnD. 004s

Overwriting an associative array entry
real Oml. 798s

user Ontl. 784s

Sys OnD. 012s

Li near readi ng an associative array entry
real 0n0D. 420s

user OnD. 420s

Sys OnD. 000s

Assi gning a random nunber to a sinple variable
real 0n0. 402s

user OnD. 388s

Sys OnD. 016s

Assigning a sparse nuneric index array entry randomy into 64k cells
real Oml2. 678s

user OnlL2. 649s
Sys OnD. 028s
Readi ng sparse nuneric index array entry
real On0D. 087s
user OnD. 084s
Sys OnD. 000s

Assi gning a sparse associative array entry randomy into 64k cells
real 0OnD. 698s

user OnD. 696s
Sys OnD. 004s
Readi ng sparse associative index array entry
real On0D. 083s
user OnD. 084s
Sys OnD. 000s

Use the time and times tool s to profile computation-intensive commands. Consider rewriting time-critical
code sectionsin C, or even in assembler.

Miscellany

Try to minimizefile 1/0O. Bash isnot particularly efficient at handling files, so consider using more appro-

priate tools for this within the script, such as awk or Perl.

Write your scripts in a modular and coherent form, 35 they can be reorganized and tightened up as
necessary. Some of the optimization techniques applicable to high-level languages may work for scripts,
but others, such as loop unrolling, are mostly irrelevant. Above all, use common sense.

For an excellent demonstration of how optimization can dramatically reduce the execution time of ascript,

see Example 16.47, “Monthly Payment on a Mortgage”.

Assorted Tips

Ideas for more powerful scripts

Y ou have a problem that you want to solve by writing a Bash script. Unfortunately, you don't know
quite where to start. One method isto plunge right in and code those parts of the script that come easily,

and write the hard parts as pseudo-code.

#!/ bi n/ bash

ARGCOUNT=1 # Need name as argunent.
E_VRONGARGS=65

if [nunber-of-argunments is-not-equal-to "$ARGCOUNT"]
NNNNNNNNNNNNNNNNNNN ANNNNNNNNNNNNNN

Can't figure out howto code this .

#+ . . . so wite it in pseudo-code.

t hen
echo "Usage: name-of-script nane"
NNNNNNNNNNNNNN Nbre pseudo_ Code
exit $E_WRONGARGS

fi

exit O

Later on, substitute working code for the pseudo-code.

Line 6 becones:
if [$# -ne "$ARGCOUNT"]

Line 12 becones:
echo "Usage: “basenanme $0° nane

For an example of using pseudo-code, see the Square Root exercise.

3This usual ly means liberal use of functions.

Miscellany

To keep arecord of which user scripts have run during a particular session or over anumber of sessions,
add the following lines to each script you want to keep track of. Thiswill keep a continuing file record
of the script names and invocation times.

Append (>>) following to end of each script tracked.

whoami >> $SAVE FI LE # User invoking the script.
echo $0>> $SAVE FILE # Script nane.

dat e>> $SAVE_FI LE # Date and tine.

echo>> $SAVE FI LE # Blank |line as separator.

O course, SAVE FILE defined and exported as environnental variable in ~/.basl
#+ (sonething like ~/.scripts-run)

The >> operator appends lines to afile. What if you wish to prepend aline to an existing file, that is,
to pasteit in at the beginning?

file=data.txt
title="***This is the title line of data text filex**"

echo $title | cat - $file >$file. new

"cat -" concatenates stdout to $file.

End result is

#+ to wite anewfile with $title appended at *begi nni ng*.

Thisisasimplified variant of the Example 19.13, “Prepending alineto afile” script given earlier. And,
of course, sed can aso do this.

A shell script may act as an embedded command inside another shell script, aTcl or wish script, or even
aMakefile. It can be invoked as an external shell command in a C program using thesyst em() call,
i.e,system("script_nane");.

Setting a variable to the contents of an embedded sed or awk script increases the readability of the
surrounding shell wrapper. See Example A.1, “mailformat: Formatting an e-mail message” and Exam-
ple 15.20, “Using export to pass a variable to an embedded awk script”.

Put together files containing your favorite and most useful definitions and functions. As necessary,
“include” one or more of these “library files’ in scripts with either the dot (.) or source command.

SCRI PT LI BRARY

H*

Not e:
No "#!" here.
No "live code" either.

346

Miscellany

Useful variable definitions

ROOT_Ul D=0
E_NOTROOT=101
MAXRETVAL=255
SUCCESS=0

FAl LURE=- 1

Functi ons

Usage ()
{
if [-z "$1"]
t hen
meg=fi | enane
el se
nmsg=$@

fi

#
#
#

echo "Usage: "~ basenane

Check_if _root ()

if ["$UD' -ne "$ROOT

t hen

#
#

Root has $U D 0.
Not root user error
Maxi mum (positive) return value of a function

"Usage: " message

No arg passed.

$0° "$nsg""

Check if root running script.
From "ex39. sh" exanpl e.
ubD]

echo "Must be root to run this script.”

exit $E_NOTROOT
fi

CreateTenpfil eName ()

{
prefix=tenp

#
#

suffix="eval date +%
Tenpfi | enane=$prefi x. $suf fix

#
#

Creates a "unique" tenp fil enane.
From "ex51. sh" exanpl e.

Tests whether *entire string* is al phabetic.
From "i sal pha. sh" exanpl e.

[la-zA-Z]|"") return $FAI LURE; ;

#

Thanks, S.C.

}
i sal pha2 ()
{
[$# -eq 1] || return $FAI LURE
case $1 in
*) return $SUCCESS;
esac
}

347

Miscellany

abs () # Absol ute val ue.
{ # Caution: Max return value = 255.
E_ARGERR=- 999999
if [-z "$1"] # Need arg passed.
t hen
return $E_ARGERR # Qbvi ous error val ue returned.

fi

if ["$1" -ge 0] # |f non-negative,
t hen #

absval =$1 # stays as-is.
el se # Ot herw se,

let "absval = ((0 - $1))" # change sign.

fi

return $absval

}
tol ower () # Converts string(s) passed as argunent(s)
{ #+ to | owercase.
if [-z "$1"] # |f no argunent(s) passed,
t hen #+ send error nessage
echo "(null)" #+ (C-style void-pointer error nessage)
return #+ and return from functi on.

fi

echo "$@ | tr A-Z a-z
Translate all passed argunents ($@.

return

Use command substitution to set a variable to function output.
For exanpl e:

ol dvar="A seT of m Xed-caSe LEtTerS"

newar ="t ol ower "$ol dvar""

echo "$newar" # a set of mxed-case letters

Exercise: Rewite this function to change | owercase passed argument(s)
to uppercase ... toupper() [easy].

R H R R H R

Use special -purpose comment headers to increase clarity and legibility in scripts.

Cauti on.
rm-rf *.zzy ## The "-rf" options to "rni are very dangerous,
##+ especially with wild cards.

#+ Line continuation.
This is line 1

Miscellany

#+ of a multi-line coment,
#+ and this is the final |ine.
#* Not e.

#o0 List item

#> Anot her point of view
while ["$varl" = "end"] #> while test "$varl" = "end"

Dotan Barak contributes template code for a progress bar in a script.

Example 36.17. A Progress Bar

#!1 / bi n/ bash
progress-bar.sh

Aut hor: Dotan Barak (very mnor revisions by ABS Guide author).
Used in ABS Guide with perm ssion (thanks!).

BAR_ W DTH=50

BAR _CHAR START="["
BAR_CHAR END="]"
BAR _CHAR EMPTY="."
BAR CHAR FULL="="
BRACKET_CHARS=2

LI M T=100
print_progress_bar ()
{
Cal cul ate how many characters will be full.
let "full _limt = ((($1 - $BRACKET_CHARS) * $2) / $LIMT)"
Cal cul ate how many characters will be enpty.
let "enpty_limt = ($1 - $BRACKET_CHARS) - ${full _limt}"
Prepare the bar.
bar_| i ne="${ BAR_CHAR_START}"
for ((j=0; j<full_limt; j++)); do
bar _Ii ne="${bar _|ine}${BAR CHAR FULL}"
done
for ((j=0; j<enmpty_ limt; j++)); do
bar _Ii ne="${bar _I|ine}${ BAR CHAR EMPTY}"
done
bar _|i ne="${bar _|ine}${ BAR_ CHAR END} "
printf "98d%6 %" $2 ${bar_I|ine}
}

349

Miscellany

Here is a sanple of code that uses it.
MAX_PERCENT=100
for ((i=0; i<=MAX_PERCENT,; i++)); do

#

usl eep 10000

... O run sone other commands ..
#

print_progress_bar ${BAR WDTH} ${i}
echo -en "\r"
done

echo

exit

A particularly clever use of if-test constructsis for comment blocks.
#!/ bi n/ bash

COMVENT_BLOCK=
Try setting the above variable to some val ue
#+ for an unpl easant surprise

if [$COMVENT_BLOCK]; then

Comrent bl ock --

This is a coment |ine.
This is another coment |ine.
This is yet another conment |ine.

echo "This will not echo."

Conment bl ocks are error-free! Wee!
fi

echo "No nore coments, please."
exit O

Compare this with using here documents to comment out code blocks.

Using the $? exit status variable, ascript may test if aparameter contains only digits, so it can be treated
asan integer.

#!/ bi n/ bash

SUCCESS=0
E_BADI NPUT=85

350

Miscellany

test "$1" -ne 0 -0 "$1" -eq 0 2>/dev/null
An integer is either equal to O or not equal to O.
2>/ dev/null suppresses error nessage.

if [$? -ne "$SUCCESS"]

t hen
echo "Usage: " basenane $0° integer-input"”
exit $E_BADI NPUT

fi

let "sum= $1 + 25" # Whuld give error if $1 not integer.
echo "Sum = $sunf

Any variable, not just a conmmand-line paraneter, can be tested this way.
exit O

The 0 - 255 range for function return values is a severe limitation. Global variables and other
workarounds are often problematic. An alternative method for a function to communicate a value back

to the main body of the script isto have the function writeto st dout (usually with echo) the “return
value,” and assign thisto avariable. Thisis actually avariant of command substitution.

Example 36.18. Return valuetrickery

#!/ bi n/ bash
mul tiplication.sh

i plies parans passed.

multiply () # Ml
{ # WIIl accept a variable nunber of args.

—_—

| ocal product=1

until [-z "$1"] # Until uses up argunents passed...
do
| et "product *= $1"
shift
done
echo $product # WII not echo to stdout,
} #+ since this will be assigned to a vari abl e.

mul t 1=15383; nult 2=25211

val 1="mul tiply $nultl $rmult?2’

Assigns stdout (echo) of function to the variable vall.
echo "$multl1 X $mult2 = $val 1" # 387820813

mul t 1=25; mult2=5; mnult3=20
val 2="mul tiply $multl $rnult2 $mult 3’
echo "$multl X $nmult2 X $nult3 = $val 2" # 2500

mul t 1=188; nul t 2=37; nmnul t 3=25; nul t 4=47
val 3= mul tiply $multl1 $nult2 $mult3 $nul t 4
echo "$multl X $nmult2 X $nmult3 X $nmult4 = $val 3" # 8173300

351

Miscellany

exit O

The same technique al so works for alphanumeric strings. This means that afunction can “return” anon-
numeric value.

capitalize_ichar () # Capitalizes initial character
{ #+ of argunment string(s) passed.
string0="$@ # Accepts nul tiple argunents.

firstchar=${string0:0: 1} # First character
stringl=${string0: 1} # Rest of string(s)

FirstChar="echo "$firstchar" | tr a-z A-Z
Capitalize first character

echo "$FirstChar$stringl" # Qutput to stdout.

}

newstring="capitalize_ichar "every sentence should start with a capita
echo "$newstring" # Every sentence should start with a capita

It iseven possible for afunction to “return” multiple values with this method.

Example 36.19. Even morereturn valuetrickery

#! / bi n/ bash
sum product. sh
A function may "return” nore than one val ue.

sum and_product () # Cal cul ates both sum and product of passed args

{
echo $(($1 + $2)) $(($1 * $2))
Echoes to stdout each cal cul ated val ue, separated by space

}

echo

echo "Enter first nunber "
read first

echo

echo "Enter second nunber
read second

letter.™’
letter.

echo

retval = sum and_product $first $second # Assigns output of function
sum=" echo "$retval" | awk '{print $1}'° # Assigns first field
product="echo "$retval" | awk '{print $2}'° # Assigns second field.

echo "$first + $second = S$sunt

echo "$first * $second = $product”

echo

352

Miscellany

exit O

Caution

There can be only one echo statement in the function for thisto work. If you alter the previous
example:

sum and_product ()

{
echo "This is the sum and_product function.” # This nmesses things up!
echo $(($1 + $2)) $(($1 * $2))

}

retval = sum and_product $first $second # Assigns output of function.

Now, this will not work correctly.

Next in our bag of tricks are techniques for passing an array to a function, then “returning” an array
back to the main body of the script.

Passing an array involves loading the space-separated elements of the array into a variable with com-
mand substitution. Getting an array back asthe “return value” from afunction uses the previously men-
tioned strategem of echoing the array in the function, then invoking command substitution and the (...)
operator to assign it to an array.

Example 36.20. Passing and returning arrays

#!/ bi n/ bash
array-function.sh: Passing an array to a function and ...
"returning” an array froma function

Pass_Array ()

{
| ocal passed_array # Local vari abl e!
passed_array=(“echo "$1")
echo "${passed_array[@}"
VList all the elenents of the new array
#+ decl ared and set within the function.

original _array=(elementl elenent2 el enent3 el enment4 el enent5)

echo
echo "original _array = ${original _array[@}"
List all elenments of original array.

This is the trick that permts passing an array to a function.
R SRR S S S Rk S S R S S

argunent =" echo ${original _array[@}"

353

Miscellany

R R Sk R I SRR R I R S A R

Pack a variable

#+ with all the space-separated el ements of the original array.
#

Attenpting to just pass the array itself will not work.

This is the trick that allows grabbing an array as a "return val ue”
R R E I O S S Sk I SR S S R R S S R S S S

returned_array=("~ Pass_Array "$argunent"’)
R R E I O S S Sk I SR S S R R S S R S S S

Assign 'echoed' output of function to array vari abl e.

echo "returned_array = ${returned_array[@}"

Now, try it again,
#+ attenpting to access (list) the array fromoutside the function
Pass_Array "$argunent”

The function itself lists the array, but

#+ accessing the array fromoutside the function is forbidden
echo "Passed array (within function) = ${passed_array[@}"

NULL VALUE since the array is a variable local to the function

echo
BHAHBHBHHHIHH R HH A H AR BB R R R A AR
And here is an even nore explicit exanple:
ret_array ()

for element in {11..20}

do

echo "$el emrent " # Echo individual elements
done #+ of what will be assenbled into an array.

}

arr=($(ret_array)) # Assenble into array.

echo "Capturing array \"arr\" fromfunction ret_array ()

echo "Third element of array \"arr\" is ${arr[2]}." # 13 (zero-indexed)
echo -n "Entire array is: "

echo ${arr[@} # 11 12 13 14 15 16 17 18 19 20

echo

exit O

Nathan Coulter points out that passing arrays with el ements containing
#+ whi t espace breaks this exanple.

354

Miscellany

For a more elaborate example of passing arrays to functions, see Example A.10, “Game of Life".

Using the double-parentheses construct, it is possible to use C-style syntax for setting and increment-
ing/decrementing variables and in for and while loops. See Example 11.13, “A C-style for loop” and
Example 11.18, “ C-style syntax in awhile loop”.

Setting the path and umask at the beginning of a script makes it more portable -- more likely to run on
a“foreign” machine whose user may have bollixed up the $PATH and umask.

#!/ bi n/ bash
PATH=/ bi n: /usr/bin:/usr/local/bin ; export PATH
umask 022 # Files that the script creates will have 755 perm ssion.

Thanks to lan D. Allen, for this tip.

A useful scripting technique is to repeatedly feed the output of a filter (by piping) back to the same
filter, but with adifferent set of arguments and/or options. Especially suitable for this are tr and grep.

From "wstrings.sh" exanple.

wWist="strings "$1" | tr AAZ a-z | tr '[:space:]' Z | \
tr -cs '[:alpha:]' Z | tr -s "\173-\377" Z2 | tr Z2"' '~

Example 36.21. Fun with anagrams

#!/ bi n/ bash
agram sh: Pl ayi ng ganmes with anagrans.

Find anagrans of...

LETTERSET=et aoi nshrdl u

FILTER=" ' # How many letters m ninmun?
1234567

anagram "$LETTERSET" | # Find all anagrans of the letterset...
grep "$FILTER" | # Wth at least 7 letters,

grep '"Nis' | # starting with "is'

grep -v 's$' | # no plurals

grep -v 'ed$ # no past tense verbs

Possible to add many conbi nati ons of conditions and filters.

Uses "anagram' utility

#+ that is part of the author's "yaw " word |ist package.
http://ibiblio.org/pub/Linux/libs/yaw -0.3.2.tar.gz

http://bash.deta.in/yaw-0.3.2.tar.gz

exit O # End of code.

355

Miscellany

bash$ sh agram sh
i sl ander

i solate

i sol ead

i sot heral

[Exerci ses:

Mdify this script to take the LETTERSET as a command-|ine paraneter.

Paraneterize the filters inlines 11 - 13 (as with $FILTER),
#+ so that they can be specified by passing argunents to a function.

For a slightly different approach to anagranmm ng,
#+ see the agran®.sh script.

See also Example 29.4, “On-line connect status’, Example 16.25, “Generating “ Crypto-Quote” Puz-
zles”, and Example A.9, “ Soundex conversion”.

Use “anonymous here documents’ to comment out blocks of code, to save having to individually com-
ment out each line with a#. See Example 19.11, “Commenting out a block of code”.

Running a script on a machine that relies on a command that might not be installed is dangerous. Use
whatis to avoid potential problems with this.

CVD=comandl # First choice.
Pl anB=conmand?2 # Fal | back opti on.

comrand_t est =$(whatis "$CVMD"' | grep 'nothing appropriate')
|If 'commandl' not found on system, 'whatis' will return
#+ "commandl: not hi ng appropriate.”

#
A safer alternative is:
command_t est =$(whereis "$CVD' | grep \/)

But then the sense of the follow ng test would have to be reversed,
#+ since the $comrand_test variable holds content only if

#+ the $CMD exists on the system

(Thanks, bojster.)

if [[-z "$command_test"]] # Check whether command present.
t hen

$CMVD optionl option2 # Run commandl with options.
el se # O herw se,
$Pl anB #+ run conmmand2.

fi

356

Miscellany

An if-grep test may not return expected results in an error case, when text is output to st der r, rather
that st dout .

if I's -1 nonexistent filename | grep -q 'No such file or directory’
then echo "File \"nonexistent _filenane\" does not exist."
fi

Redirecting st der r tost dout fixesthis.

if I's -1 nonexistent _filename 2>&1 | grep -q 'No such file or directory’
NNNN

then echo "File \"nonexistent filename\" does not exist."
fi

Thanks, Chris Martin, for pointing this out.

 |f you absolutely must access a subshell variable outside the subshell, here'saway to do it.

TMPFI LE=t npfile # Create a tenp file to store the variable.

(# I nside the subshel

i nner _vari abl e=l nner

echo $i nner_vari abl e

echo $inner _variable >>$TMPFI LE # Append to tenmp file.

)
Qutside the subshel
echo; echo "----- "; echo
echo $inner_variabl e # Nul |, as expected.
echo "----- "; echo
Now ...
read i nner_variabl e <$TMPFI LE # Read back shell vari abl e.
rm-f "$TMPFI LE" # Get rid of tenp file.
echo "$i nner_vari abl e" # 1t's an ugly kludge, but it works.

The run-parts command is handy for running a set of command scriptsin a particular sequence, espe-
cially in combination with cron or at.

For doing multiple revisions on a complex script, use the rcs Revision Control System package.

Among other benefits of this is automatically updated ID header tags. The co command in rcs does a
parameter replacement of certain reserved key words, for example, replacing # $1 d$ in a script with
something like:

$1d$
Widgets

357

Miscellany

It would be niceto be able to invoke X-Windows widgets from ashell script. There happen to exist severa
packages that purport to do so, namely Xscript, Xmenu, and widtools. Thefirst two of these no longer seem
to be maintained. Fortunately, it is still possible to obtain widtools here [http://www.batse.msf c.nasa.gov/
~mallozzi/home/software/xforms/src/widtools-2.0.tgz] .

Caution

The widtools (widget tools) package requiresthe XFormslibrary to beinstalled. Additionally, the
Makefile needs some judicious editing before the package will build on atypical Linux system.
Finally, three of the six widgets offered do not work (and, in fact, segfault).

Thedialog family of tools offersamethod of calling “dialog” widgetsfrom ashell script. The original dia-
log utility worksin atext console, but its successors, gdial og, Xdialog, and kdial og use X-Windows-based
widget sets.

Example 36.22. Widgetsinvoked from a shell script

#1/ bi n/ bash
di al og.sh: Using 'gdialog" wdgets.

Must have 'gdialog' installed on your systemto run this script.
Or, you can replace all instance of 'gdialog belowwth 'kdialog
Version 1.1 (corrected 04/ 05/05)

This script was inspired by the followi ng article.
"Scripting for X Productivity,” by Marco Fioretti,
LI NUX JOURNAL, I|ssue 113, Septenber 2003, pp. 86-9.
Thank you, all you good people at LJ.

Input error in dialog box.

E_| NPUT=85

Di mensi ons of display, input w dgets.
HEI GHT=50

W DTH=60

Qutput file nane (constructed out of script name).
OUTFI LE=$0. out put

Display this script in a text w dget.
gdialog --title "Displaying: $0" --textbox $0 $HElI GHT $W DTH

Now, we'll try saving input in a file.
echo -n "VARI ABLE=" > $OUTFI LE
gdialog --title "User Input” --inputbox "Enter variable, please:" \

$HEI GAT $W DTH 2>> $OUTFI LE

if ["$?" -eq O]
It's good practice to check exit status.

358

http://www.batse.msfc.nasa.gov/~mallozzi/home/software/xforms/src/widtools-2.0.tgz
http://www.batse.msfc.nasa.gov/~mallozzi/home/software/xforms/src/widtools-2.0.tgz
http://www.batse.msfc.nasa.gov/~mallozzi/home/software/xforms/src/widtools-2.0.tgz

Miscellany

t hen
echo "Executed \"dialog box\" without errors.”
el se
echo "Error(s) in \"dialog box\" execution.”
O, clicked on "Cancel™", instead of "OK" button.
rm $OUTFI LE

exit $E_| NPUT
fi

Now, we'll retrieve and display the saved vari abl e.
$OUTFILE # ' Source' the saved file.
echo "The variable input in the \"input box\" was: "$VARI ABLE""

rm $OUTFILE # Clean up by renmoving the temp file.
Some applications may need to retain this file.

exit $?

Exercise: Rewite this script using the 'zenity' w dget set.

The xmessage command is a simple method of popping up a message/query window. For example:
xmessage Fatal error in script! -button exit

The latest entry in the widget sweepstakes is zenity. This utility pops up GTK+ dialog widgets-and-
windows, and it works very nicely within a script.

get _info ()
{
zenity --entry # Pops up query w ndow .
#+ and prints user entry to stdout.
Also try the --calendar and --scale options.
}

answer =$(get_info) # Capture stdout in $answer variable.

echo "User entered: "$answer

For other methods of scripting with widgets, try Tk or wish (Tcl derivatives), Perl Tk (Perl with Tk exten-
sions), tksh (ksh with Tk extensions), XForms4Per| (Perl with XForms extensions), Gtk-Perl (Perl with
Gtk extensions), or PyQt (Python with Qt extensions).

Security Issues
Infected Shell Scripts

A brief warning about script security is indicated. A shell script may contain a worm, trojan, or even a
virus. For that reason, never run asroot ascript (or permit it to be inserted into the system startup scriptsin

359

Miscellany

/ et c/ rc. d) unlessyou have obtained said script from a trusted source or you have carefully analyzed
it to make certain it does nothing harmful.

Various researchers at Bell Labs and other sites, including M. Douglas Mcllroy, Tom Duff, and Fred
Cohen have investigated the implications of shell script viruses. They conclude that it is all too easy for
even anovice, a“script kiddie,” to write one.

Here isyet another reason to learn scripting. Being able to |ook at and understand scripts may protect your
system from being compromised by a rogue script.

Hiding Shell Script Source

For security purposes, it may be necessary to render a script unreadable. If only there were a utility to
create a stripped binary executable from a script. Francisco Rosales shc -- generic shell script compiler
[http://www.datsi .fi.upm.es/~frosal/sources/] does exactly that.

Unfortunately, according to an article [http://www.linuxjournal.com/article/8256] in the October, 2005
Linux Journal, the binary can, in at least some cases, be decrypted to recover the original script source.
Still, this could be a useful method of keeping scripts secure from all but the most skilled hackers.

Writing Secure Shell Scripts

Dan Stromberg suggests the following guidelines for writing (relatively) secure shell scripts.
» Don't put secret datain environment variables.

» Don't pass secret data in an external command's arguments (pass them in via a pipe or redirection in-
stead).

» Set your $PATH carefully. Don't just trust whatever path you inherit from the caller if your script is
running asroot. In fact, whenever you use an environment variabl e inherited from the caller, think about
what could happen if the caller put something misleading in the variable, e.g., if the caller set SHOME
to/ etc.

Portability Issues

Itiseasier to port ashell than ashell script.
--Larry Wall

This book deals specifically with Bash scripting on a GNU/Linux system. All the same, users of sh and
ksh will find much of value here.

Asit happens, many of the various shellsand scripting languages seem to be converging toward the POSI X
1003.2 standard. Invoking Bash with the - - posi x option or inserting aset -0 posix at the head of ascript
causes Bash to conform very closely to this standard. Another alternative is to use a #!/bin/sh sha-bang
header in the script, rather than #!/bin/bash. S Notethat / bi n/ sh isalink to/ bi n/ bash in Linux and
certain other flavors of UNIX, and a script invoked this way disables extended Bash functionality.

4See Mariusvan Oers article, Unix Shell Scri pting Maware [http://www.virusbtn.com/magazine/archives/200204/mal shell.xml], and al so the Den-
ning reference in the bibliography.
50r, better yet, #!/binfenv sh.

360

http://www.datsi.fi.upm.es/~frosal/sources/
http://www.datsi.fi.upm.es/~frosal/sources/
http://www.linuxjournal.com/article/8256
http://www.linuxjournal.com/article/8256
http://www.virusbtn.com/magazine/archives/200204/malshell.xml
http://www.virusbtn.com/magazine/archives/200204/malshell.xml

Miscellany

Most Bash scripts will run as-isunder ksh, and vice-versa, since Chet Ramey has been busily porting ksh
featuresto the latest versions of Bash.

On a commercial UNIX machine, scripts using GNU-specific features of standard commands may not
work. This has become less of a problem in the last few years, as the GNU utilities have pretty much
displaced their proprietary counterparts even on “big-iron” UNIX. Caldera's release of the source [http://
linux.oreillynet.com/pub/a/linux/2002/02/28/cal dera.html] to many of the original UNIX utilities has ac-
celerated the trend.

Bash has certain features that the traditional Bourne shell lacks. Among these are:
 Certain extended invocation options

» Command substitution using $() notation

» Brace expansion

 Certain array operations, and associative arrays

» The double brackets extended test construct

» The double-parentheses arithmetic-eval uation construct
* Certain string manipulation operations

* Process substitution

» A Regular Expression matching operator

» Bash-specific builtins

» Coprocesses

See the Bash F.A.Q. [ftp://ftp.cwru.edu/pub/bash/FAQ] for a complete listing.

A Test Suite

Let usillustrate some of the incompatibilities between Bash and the classic Bourne shell. Download and
install the “Heirloom Bourne Shell” [http://freshmeat.net/projects/bournesh] and run the following script,
first using Bash, then the classic sh.

Example 36.23. Test Suite

#1/ bi n/ bash

test-suite.sh

A partial Bash conpatibility test suite.

Run this on your version of Bash, or sonme other shell.

defaul t _option=FAlI L # Tests below will fail unless .

echo

echo -n "Testing
sleep 1; echo -n
sleep 1; echo -n
sleep 1, echo ". ™

361

http://linux.oreillynet.com/pub/a/linux/2002/02/28/caldera.html
http://linux.oreillynet.com/pub/a/linux/2002/02/28/caldera.html
http://linux.oreillynet.com/pub/a/linux/2002/02/28/caldera.html
ftp://ftp.cwru.edu/pub/bash/FAQ
ftp://ftp.cwru.edu/pub/bash/FAQ
http://freshmeat.net/projects/bournesh
http://freshmeat.net/projects/bournesh

Miscellany

echo

Doubl e brackets
String="Doubl e brackets supported?"
echo -n "Double brackets test: "

if [["$String" = "Double brackets supported?']]
t hen

echo " PASS'
el se

echo "FAIL"

f

Doubl e brackets and regex matching
String="Regex matchi ng supported?”
echo -n "Regex matching: "

if [["$String" =~ R.... mat chi ng* 1]
t hen
echo " PASS"
el se
echo "FAIL"
f
Arrays
test _arr=%defaul t_option # FAIL

Array=(If supports arrays will print PASS)
test _arr=${Array[5]}
echo "Array test: $test_arr”

Command Substitution
csub_test ()

{
echo "PASS"

}

test _csub=%def aul t _option # FAIL

test _csub=$(csub_test)

echo "Command substitution test: $test csub”

echo

Conpleting this script is an exercise for the reader.
Add to the above simlar tests for doubl e parentheses,
#+ brace expansion, process substitution, etc.

exit $?

Shell Scripting Under Windows

Even usersrunning that other OS can run UNIX-like shell scripts, and therefore benefit from many of the
lessons of this book. The Cygwin [http://sourceware.cygnus.com/cygwin/] package from Cygnus and the

362

http://sourceware.cygnus.com/cygwin/
http://sourceware.cygnus.com/cygwin/

Miscellany

MKS utilities [http://mww.mkssoftware.com/] from Mortice Kern Associates add shell scripting capabil-
itiesto Windows.

Another aternativeis UWIN [http://www2.research.att.com/~gsf/download/uwin/uwin.html], written by
David Korn of AT&T, of Korn Shell fame.

In 2006, Microsoft released the Windows Powershell®, which contains limited Bash-like command-line
scripting capabilities.

363

http://www.mkssoftware.com/
http://www.mkssoftware.com/
http://www2.research.att.com/~gsf/download/uwin/uwin.html
http://www2.research.att.com/~gsf/download/uwin/uwin.html

Chapter 37. Bash, versions 2, 3, and 4
Bash, version 2

The current version of Bash, the one you have running on your machine, is most likely version 2.xx.yy,
3.XX.yy, or 4.XX.yy.

bash$ echo $BASH VERSI ON
3.2.25(1)-rel ease

The version 2 update of the classic Bash scripting language added array variables, string and parameter
expansion, and a better method of indirect variable references, among other features.

Example 37.1. String expansion

#!/ bi n/ bash

String expansion.
Introduced with version 2 of Bash.

Strings of the form$' xxx'
#+ have the standard escaped characters interpreted.

$' Ringing bell 3 times \a \a \a'

May only ring once with certain term nals.

O ...

May not ring at all, depending on term nal settings.
echo $' Three formfeeds \f \f \f'

echo $' 10 newines \n\n\n\n\n\n\n\n\n\n'

echo $'\102\ 141\ 163\ 150

B a s h

Cctal equival ent of characters.

exit

Example 37.2. Indirect variablereferences - the new way

#!/ bi n/ bash

Indirect variable referencing.

This has a few of the attributes of references in Ct+.
a=l etter_of _al phabet

| etter_of al phabet=z

echo "a = $a" # Direct reference.

echo "Now a = ${!a}" # Indirect reference.

364

Bash, versions 2, 3, and 4

The ${!variable} notation is nmore intuitive than the old
#+ eval var1=\$$var2

echo

t=table_cell 3
tabl e_cell 3=24

echo "t = ${!t}" #t =24
tabl e_cel |l 3=387
echo "Value of t changed to ${!t}" # 387

No 'eval' necessary.

This is useful for referencing nenbers of an array or table,
#+ or for simulating a multi-dinmensional array.

An indexing option (anal ogous to pointer arithnetic)

#+ woul d have been nice. Sigh

exit O
See al so, ind-ref.sh exanple.

Example 37.3. Simple database application, using indirect variablereferencing

#1/ bi n/ bash
resistor-inventory. sh
Sinpl e dat abase / tabl e-1 ookup application

=TT
Data

B1723_val ue=470 # Ohns
B1723_power di ssi p=. 25 # Watts
B1723_col orcode="yel | ow vi ol et - br own" # Col or bands
B1723_1 oc=173 # Where they are
B1723_i nvent ory=78 # How many

B1724_val ue=1000
B1724_power di ssi p=. 25

B1724 col or code="br own- bl ack-red"
B1724 1 oc=24N
B1724_i nvent or y=243

B1725_val ue=10000
B1725_power di ssi p=. 125

B1725_col or code="br own- bl ack- or ange"
B1725_| oc=24N

B1725_i nvent or y=89

echo

PS3=' Ent er cat al og nunber:

365

Bash, versions 2, 3, and 4

echo

sel ect catal og_nunber in "B1723" "B1724" "B1725"
do
I nv=${cat al og_nunber}_i nventory
Val =${ cat al og_nunber}_val ue
Pdi ssi p=${ cat al og_nunber}_power di ssip
Loc=${cat al og_nunber} _I oc
Ccode=${ cat al og_nunber} _col or code

echo

echo "Catal og nunmber $catal og_nunber:"

Now, retrieve value, using indirect referencing.

echo "There are ${!Inv} of [${!Val} ohm/ ${!Pdissip} watt]\
resistors in stock." # n n

As of Bash 4.2, you can replace "ohnf with \u2126 (using echo -e).
echo "These are located in bin # ${!Loc}."

echo "Their color code is \"${!Ccode}\"."

br eak
done

echo; echo
Exerci ses:
1) Rewite this script to read its data froman external file.

2) Rewite this script to use arrays,
#+ rather than indirect variable referencing.

VWi ch nmethod is nore straightforward and intuitive?
VWi ch nethod is easier to code?

Not es

-

Shell scripts are inappropriate for anything except the nost sinple

#+ dat abase applications, and even then it involves workarounds and kl udges.
Much better is to use a |l anguage with native support for data structures,
#+ such as C++ or Java (or even Perl).

exit O

Example 37.4. Using arrays and other miscellaneoustrickery to deal four random
hands from a deck of cards

#! / bi n/ bash
cards. sh

Deals four random hands from a deck of cards.

UNPI CKED=0
Pl CKED=1

366

Bash, versions 2, 3, and 4

DUPE_CARD=99

LOAER LI M T=0
UPPER LI M T=51
CARDS_| N_SUI T=13
CARDS=52

decl are -a Deck

declare -a Suits

declare -a Cards

1t would have been easier to inplenent and nore intuitive

#+ with a single, 3-dinmensional array.

Perhaps a future version of Bash will support multidimensional arrays.

initialize_Deck ()

{

i =$LONVER LIM T

until ["$i" -gt $UPPER LIMT]

do
Deck[i]=$UNPI CKED # Set each card of "Deck" as unpicked.
let "i += 1"

done

echo

}

initialize_ Suits ()

{

Sui t s[0] =C #C ubs
Sui t s[1] =D #Di anonds
Sui ts[2] =H #Hearts
Sui t s[3] =S #Spades

}

initialize_Cards ()

{

Cards=(2 3456789 10J QKA

Alternate nmethod of initializing an array.

}

pick_a card ()
{
car d_nunber =$RANDOM
let "card_nunmber % $CARDS" # Restrict range to O - 51, i.e., 52 cards.
if ["${Deck[card_nunber]}" -eq $UNPI CKED]
t hen
Deck[car d_nunber] =$PI CKED
return $card_nunber
el se
return $DUPE_CARD
f

parse_card ()

367

Bash, versions 2, 3, and 4

{
nunber =$1

let "suit_number = nunber / CARDS IN SU T"
sui t =${ Sui t s[suit_nunber]}

echo -n "$suit-"

let "card_no = nunber % CARDS IN SU T"

Car d=${ Car ds[card_no] }

printf % 4s $Card

Print cards in neat columms.

}

seed_random () # Seed random nunber generator

{ # What happens if you don't do this?

seed="eval date +%"

let "seed % 32766"

RANDOMV=$seed

} # Consider other nethods of seeding the random nunber generat or

deal _cards ()

{

echo

cards_pi cked=0
while ["$cards_picked" -le SUPPER LIMT]
do

pick_a card

t=$7

if ["$t" -ne $DUPE_CARD]
t hen
parse_card $t

u=$car ds_pi cked+1
Change back to 1-based indexing, tenporarily. Wy?
let "u % $CARDS_IN_SU T"
if ["$u" -eq 0] # Nested if/then condition test.
t hen
echo
echo
fi # Each hand set apart with a blank |ine.

| et "cards_picked += 1"
f
done
echo
return O

}

Structured programm ng:
Entire program | ogic nodul ari zed in functions.

368

Bash, versions 2, 3, and 4

seed_random
initialize_Deck
initialize Suits
initialize_Cards
deal cards

#:::::::::::::::
exit
Exercise 1:

Bash,

Add comments to thoroughly document this script.

Exerci se 2:

Add a routine (function) to print out each hand sorted in suits.
You may add other bells and whistles if you like.

Exerci se 3:
Sinplify and stream ine the logic of the script.

version 3

On July 27, 2004, Chet Ramey released version 3 of Bash. This update fixed quite a number of bugs and
added new features.

Some of the more important added features:

A new, more generalized {a..z} brace expansion operator.

#!/ bi n/ bash

for i in {1..10}
Sinpler and nore straightforward than
#+ for i in $(seq 10)
do

echo -n "$i
done

echo

#12345678910

O just
echo {a..z} # abcdefghij k|l mnopgrstuvwxyz
echo {e..n} # ef ghi j kI m

Bash, versions 2, 3, and 4

echo {z..a} # zyxwvutsrqgponml kji hgfedcba
Works backwards, too.

echo {25..30} # 25 26 27 28 29 30

echo {3..-2} # 3210-1-2

echo {X .d} # XYzZz[] ~_ abecd
Shows (some of) the ASCI| characters between Z and a,
#+ but don't rely on this type of behavi or because

echo {]..a} # {]..a}
\y?

You can tack on prefixes and suffixes.
echo "Number #"{1..4}, "..."
Nunmber #1, Nunber #2, Nunmber #3, Nunber #4,

You can concatenate brace-expansion sets.

echo {1..3}{x..z}" +" "..."
Ix + 1y + 1z + 2x + 2y + 2z + 3x + 3y + 3z + ..
Cenerates an al gebrai c expression
This could be used to find pernutations.

You can nest brace-expansion sets.
echo {{a..c},{1..3}}
#abcl1l23
The "comma operator” splices together strings.

OBHHEHIHHERE HHHERETY HHARRTEETHNE BRETHHEREE HHERRE ARRRRR T AR
Unfortunately, brace expansion does not lend itself to paraneterization
var 1=1

var 2=5

echo {$varl.. $var2} # {1..5}

Yet, as Emiliano G points out, using "eval" overcones this limtation
start=0
end=10
for index in $(eval echo {$start..$end})
do
echo -n "$index " #0123456782910
done
echo
The ${!array[@]} operator, which expandsto al the indices of agiven array.
#!/ bi n/ bash

Array=(el ement-zero el enment-one el enment-two el enent-three)

echo ${Array[0]} # el ement - zero
First elenent of array.

370

Bash, versions 2, 3, and 4

echo ${!'Array[@} # 0 1 2 3
Al the indices of Array.

for i in ${!Array[@}
do
echo ${Array[i]} # element-zero
el ement - one
el ement-two
el ement-three
#
Al the elenents in Array.
done

The =~ Regular Expression matching operator within a double brackets test expression. (Perl has a
similar operator.)

#!/ bi n/ bash
vari able="This is a fine ness."
echo "$vari abl e"

Regex matching with =~ operator within [[doubl e brackets]].
if [["$variable" =~ T......... fin*es*]]
NOTE: As of version 3.2 of Bash, expression to match no | onger quoted.
t hen
echo "match found"
mat ch found
fi

Or, more usefully:

#!/ bi n/ bash

i nput =$1

if [["$input" =~ "[0-9][0-9][0-9]-[0-9][0-9]-[0-9][0-9]1[0-9][0-9]1"]]

N NOTE: Quoting not necessary, as of version 3.2 of Bash.

NNN-NN- NNNN (where each Nis a digit).
t hen
echo "Social Security nunber.”
Process SSN.
el se
echo "Not a Social Security nunber!"
O, ask for corrected input.
fi

For additional examples of using the =~ operator, see Example A.29, “ Spammer Hunt”, Example 19.14,
“Parsingamailbox”, Example A.35, “Locating split paragraphsin atext file”, and Example A.24, “ Con-
verting to HTML”.

371

Bash, versions 2, 3, and 4

Thenew set -0 pipefail optionisuseful for debugging pipes. If this option is set, then the exit
status of apipeisthe exit status of the last command in the pipe to fail (return anon-zero value), rather
than the actual final command in the pipe.

See Example 16.43, “Updating FC4”.
Caution

The update to version 3 of Bash breaks a few scripts that worked under earlier versions. Test
critical legacy scripts to make sure they still work!

As it happens, a couple of the scripts in the Advanced Bash Scripting Guide had to be fixed up
(see Example 9.4, “Timed read”, for instance).

Bash, version 3.1

The version 3.1 update of Bash introduces a number of bugfixes and a few minor changes.

» The += operator is now permitted in in places where previously only the = assignment operator was

recognized.

a=1

echo $a #1

a+=5 # Wn't work under versions of Bash earlier than 3.1
echo $a # 15

a+=Hel | o

echo $a # 15Hel l o

Here, += functions as a string concatenation operator. Note that its behavior in this particular context
is different than within alet construct.

a=1

echo $a # 1

| et a+=5 # Integer arithnmetic, rather than string concatenation
echo $a # 6

|l et at=Hello # Doesn't "add" anything to a.
echo $a # 6

Jeffrey Haemer points out that this concatenation operator can be quite useful. In this instance, we
append a directory to the SPATH.

bash$ echo $PATH
[fusr/bin:/bin:/usr/local/bin:/usr/X11R6/bin/:/usr/ganes

bash$ PATH+=:/opt/bin

bash$ echo $PATH

372

Bash, versions 2, 3, and 4

[fusr/bin:/bin:/usr/local/bin:/usr/X11R6/bin/:/usr/ganmes:/opt/bin

Bash, version 3.2

Thisis pretty much a bugfix update.
» Inglobal parameter substitutions, the pattern no longer anchors at the start of the string.
» The- - wor dexp option disables process substitution.

e The =~ Regular Expression match operator no longer requires quoting of the pattern within[[...]].

Caution

In fact, quoting in this context is not advisable as it may cause regex evauation to fail. Chet
Ramey states in the Bash FAQ that quoting explicitly disables regex evaluation. See also the
Ubuntu Bug List [https://bugs.launchpad.net/ubuntu-website/+bug/109931] and Wikinerdson
Bash syntax [http://en.wikinerds.org/index.php/Bash_syntax_and semantics].

Setting shopt -s compat31 in a script causes reversion to the original behavior.

Bash, version 4

Chet Ramey announced Version 4 of Bash on the 20th of February, 2009. This release has a number of
significant new features, as well as some important bugfixes.

Among the new goodies:

« Associative arrays.

An associative array can be thought of as a set of two linked arrays -- one holding the data, and
the other the keys that index the individual elements of the data array.

Example 37.5. A simple address database

#!/ bi n/ bash4
fetch_address. sh

decl are - A address
-A option decl ares associative array.

address[Charl es] ="414 W 10th Ave., Baltinore, MD 21236"
address[John] ="202 E. 3rd St., New York, Ny 10009"
address[W1 ma] =" 1854 Vernont Ave, Los Angel es, CA 90023"

echo "Charles's address is ${address[Charles]}."
Charles's address is 414 W 10th Ave., Baltinore, MD 21236.

Tobemore specific, Bash 4+ has limited support for associative arrays. It's a bare-bones implementation, and it lacks the much of the functionality
of such arrays in other programming languages. Note, however, that associative arrays in Bash seem to execute faster and more efficiently than
numerically-indexed arrays.

373

https://bugs.launchpad.net/ubuntu-website/+bug/109931
https://bugs.launchpad.net/ubuntu-website/+bug/109931
http://en.wikinerds.org/index.php/Bash_syntax_and_semantics
http://en.wikinerds.org/index.php/Bash_syntax_and_semantics
http://en.wikinerds.org/index.php/Bash_syntax_and_semantics

Bash, versions 2, 3, and 4

echo "WIm's address is ${address[WInm]}."

WIlm's address is 1854 Vernont Ave, Los Angel es, CA 90023.
echo "John's address is ${address[John]}."

John's address is 202 E. 3rd St., New York, Ny 10009

echo

echo "${!address[*]}" # The array indices ..
Charles John WIm

Example 37.6. A somewhat mor e elabor ate addr ess database

#!/ bi n/ bash4
fetch_address-2. sh
A nore el aborate version of fetch_address. sh

SUCCESS=0
E _DB=99 # Error code for mssing entry.

decl are - A address
-A option decl ares associ ative array.

store_address ()

{
addr ess[$1] =" $2"
return $?

}

fetch_address ()

if [[-z "${address[$1]}" 1]

t hen
echo "$1's address is not in database."
return $E DB

fi

echo "$1's address is ${address[$1]}."
return $?

store_address "Lucas Fayne" "414 W 13th Ave., Baltinore, MD 21236"
store_address "Arvid Boyce" "202 E. 3rd St., New York, NY 10009"
store_address "Vel ma Wnston" "1854 Vernont Ave, Los Angel es, CA 90023"

Exercise

Rewite the above store_address calls to read data froma file,

#+ then assign field 1 to nanme, field 2 to address in the array.

Each line in the file would have a format corresponding to the above.

Use a while-read loop to read fromfile, sed or awk to parse the fields

fetch_address "Lucas Fayne"

374

Bash, versions 2, 3, and 4

Lucas Fayne's address is 414 W 13th Ave., Baltinore, MD 21236
fetch_address "Vel ma W nston"

Vel ma Wnston's address is 1854 Vernont Ave, Los Angel es, CA 90023.
fetch_address "Arvid Boyce"

Arvid Boyce's address is 202 E. 3rd St., New York, NY 10009
fetch_address "Bozo Bozeman"

Bozo Bozeman's address is not in database.

exit $? # In this case, exit code = 99, since that is function return

See Example A.53, “Morse Code Practice” for an interesting usage of an associative array.
Caution
Elements of the index array may include embedded space characters, or even leading and/or

trailing space characters. However, index array elements containing only whitespace are not
permitted.

addr ess|] =" Bl ank” # Error!

Enhancements to the case construct: the ; ; & and ; & terminators.

Example 37.7. Testing characters
#!/ bi n/ bash4

test _char ()

{
case "$1" in
[[:print:]]) echo "$1 is a printable character.";; & # |
The ;; & term nator continues to the next pattern test. |
[[:alnum]]) echo "$1 is an al pha/nuneric character.";;& # v
[[:alpha:]]) echo "$1 is an al phabetic character.";; & # v
[[:1ower:]]) echo "$1 is a | owercase al phabetic character.";; &
[[:digit:]]) echo "$1 is an nuneric character."; & # |
The ;& term nator executes the next statement ...
O/W(m) EChO "********************************";; # \Y
AAAAANAN 0 even With a dummy pattern
esac
}
echo

test _char 3

3 is a printable character.

3 is an al pha/ nuneric character.
3 is an nuneric character.

EE SRR S bk S S S R R e S I S R

echo

test _char m

mis a printable character.

mis an al pha/ nuneric character.
mis an al phabetic character.

375

Bash, versions 2, 3, and 4

mis a | owercase al phabetic character.
echo

test _char /
/ is a printable character.

echo

The ;; & term nator can save conplex if/then conditions.
The ;& i s somewhat | ess useful.

e The new coproc builtin enables two parallel processes to communicate and interact. As Chet Ramey
statesin the Bash FAQ 2, ver. 4.01;

Thereisanew 'coproc' reserved word that specifies a coprocess:

an asynchronous command run with two pipes connected to the creating
shell. Coprocs can be named. The input and output file descriptors

and the PID of the coprocess are available to the calling shell in
variables with coproc-specific names.

George Dimitriu explains,

"... coproc ... is afeature used in Bash process substitution,
which now is made publicly available."

Thismeansit can be explicitly invoked in a script, rather than
just being a behind-the-scenes mechanism used by Bash.

Coprocesses use file descriptors. File descriptors enable processes and pipes to communicate.

#!/ bi n/ bash4
A coprocess conmuni cates with a while-read | oop.

coproc { cat nx_data.txt; sleep 2; }
NNNNANNNN

Try running this without "sleep 2" and see what happens.

while read -u ${COPROC[0]} line # S${COPROCIO0]} is the

do #+ file descriptor of the coprocess.
echo "$line" | sed -e '"s/line/NOT- ORI G NAL- TEXT/'
done
kill $COPROC_PI D # No | onger need the coprocess,
#+ so kill its PID.
But, be careful!

#!/ bi n/ bash4

echo; echo
a=aaa
b=bbb

2Copyright 1995-2009 by Chester Ramey.

376

Bash, versions 2, 3, and 4

C=ccc

coproc echo "one two three"

while read -u ${COPROC[0]} a b c; # Note that this |oop

do #+ runs in a subshell
echo "Inside while-read | oop: ";
echo "a = $a"; echo "b = $b"; echo "c = $c"
echo "coproc file descriptor: ${COPROCCO]}"

done

a = one

b = two

¢ = three

So far, so good, but
echO "---cccmmmce e "

echo "Qutsi de whi "
echo "a = $a" #
echo "b $h" #
echo "¢ = $c" #

echo "coproc file descriptor: ${COPROCCO]}"

echo
The coproc is still running, but
#+ it still doesn't enable the parent process

#+ to "inherit" variables fromthe child process, the while-read | oop

Conpare this to the "badread.sh” script.

Caution

The coprocess is asynchronous, and this might cause a problem. It may terminate before an-
other process has finished communicating with it.

#!/ bi n/ bash4

coproc cpname { for i in {0..10}; do echo "index = $i"; done; }
ANAANN This is a *named* coprocess.

read -u ${cpnane[0]}

echo $REPLY # index =0

echo ${ COPRCC[0] } #+ No output ... the coprocess tined out

after the first loop iteration.

However, George Dimtriu has a partial fix.

coproc cpname { for i in {0..10}; do echo "index = $i"; done; sleep 1
echo hi > nyo; cat - >> nyo; }

ANAAN This IS a *naned* coprocess.

echo "I am mai n"$'\04' >&${cpnane[1]}

nyf d=${ cpnane[0] }
echo nyfd=$nyfd

377

Bash, versions 2, 3, and 4

while read -u $nyfd
do

H#HHH echo $REPLY;

done

echo $cpnanme_PI D

Run this with and without the comrented-out while-loop, and it is
#+ apparent that each process, the executing shell and the coprocess,
#+ waits for the other to finish witing inits own wite-enabl ed pipe.

» The new mapfile builtin makesit possible to load an array with the contents of atext file without using
aloop or command substitution.

#!/ bi n/ bash4

mapfile Arrl < $0
Sanme result as Arrl=($(cat $0))
echo "${Arrl[@}" # Copies this entire script out to stdout.

echo "--"; echo

But, not the sane as read -a (N
read -a Arr2 < $0
echo "${Arr2[@}" # Reads only first line of script into the array.

exit

e The read builtin got a minor facelift. The - t timeout option now accepts (decimal) fractional values
3and the- i option permits preloading the edit buffer. 4 Unfortunately, these enhancements are still a
work in progress and not (yet) usablein scripts.

» Parameter substitution gets case-modification operators.

#!/ bi n/ bash4

var =ver yM xedUpVari abl e
echo ${var}
echo ${var”}

veryM xedUpVari abl e
Ver yM xedUpVari abl e

H* #

First char --> uppercase.
echo ${var~"} # VERYM XEDUPVARI ABLE
*x Al chars --> uppercase.
echo ${var,} # veryM xedUpVari abl e
* First char --> | owercase.
echo ${var,,} # verym xedupvari abl e
** Al'l chars --> | owercase.

The declare builtin now acceptsthe- | lowercase and - ¢ capitalize options.

#!/ bi n/ bash4

This only works with pipes and certain other special files.
‘But only in conjunction with readline, i.e., from the command-line.

378

Bash, versions 2, 3, and 4

declare -1 varl # W11l change to | owercase

var 1=M xedCaseVARI ABLE

echo "$varl" # m xedcasevari abl e

Sane effect as echo $varl | tr A-Z a-z

declare -c var2 # Changes only initial char to uppercase.
var 2=ori gi nal |l y_| ower case

echo "$var2" # Oiginally_|l onercase

NOT the same effect as echo $var2 | tr a-z A-Z

Brace expansion has more options.
Increment/decrement, specified in the final term within braces.
#!/ bi n/ bash4

echo {40..60..2}
40 42 44 46 48 50 52 54 56 58 60
Al the even nunbers, between 40 and 60.

echo {60..40..2}

60 58 56 54 52 50 48 46 44 42 40

Al the even nunbers, between 40 and 60, counting backwards.
In effect, a decrenent.

echo {60..40..-2}

The sane output. The minus sign is not necessary.

But, what about letters and synbol s?

echo {X .d}

#XYZ[] ~_ abecd

Does not echo the \ which escapes a space.

Zero-padding, specified in the first term within braces, prefixes each term in the output with the same
number of zeroes.

bash4$ echo {010.. 15}
010 011 012 013 014 015

bash4$ echo {000.. 10}
000 001 002 003 004 005 006 007 008 009 010

Substring extraction on positional parameters now starts with $0 as the zero-index. (This corrects an
inconsistency in the treatment of positional parameters.)

#!/ bi n/ bash
show- par ans. bash
Requires version 4+ of Bash.

Invoke this scripts with at | east one positional paraneter.

379

Bash, versions 2, 3, and 4

E_BADPARAMS=99

if [-z "$1"]

t hen
echo "Usage $0 parant ...
exit $E_BADPARANG

fi

echo ${ @ 0}

bash3 show paramns. bash4 one two three
one two three

bash4 show paramns. bash4 one two three
show- par ans. bash4 one two three

$0 $1 $2 $3
The new ** globbing operator matches filenames and directories recursively.

#!/ bi n/ bash4
filelist.bash4

shopt -s globstar # Miust enable gl obstar, otherw se ** doesn't work.
The gl obstar shell option is newto version 4 of Bash.

echo "Using *"; echo
for filename in *
do
echo "$fil enanme”
done # Lists only files in current directory ($PWD).

echo; echo "-------------- ; echo

echo "Using **"
for filename in **
do
echo "$fil enane”
done # Lists conplete file tree, recursively.

exit
Using *

al l nyfiles
filelist.bash4

Usi ng **

al l nyfiles
al I nyfiles/file.index.txt
al l nyfil es/ny_nusic

380

Bash, versions 2, 3, and 4

al I nyfil es/ ny_nusi c/ me-si ngi ng- 60s-f ol ksongs. ogg
al I nyfil es/ nmy_nusi c/ nme-si ngi ng- oper a. ogg

al | nyfil es/ ny_nusic/ pi ano-1esson. 1. ogg

al I nyfil es/ny_pictures

al I nyfil es/ ny_pictures/at-beach-w th-Jade. png

al I nyfil es/my_pictures/picnic-wth-Mlissa.png
filelist.bash4

» The new $BASHPID interna variable.

There is anew builtin error-handling function named command_not_found_handle.
#!/ bi n/ bash4
command_not _found_handl e ()

{ # Accepts inplicit parameters.
echo "The followi ng command is not valid: \""$1\"""

echo "Wth the follow ng argunment(s): \""$2\"" \""$3\""" # %4, $5 ...

} # $1, $2, etc. are not explicitly passed to the function
bad_command argl arg2

The foll owing command is not valid: "bad_comrand"
Wth the follow ng argument(s): "argl" "arg2"

Editorial comment

Associative arrays? Coprocesses? Whatever happened to the lean and mean Bash we have come
to know and love? Could it be suffering from (horrors!) “feature creep”? Or perhaps even Korn
shell envy?

Note to Chet Ramey: Please add only essential featuresin future Bash releases -- perhaps for-each
loops and support for multi-dimensional arrays. ° Most Bash users won't need, won't use, and likely
won't greatly appreciate complex “features’ like built-in debuggers, Perl interfaces, and bolt-on
rocket boosters.

Bash, version 4.1

Version 4.1 of Bash, released in May, 2010, was primarily a bugfix update.

» The printf command now acceptsa- v option for setting array indices.

 Within double brackets, the > and < string comparison operators now conform to the locale. Since the
|ocale setting may affect the sorting order of string expressions, this has side-effects on comparison tests

within[[...]] expressions.

» Theread builtin now takes a- N option (read -N chars), which causes the read to terminate after chars
characters.

SAnd while you're at it, consider fixing the notorious piped read problem.

381

Bash, versions 2, 3, and 4

Example 37.8. Reading N characters

#! / bi n/ bash
Requires Bash version -ge 4.1 ..

num char s=61

read -N $num chars var < $0 # Read first 61 characters of script!
echo "$var"
exit

#i##H##H Qut put of Script #####H#

#! / bi n/ bash
Requires Bash version -ge 4.1 ..

num char s=61

» Here documents embedded in $(...) command substitution constructs may terminate with a
simple).

Example 37.9. Using a here document to set a variable

#!/ bi n/ bash
here-comsub. sh
Requi res Bash version -ge 4.1 ..

mul ti_line_var=$(cat <<ENDxxx
This is line 1 of the variable
This is line 2 of the variable
This is line 3 of the variable

Rather than what Bash 4.0 requires:
#+ that the termnating limt string and
#+ the term nating cl ose-parenthesis be on separate |ines.

ENDxxXx

#)

echo "$multi _line_var"

Bash still emits a warning, though

warning: here-docunent at |line 10 delimted
#+ by end-of-file (wanted ~ ENDxxx')

Bash, version 4.2

Version 4.2 of Bash, released in February, 2011, contains a number of new features and enhancements,
in addition to bugfixes.

382

Bash, versions 2, 3, and 4

 Bash now supportsthe\ u and\ U Unicode escape.

Unicodeisacross-platform standard for encoding into numerical values letters and graphic sym-
bols. This permits representing and displaying charactersin foreign alphabets and unusual fonts.

echo -e '"\u2630' # Horizontal triple bar character.
Equi val ent to the nore roundabout:
echo -e "\ xE2\ x98\ xB0"
Recogni zed by earlier Bash versions.

echo -e "\ u220F # Pl (Geek letter and mat hemati cal synbol)
echo -e '"\u0416' # Capital "ZHE" (Cyrillic letter)

echo -e '"\u2708' # A rplane (D ngbat font) synbol

echo -e '"\u2622' # Radi oactivity trefoil

echo -e "The anplifier circuit requires a 100 \u2126 pull-up resistor."

uni code_var ="'\ u2640'
echo -e $uni code_var # Femal e synbol
printf "$unicode_var \n" # Fenale synbol, with newine

And for sonething a bit nore el aborate .

W can store Unicode synbols in an associative array,
#+ then retrieve them by nane.

Run this in a gnone-termnal or a termnal with a large, bold font

#+ for better legibility.
decl are -A synbol # Associative array.

synbol [script_E] ="'\ u2130'
synbol [script_F] ="\u2131"
synbol [script_J]="\u2110'
synbol [script_M="\u2133'
synbol [Rx] ="' \u211F

synbol [TEL] =" \ u2121"
synbol [FAX] ="' \ u213B'
synbol [care_of] ="\ u2105'
synbol [account] ="'\ u2100'
synbol [trademar k] ="' \u2122'

echo -ne "${synbol [script_E]}
echo -ne "${synbol [script_F]}
echo -ne "${synbol [script_J]}
echo -ne "${synbol [script_M}
echo -ne "${synbol [Rx]} "

383

Bash, versions 2, 3, and 4

echo -ne "${synbol [TEL] } "
echo -ne "${synbol [FAX] } "
echo -ne "${synbol [care_of]}
echo -ne "${synbol [account]}
echo -ne "${synbol [trademark]} "
echo

Note

The above example usesthe $' ... ' string-expansion construct.

When thel ast pi pe shell optionis set, the last command in a pipe doesn't run in a subshell.

Example 37.10. Piping input to a read

#!1 / bi n/ bash
| ast pi pe-option.sh

l'ine="" # Nul | val ue.

echo "\$line = "$line"" # $line =

echo

shopt -s | ast pipe # Error on Bash version -1t 4.2.

echo "Exit status of attenpting to set \"lastpipe\" option is $?"
1if Bash version -1t 4.2, 0 otherw se.

echo

head -1 $0 | read line # Pipe the first line of the script to read.

ANNNNNNNN Not in a subshell!!ll
echo "\$line = "$line""

A der Bash rel eases $line =

Bash version 4.2 $l i ne = #!/Dbin/bash

Thisoption offers possible “fixups® for these example scripts: Example 34.3, “ Piping the output of echo
toaread’ and Example 15.8, “Problems reading from a pipe’.

Negative array indices permit counting backwards from the end of an array.

Example 37.11. Negative array indices

#! / bi n/ bash
neg-array. sh
Requires Bash, version -ge 4.2.

array=(zero one two three four five) # Six-element array.
0 1 2 3 4 5
-6 -5 -4 -3 -2 -1

Negative array indices now permtted.

384

Bash, versions 2, 3, and 4

echo ${array[-1]} # five

echo ${array[-2]} # four

#o.o..

echo ${array[-6]} # zero

Negative array indices count backward fromthe |ast el ement+1.

But, you cannot index past the beginning of the array.
echo ${array[-7]} # array: bad array subscript

So, what is this new feature good for?

echo "The last elenent in the array is "${array[-1]}""

Which is quite a bit nore straightforward than

echo "The last element in the array is "${array[${#array[*]}-1]}
echo

And ...

i ndex=0
let "neg_element_count = 0 - ${#array[*]}"
Number of elenments, converted to a negative nunber.

while [$index -gt $neg_el ement_count]; do
((index--)); echo -n "${array[index]} "
done # Lists the elenments in the array, backwards.
W have just simulated the "tac" conmand on this array.
echo

See al so neg-offset.sh

Substring extraction uses a negative length parameter to specify an offset from the end of the target
string.

Example 37.12. Negative parameter in string-extraction constr uct
#!/ bi n/ bash

Bash, version -ge 4.2

Negative |l ength-index in substring extraction

Inportant: It changes the interpretation of this construct!

st ri ngZ=abcABC123ABCabc

echo ${stringz} # abcABC123ABCabc
Position within string: 0123456789.. ...
echo ${stringZ: 2: 3} # CAB

Count 2 chars forward from string begi nning, and extract 3 chars.
${string: position:l|ength}

So far, nothing new, but now ...

abcABC123ABCabc
Position within string: 0123....6543210

385

Bash, versions 2, 3, and 4

echo ${stringZ: 3: -6} # ABC123

AN

Index 3 chars forward from begi nning and 6 chars backward from end,
#+ and extract everything in between.

${string:offset-fromfront:offset-from end}

\Wen the "l ength" paraneter is negative,

#+ it serves as an offset-fromend paraneter.

See al so neg-array. sh.

386

Chapter 38. Endnotes
Author's Note

doce ut discas
(Teach, that you yourself may learn.)

How did | come to write a scripting book? It's a strange tale. It seems that a few years back | needed to
learn shell scripting -- and what better way to do that than to read agood book on the subject? | waslooking
to buy atutorial and reference covering al aspects of the subject. | was looking for a book that would
take difficult concepts, turn them inside out, and explain them in excruciating detail, with well-commented
examples. Lin fact, | was looking for this very book, or something very much like it. Unfortunately, it
didn't exist, and if | wanted it, I'd have to write it. And so, here we are, folks.

That reminds me of the apocryphal story about a mad professor. Crazy as aloon, the fellow was. At the
sight of abook, any book -- at the library, at a bookstore, anywhere -- he would become totally obsessed
with the idea that he could have written it, should have written it -- and done a better job of it to boot.
He would thereupon rush home and proceed to do just that, write a book with the very same title. When
he died some years later, he allegedly had several thousand books to his credit, probably putting even
Asimov to shame. The books might not have been any good, who knows, but does that really matter?
Here's afellow who lived his dream, even if he was obsessed by it, driven by it . . . and somehow | can't
help admiring the old coot.

About the Author

Who is this guy anyhow?
The author claims no credentials or specia qualifications, 2 other than a compulsion to write. 8

This book is somewhat of a departure from his other major work, HOW-2 Meet Women:
The Shy Man's Guide to Relationships [http://bash.detain/fhmw60.zip]. He has aso writ-
ten the Software-Building HOWTO [http://tldp.org/HOWTO/Software-Building-HOWTO.html]. Of
late, he has been trying his (heavy) hand at fiction. Dave Dawson Over Berlin (First
Installment) [http://bash.deta.in/dave-dawson-over-berlin.epub] Dave Dawson Over Berlin (Se-
cond Installment) [http://bash.deta.in/dave-dawson-over-berlin.ll.epub] and Dave Dawson Over
Berlin (Third Installment) [http://bash.deta.in/dave-dawson-over-berlin.lll.epub] . He aso has a
few Instructables (here [http://www.instructables.com/id/Arduino-Morse-Code-Shield/], here [http://
www.instructables.com/id/Haywired-Hackduino/], here [http://www.instructables.com/id/Arduino-DIY -
SD-Card-Logging-Shield/], here [http://www.instructables.com/id/Binguino-An-Arduino-based-Bin-
go-Number-Generato/], here [http://www.instructables.com/id/The-Raspberry-Pi-L apdock-Connection/],
here [http://www.instructables.com/id/The-Raspberry-Pi-Arduino-Connection/], and here [http:/
www.instructables.com/id/Switchable-Dual -V oltage-33v5v-Hacduino/] to his (dis)credit.

A Linux user since 1995 (Slackware 2.2, kernel 1.2.1), the author has emitted a few software truf-
fles, including the cruft [http://ibiblio.org/pub/Linux/utils/file/cruft-0.2.tar.gz] one-time pad encryption
utility, the mcalc [http://ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz] mortgage calculator, the
judge [http://ibiblio.org/pub/Linux/games/amusements/judge-1.0.tar.gz] Scrabble® adjudicator, the yawl

MThisis the notorious fl og it to death technique that works so well with slow learners, eccentrics, odd ducks, fools and geniuses.

2In fact, he has no credentials or specia qualifications. He's a school dropout with no formal credentials or professional experience whatsoever.
None. Zero. Nada. Aside from the ABS Guide, his major claim to fame is a First Place in the sack race at the Colfax Elementary School Field
Day in June, 1958.

3Those who can, do. Those who cantt . . . get an MCSE.

387

http://bash.deta.in/hmw60.zip
http://bash.deta.in/hmw60.zip
http://bash.deta.in/hmw60.zip
http://tldp.org/HOWTO/Software-Building-HOWTO.html
http://tldp.org/HOWTO/Software-Building-HOWTO.html
http://bash.deta.in/dave-dawson-over-berlin.epub
http://bash.deta.in/dave-dawson-over-berlin.epub
http://bash.deta.in/dave-dawson-over-berlin.epub
http://bash.deta.in/dave-dawson-over-berlin.II.epub
http://bash.deta.in/dave-dawson-over-berlin.II.epub
http://bash.deta.in/dave-dawson-over-berlin.II.epub
http://bash.deta.in/dave-dawson-over-berlin.III.epub
http://bash.deta.in/dave-dawson-over-berlin.III.epub
http://bash.deta.in/dave-dawson-over-berlin.III.epub
http://www.instructables.com/id/Arduino-Morse-Code-Shield/
http://www.instructables.com/id/Arduino-Morse-Code-Shield/
http://www.instructables.com/id/Haywired-Hackduino/
http://www.instructables.com/id/Haywired-Hackduino/
http://www.instructables.com/id/Haywired-Hackduino/
http://www.instructables.com/id/Arduino-DIY-SD-Card-Logging-Shield/
http://www.instructables.com/id/Arduino-DIY-SD-Card-Logging-Shield/
http://www.instructables.com/id/Arduino-DIY-SD-Card-Logging-Shield/
http://www.instructables.com/id/Binguino-An-Arduino-based-Bingo-Number-Generato/
http://www.instructables.com/id/Binguino-An-Arduino-based-Bingo-Number-Generato/
http://www.instructables.com/id/Binguino-An-Arduino-based-Bingo-Number-Generato/
http://www.instructables.com/id/The-Raspberry-Pi-Lapdock-Connection/
http://www.instructables.com/id/The-Raspberry-Pi-Lapdock-Connection/
http://www.instructables.com/id/The-Raspberry-Pi-Arduino-Connection/
http://www.instructables.com/id/The-Raspberry-Pi-Arduino-Connection/
http://www.instructables.com/id/Switchable-Dual-Voltage-33v5v-Hacduino/
http://www.instructables.com/id/Switchable-Dual-Voltage-33v5v-Hacduino/
http://www.instructables.com/id/Switchable-Dual-Voltage-33v5v-Hacduino/
http://ibiblio.org/pub/Linux/utils/file/cruft-0.2.tar.gz
http://ibiblio.org/pub/Linux/utils/file/cruft-0.2.tar.gz
http://ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz
http://ibiblio.org/pub/Linux/apps/financial/mcalc-1.6.tar.gz
http://ibiblio.org/pub/Linux/games/amusements/judge-1.0.tar.gz
http://ibiblio.org/pub/Linux/games/amusements/judge-1.0.tar.gz
http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz

Endnotes

[http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz] word gaming list package, and the Quacky [http:/
bash.deta.in/gky.README.html] anagramming gaming package. He got off to arather shaky start in the
computer game -- programming FORTRAN [V on a CDC 3800 (on paper coding pads, with occasional
forays on a keypunch machine and a Friden Flexowriter) -- and is not the least bit nostalgic for those days.

Living in4an out-of-the-way community with wife and orange tabby, he cherishes human frailty, especially
his own.

Where to Go For Help

The author [mailto:thegrendel .abs@gmail.com] is no longer supporting or updating this document. He
will not answer questions about this book or about general scripting topics.

If you need assistance with a schoolwork assignment, read the pertinent sections of this and other
reference works. Do your best to solve the problem using your own wits and resources. Please do
not waste the author's time. Y ou will get neither help nor sympathy. s

Likewise, kindly refrain from annoying the author with solicitations, offers of employment, or “busi-
ness opportunities.” He is doing just fine, and requires neither help nor sympathy, thank you.

Please note that the author will not answer scripting questions for Sun/Solaris/Oracle or Apple sys-
tems. The endarkened execs and the arachnoid corporate attorneys of those particular outfits have
been using litigation in a predatory manner and/or as a weapon against the Open Source Commu-
nity. Any Solaris or Apple users needing scripting help will therefore kindly direct their concerns
to corporate customer service.

... sophisticated in mechanism but possibly agile operating under noises being extremely suppressed ...

--Cl-300 printer manual

Tools Used to Produce This Book

Hardware

A used IBM Thinkpad, model 760XL laptop (P166, 104 meg RAM) running Red Hat 7.1/7.3. Sure, it's
slow and has a funky keyboard, but it beats the heck out of a No. 2 pencil and aBig Chief tablet.

Update: upgraded to a 770Z Thinkpad (P2-366, 192 meg RAM) running FC3. Anyone feel like donating
alater-model laptop to a starving writer <g>?

Update: upgraded to a T61 Thinkpad running Mandriva 2011. No longer starving <g>, but not too proud
to accept donations.

Software and Printware

i. Bram Moolenaar's powerful SGML-aware vim [http://www.vim.org] text editor.

ii. OpenJade [http://www.netfolder.com/DSSSL/], aDSSSL rendering engine for converting SGML doc-
uments into other formats.

4Sometimes it seems as if he has spent his entire life flouting conventional wisdom and defying the sonorous Voice of Authority: “Hey, you can't
do that!”
Swell, if you absolutely insist, you can try modifying Example A.44, “An all-purpose shell scripting homework assignment solution” to suit your
purposes.

388

http://ibiblio.org/pub/Linux/libs/yawl-0.3.2.tar.gz
http://bash.deta.in/qky.README.html
http://bash.deta.in/qky.README.html
http://bash.deta.in/qky.README.html
mailto:thegrendel.abs@gmail.com
mailto:thegrendel.abs@gmail.com
http://www.vim.org
http://www.vim.org
http://www.netfolder.com/DSSSL/
http://www.netfolder.com/DSSSL/

Endnotes

iii.Norman Walsh's DSSSL stylesheets [http://nwal sh.com/docbook/dsssl/].

iv.DocBook, The Definitive Guide, by Norman Walsh and Leonard Muellner (O'Reilly, ISBN
1-56592-580-7). Thisis till the standard reference for anyone attempting to write adocument in Doc-
book SGML format.

Credits

Community participation made this project possible. The author gratefully acknowledges that writing this
book would have been unthinkable without help and feedback from all you people out there.

Philippe Martin [mailto:feloy@freefr] trandated the first version (0.1) of this document into Doc-
Book/SGML. While not on the job at asmall French company as a software devel oper, he enjoysworking
on GNU/Linux documentation and software, reading literature, playing music, and, for his peace of mind,
making merry with friends. Y ou may run across him somewhere in France or in the Basgue Country, or
you can email him at feloy@free.fr [mailto:feloy@free.fr].

Philippe Martin also pointed out that positional parameters past $9 are possible using { bracket} notation.
(See Example 4.5, “ Positional Parameters’).

Stéphane Chazelas [mailto:stephane_chazelas@yahoo.fr] sent a long list of corrections, additions, and
example scripts. More than a contributor, he had, in effect, for a while taken on the role of co-editor for
this document. Merci beaucoup!

Paulo Marcel Coelho Aragao offered many corrections, both major and minor, and contributed quite a
number of helpful suggestions.

| would liketo especially thank Patrick Callahan, Mike Novak, and Pal Domokosfor catching bugs, point-
ing out ambiguities, and for suggesting clarifications and changes in the preliminary version (0.1) of this
document. Their lively discussion of shell scripting and general documentation issues inspired me to try
to make this document more readable.

I'm grateful to Jim Van Zandt for pointing out errors and omissions in version 0.2 of this document. He
also contributed an instructive example script.

Many thanksto Jordi Sanfeliu [mailto:mikaku@fiwix.org] for giving permission to use hisfine tree script
(Example A.16, “tree: Displaying a directory tre€”), and to Rick Boivie for revising it.

Likewise, thanks to Michel Charpentier [mailto:charpov@cs.unh.edu] for permission to use his dc factor-
ing script (Example 16.52, “ Factoring”).

Kudos to Noah Friedman [mailto:friedman@prep.ai.mit.edu] for permission to use his string function
script (Example A.18, “string functions: C-style string functions”).

Emmanuel Rouat [mailto:emmanuel .rouat@wanadoo.fr] suggested corrections and additions on command
substitution, aliases, and path management. He also contributed a very nice sample . bashr c file (Ap-
pendix M, Sample. bashr c and. bash_profi | e Files).

Heiner Steven [mailto:heiner.steven@odn.de] kindly gave permission to use his base conversion script,
Example 16.48, “Base Conversion”. He also made a number of corrections and many helpful suggestions.
Specia thanks.

Rick Boivie contributed the delightfully recursive ph.sh script (Example 36.11, “A (useful) script that
recursively callsitself”), revised the tree.sh script (Example A.16, “tree: Displaying adirectory tree”), and
suggested performance improvements for the monthlypmt.sh script (Example 16.47, “Monthly Payment
on aMortgage”).

389

http://nwalsh.com/docbook/dsssl/
http://nwalsh.com/docbook/dsssl/
mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:feloy@free.fr
mailto:stephane_chazelas@yahoo.fr
mailto:stephane_chazelas@yahoo.fr
mailto:mikaku@fiwix.org
mailto:mikaku@fiwix.org
mailto:charpov@cs.unh.edu
mailto:charpov@cs.unh.edu
mailto:friedman@prep.ai.mit.edu
mailto:friedman@prep.ai.mit.edu
mailto:emmanuel.rouat@wanadoo.fr
mailto:emmanuel.rouat@wanadoo.fr
mailto:heiner.steven@odn.de
mailto:heiner.steven@odn.de

Endnotes

Florian Wisser enlightened me on some of the fine points of testing strings (see Example 7.6, “Testing
whether astring isnull™), and on other matters.

Oleg Philon sent suggestions concerning cut and pidof.

Michael Zick extended the empty array example to demonstrate some surprising array properties. He
also contributed the isspammer scripts (Example 16.41, “Analyzing a spam domain” and Example A.28,
“Spammer |dentification”).

Marc-Jano Knopp sent corrections and clarifications on DOS batch files.

Hyun Jin Cha found several typos in the document in the process of doing a Korean trandation. Thanks
for pointing these out.

Andreas Abraham sent in along list of typographical errors and other corrections. Special thanks!

Others contributing scripts, making helpful suggestions, and pointing out errorswere Gabor Kiss, Leopold
Toetsch, Peter Tillier, Marcus Berglof, Tony Richardson, Nick Drage (script ideas!), Rich Bartell, Jess
Thrysoee, Adam Lazur, Bram Mool enaar, Baris Cicek, Greg Keraunen, Keith Matthews, Sandro Magi, Al-
bert Reiner, Dim Segebart, Rory Winston, Lee Bigelow, Wayne Pollock, “jipe,” “bojster,” “nyal,” “Hob-
bit,” “Ender,” “Little Monster” (Alexis), “Mark,” “Patsie,” “vladz,” Peggy Russell, Emilio Conti, lan. D.
Allen, Hans-Joerg Diers, Arun Giridhar, Dennis Leeuw, Dan Jacobson, Aurelio Marinho Jargas, Edward
Scholtz, Jean Helou, ChrisMartin, Lee Maschmeyer, Bruno Haible, Wilbert Berendsen, Sebastien Godard,
Bjon Eriksson, John MacDonald, John Lange, Joshua Tschida, Troy Engel, Manfred Schwarb, Amit Singh,
Bill Gradwohl, E. Choroba, David Lombard, Jason Parker, Steve Parker, Bruce W. Clare, William Park,
VerniaDamiano, Mihai Maties, Mark Alexander, Jeremy Impson, Ken Fuchs, Jared Martin, Frank Wang,
Sylvain Fourmanoit, Matthew Sage, Matthew Walker, Kenny Stauffer, Filip Moritz, Andrzej Stefanski,
Daniel Albers, Jeffrey Haemer, Stefano Palmeri, Nils Radtke, Sigurd Solaas, Serghey Rodin, Jeroen Dom-
burg, Alfredo Pironti, Phil Braham, Bruno de Oliveira Schneider, Stefano Falsetto, Chris Morgan, Walter
Dnes, Linc Fessenden, Michadl latrou, Pharis Monalo, Jesse Gough, Fabian Kreutz, Mark Norman, Har-
ald Koenig, Dan Stromberg, Peter Knowles, Francisco Lobo, Mariusz Gnhiazdowski, Sebastian Arming,
Chetankumar Phulpagare, Benno Schulenberg, Tedman Eng, Jochen DeSmet, Juan Nicolas Ruiz, Oliver
Beckstein, Achmed Darwish, Dotan Barak, Richard Neill, Albert Siersema, Omair Eshkenazi, Geoff Lee,
Graham Ewart, JuanJo Ciarlante, Cliff Bamford, Nathan Coulter, Ramses Rodriguez Martinez, Evgeniy
Ivanov, Craig Barnes, George Dimitriu, Kevin LeBlanc, Antonio Macchi, Tomas Pospisek, David Wheel -
er, Erik Brandsberg, YongYe, Andreas Kiihne, Padraig Brady, Joseph Steinhauser, and David Lawyer
(himself an author of four HOWTOs).

My gratitude to Chet Ramey [mailto:chet@po.cwru.edu] and Brian Fox for writing Bash, and building
into it elegant and powerful scripting capahilities rivaling those of ksh.

Very special thanks to the hard-working volunteers at the Linux Documentation Project [http://
www.tldp.org]. The LDP hosts a repository of Linux knowledge and lore, and has, to a great extent, en-
abled the publication of this book.

Thanks and appreciation to IBM, Red Hat, Google, the Free Software Foundation [http://www.fsf.org],
and all the good people fighting the good fight to keep Open Source software free and open.

Belated thanks to my fourth grade teacher, Miss Spencer, for emotional support and for convincing me
that maybe, just maybe | wasn't atotal loss.

Thanks most of al to my wife, Anita, for her encouragement, inspiration, and emotional support.

Disclaimer

(Thisisavariant of the standard LDP [http://www.tldp.org] disclaimer.)

390

mailto:chet@po.cwru.edu
mailto:chet@po.cwru.edu
http://www.tldp.org
http://www.tldp.org
http://www.tldp.org
http://www.fsf.org
http://www.fsf.org
http://www.tldp.org
http://www.tldp.org

Endnotes

No liability for the contents of this document can be accepted. Use the concepts, examples and information
at your own risk. There may be errors, omissions, and inaccuracies that could cause you to lose data, harm
your system, or induce involuntary electrocution, so proceed with appropriate caution. The author takes
no responsibility for any damages, incidental or otherwise.

Asit happens, it is highly unlikely that either you or your system will suffer ill effects, aside from uncon-
trollable hiccups. In fact, the raison d'etre of this book isto enable its readers to analyze shell scripts and
determine whether they have unanticipated conseguences.

391

Bibliography
Those who do not understand UNIX are condemned to reinvent it, poorly.

--Henry Spencer

Peter Denning. Computers Under Attack: Intruders, Worms, and Viruses. ACM Press. Copyright © 1990.
0-201-53067-8.

Ken Burtch. Linux Shell Scripting with Bash [http: /imww.samspublishing.convtitle/0672326426] . 1st edition. Sams
Publishing (Pearson). Copyright © 2004. 0672326426.

Daniel Goldman. Definitive Guide to Sed [http://mww.sed-book.comy]. 1st edition. Copyright © 2013.

Dale Dougherty and Arnold Robbins. Sed and Awk. 2nd edition. O'Reilly and Associates. Copyright © 1997.
1-156592-225-5.

Jeffrey Friedl. Mastering Regular Expressions. O'Reilly and Associates. Copyright © 2002. 0-596-00289-0.

Aeleen Frisch. Essential System Administration. 3rd edition. O'Reilly and Associates. Copyright © 2002.
0-596-00343-9.

Stephen Kochan and Patrick Wood. Unix Shell Programming. Hayden. Copyright © 1990. 067248448X.
Neil Matthew and Richard Stones. Beginning Linux Programming. Wrox Press. Copyright © 1996. 1874416680.

[mayerref] Herbert Mayer. Advanced C Programming on the IBM PC. Windcrest Books. Copyright © 1989.
0830693637.

David Medinets. Unix Shell Programming Tools. McGraw-Hill. Copyright © 1999. 0070397333.

Cameron Newham and Bill Rosenblatt. Learning the Bash Shell. 2nd edition. O'Reilly and Associates. Copyright ©
1998. 1-56592-347-2.

Anatole Olczak. Bourne Shell Quick Reference Guide. ASP, Inc.. Copyright © 1991. 093573922X.

Jerry Peek, Tim O'Reilly, and Mike L oukides. Unix Power Tools. 3rd edition. O'Reilly and Associates. Random House.
Copyright © 2002. 0-596-00330-7.

Clifford Pickover. Computers, Pattern, Chaos, and Beauty. St. Martin's Press. Copyright © 1990. 0-312-04123-3.
George Polya. How To Solve It. Princeton University Press. Copyright © 1973. 0-691-02356-5.

Chet Ramey and Brian Fox. The GNU Bash Reference Manual [http://www.networ k-theory.co.uk/bash/manual/] . Net-
work Theory Ltd. Copyright © 2003. 0-9541617-7-7.

Arnold Robbins. Bash Reference Card. SSC. Copyright © 1998. 1-58731-010-5.

Arnold Rabhins. Effective Awk Programming. Free Software Foundation / O'Reilly and Associates. Copyright © 2000.
1-882114-26-4.

Bill Rosenblatt. Learning the Korn Shell. O'Reilly and Associates. Copyright © 1993. 1-56592-054-6.

Paul Sheer. LINUX: Rute User's Tutorial and Exposition. 1st edition. . Copyright © 2002. 0-13-033351-4.

392

http://www.samspublishing.com/title/0672326426
http://www.samspublishing.com/title/0672326426
http://www.sed-book.com/
http://www.sed-book.com/
http://www.network-theory.co.uk/bash/manual/
http://www.network-theory.co.uk/bash/manual/

Bibliography

Ellen Siever and the staff of O'Rellly and Associates. Linux in a Nutshell. 2nd edition. O'Reilly and Associates. Copy-
right © 1999. 1-56592-585-8.

Dave Taylor. Wicked Cool Shell Scripts: 101 Scripts for Linux, Mac OS X, and Unix Systems. 1st edition. No Starch
Press. Copyright © 2004. 1-59327-012-7.

The UNIX CD Bookshelf. 3rd edition. O'Reilly and Associates. Copyright © 2003. 0-596-00392-7.

393

Appendix A. Contributed Scripts

These scripts, while not fitting into the text of this document, do illustrate some interesting shell program-
ming techniques. Some are useful, too. Have fun analyzing and running them.

Example A.1. mailformat: Formatting an e-mail message

#1/ bi n/ bash
mail-format.sh (ver. 1.1): Format e-mmil messages.

Cets rid of carets, tabs, and al so fol ds excessively long |ines.

===
St andard Check for Script Argunent(s)

ARGS=1

E_BADARGS=85

E_NOFI LE=86

if [$# -ne $ARGS] # Correct nunber of arguments passed to script?
t hen

echo "Usage: "“basenanme $0° fil enanme"

exit $E_BADARGS
fi

if [-f "$1"] # Check if file exists.
t hen

file name=%$1
el se

echo "File \"$1\" does not exist."
exit $E_NOFI LE

A variable can hold a sed script.
It's a useful technique.
sedscript="s/">//

s/in x>
s/~ xl]
s/ */I"
=============—=--—-———=—==——=—=—=—=—=—=—====

Delete carets and tabs at begi nning of |ines,
#+ then fold lines to $MAXW DTH characters.
sed "$sedscript” $1 | fold -s --w dt h=3MAXW DTH
-s option to "fold"
#+ breaks lines at whitespace, if possible.

This script was inspired by an article in a well-known trade journal
#+ extolling a 164K M5 Wndows utility with simlar functionality.

394

Contributed Scripts

#

An nice set of text processing utilities and an efficient

#+ scripting | anguage provide an alternative to the bl oated executabl es
#+ of a clunky operating system

exit $?
Example A.2. rn: A simple-minded file renaming utility

This script is a modification of Example 16.22, “lowercase: Changes al filenames in working directory
to lowercase.”.

#! |/ bi n/ bash
rn.sh

Very sinmplem nded filenane "renane” utility (based on "l owercase.sh").
#

The "ren" utility, by Madimr Lanin (lani n@sd2. nyu. edu),

#+ does a much better job of this.

ARGS=2
E_BADARGS=85
ONE=1 # For getting singular/plural right (see bel ow).

if [$# -ne "$ARGS"]

t hen
echo "Usage: "“basename $0° ol d-pattern new pattern”
As in "rn gif jpg", which renames all gif files in working directory to jpg.
exit $E_BADARGS

fi

nunber =0 # Keeps track of how many files actually renaned.
for filenane in *$1* #Traverse all matching files in directory.
do
if [-f "$filenane”] # If finds match...
t hen
f nane="basenane $fil enane’ # Strip off path.
n="echo $fnane | sed -e "s/$1/$2/"" # Substitute new for old in fil enane.
mv $f nane $n # Renare.

| et "nunber += 1"
f
done

if ["$nunber" -eq "$ONE"] # For correct grammar.
t hen

echo "$nunber file renaned."

el se

echo "$nunber files renaned."
fi

exit $?

395

Contributed Scripts

Exerci ses:

What types of files will this not work on?
How can this be fixed?

Example A.3. blank-rename: Renames filenames containing blanks

Thisis an even simpler-minded version of previous script.

#! [bi n/ bash
bl ank-renane. sh
#
Substitutes underscores for blanks in all the filenames in a directory.
ONE=1 # For getting singular/plural right (see bel ow).
nunber =0 # Keeps track of how many files actually renaned.
FOUND=0 # Successful return val ue.
for filename in * #Traverse all files in directory.
do
echo "$filenane" | grep -q " " # Check whether fil enane
if [$? -eq $FOUND] #+ contai ns space(s).
t hen
f nane=%$fi | enane # Yes, this fil ename needs work.
n="echo $fname | sed -e "s/ /_/g"" # Substitute underscore for blank
mv " $f nane" " $n" # Do the actual renaning

| et "nunber += 1"
f

done
if ["$nunmber" -eq "$ONE"] # For correct grammar.
t hen
echo "$nunmber file renaned."”
el se

echo "$nunmber files renaned."
f

exit O

Example A.4. encryptedpw: Uploading to an ftp site, using a locally encrypted
password

#1/ bi n/ bash

Exanple "ex72.sh” nodified to use encrypted password.
Note that this is still rather insecure,

#+ since the decrypted password is sent in the clear

Use something like "ssh” if this is a concern

E_BADARGS=85

396

Contributed Scripts

if [-z "$1"]

t hen
echo "Usage: "“basenanme $0° fil enanme"
exit $E_BADARGS

fi

User name=bozo # Change to suit.
pwor d=/ horre/ bozo/ secr et/ password_encrypted.file
File containing encrypted password.

Fi | ename="basenane $1° # Strips pathnanme out of file nane.

Server =" XXX"
Directory="YYY" # Change above to actual server nane & directory.
Password="cruft <$pword’ # Decrypt password.

Uses the author's own "cruft” file encryption package,
#+ based on the classic "onetime pad" algorithm

#+ and obt ai nable from

#+ Primary-site: ftp://ibiblio.org/pub/Linux/utils/file
#+ cruft-0.2.tar.gz [16K]

ftp -n $Server <<End- - Session

user $Usernanme $Password

bi nary

bel |

cd $Directory

put $Fil enane

bye

End- O - Sessi on

-n option to "ftp" disables auto-I|ogon.

Note that "bell"” rings 'bell' after each file transfer.

exit O

Example A.5. copy-cd: Copying adata CD

#1/ bi n/ bash

copy-cd. sh: copying a data CD

CDROVE/ dev/ cdr om # CD ROM devi ce

OF=/ horre/ bozo/ pr oj ect s/ cdi mage. i so # output file

[XXXX] XXXXXXXX/ Change to suit your system
BLOCKSI ZE=2048

SPEED=10 # | f unspecified, uses max spd.
DEVI CE=/ dev/ cdrom ol der version.

DEVI CE="1, 0, 0"

echo; echo "Insert source CD, but do *not* nmount it."
echo "Press ENTER when ready. "
read ready # Wait for input, $ready not used.

397

Contributed Scripts

echo; echo "Copying the source CD to $OF."
echo "This may take a while. Please be patient."

dd i f =$CDROM of =$CF bs=$BLOCKSI ZE # Raw devi ce copy.

echo; echo "Renove data CD."

echo "Insert blank CDR ™"

echo "Press ENTER when ready. "

read ready # Wait for input, $ready not used

echo "Copying $OF to CDR "

cdrecord -v -isosize speed=$SPEED dev=$DEVI CE $OF # A d version
wodi m -v -isosize dev=$DEVI CE $OF

Uses Joerg Schilling' s "cdrecord" package (see its docs).

http://ww. fokus. gnd. de/ nt hp/ enpl oyees/ schi |l i ng/ cdrecord. htm

Newer Linux distros may use "wodi nf rather than "cdrecord"

echo; echo "Done copying $OF to CDR on device $CDROM "

echo "Do you want to erase the imge file (y/n)? " # Probably a huge file.
read answer

case "$answer" in
[yY]) rm-f $OF
echo "$OF erased."

*) echo "$OF not erased.";
esac

echo

Exercise

Change the above "case" statenment to al so accept "yes" and "Yes" as input.

exit O

Example A.6. Collatz series

#!/ bi n/ bash
collatz.sh

The notorious "hailstone" or Collatz series.

1) Get the integer "seed" fromthe comrand-Iline.

2) NUMBER <-- seed

3) Print NUMBER

4) If NUMBER is even, divide by 2, or

5+ if odd, nmultiply by 3 and add 1

6) NUMBER <-- result

7) Loop back to step 3 (for specified nunber of iterations).

HHHHHHHFHHH

398

Contributed Scripts

The theory is that every such sequence,
#+ no matter how large the initial value,
#+ eventually settles down to repeating "4,2,1..." cycles,
#+ even after fluctuating through a wi de range of val ues.

This is an instance of an "iterate,"
#+ an operation that feeds its output back into its input.
Sonetimes the result is a "chaotic" series.

MAX_| TERATI ONS=200
For | arge seed nunbers (>32000), try increasi ng MAX_ | TERATI ONS

h=${1: - $$} # Seed.
Use $PID as seed,
#+ if not specified as command-1line arg.

echo
echo "C($h) -*- $MAX_ | TERATIONS Iterations"
echo

for ((i=1; i<=MAX_|TERATIONS; i++))
do

echo -n "$h "

NNAN

tab

printf does it better
COLW DTH=%/d

printf $COLW DTH $h

et "remainder = h % 2"
if ["$renminder" -eq O] # Even?

t hen
let "h /= 2" # Divide by 2.
el se
let "h = h*3 + 1" # Multiply by 3 and add 1
f
COLUWNS=10 # Qutput 10 val ues per line.
let "line_break =i % $COLUWNS"
if ["$line_break" -eq 0]
t hen
echo
f
done
echo

For nore information on this strange mat hematical function
#+ see _Conputers, Pattern, Chaos, and Beauty , by Pickover, p. 185 ff.,
#+ as listed in the bibliography.

399

Contributed Scripts

exit O

Example A.7. days-between: Days between two dates

#1/ bi n/ bash

days- bet ween. sh: Nunber of days between two dates.

Usage: ./days-between.sh [MM[DIDYYYY [MM][D D YYYY

#

Note: Script nodified to account for changes in Bash, v. 2.05b +,

#+ that closed the | oophole permtting |arge negative
#+ i nteger return val ues.
ARGS=2 # Two conmand-|ine paraneters expected.
E_PARAM ERR=85 # Paramerror.
REFYR=1600 # Reference year.
CENTURY=100
Dl Y=365
ADJ_DI Y=367 # Adjusted for |leap year + fraction.
M Y=12
DI M=31
LEAPCYCLE=4
MAXRETVAL=255 # Largest permssible
#+ positive return value froma function.
di ff= # Decl are gl obal variable for date difference.
val ue= # Decl are gl obal variable for absolute val ue.
day= # Decl are globals for day, nmonth, year.
nont h=
year =
Param Error () # Command-| i ne paraneters w ong.
{

echo "Usage: "“basename $0° [MM[D D YYYY [MM[D D YYYY"

echo " (date must be after 1/3/1600)"

exit $E_PARAM ERR
}
Parse_Date () # Parse date from comuand-|ine parans.
{

mont h=%{ 1984 ** }

dne${ 194 **} # Day and nonth.

day=${dm#*/}

let "year = “basename $1°" # Not a filenane, but works just the sane.
}
check_date () # Checks for invalid date(s) passed.

400

Contributed Scripts

["$day" -gt "$DIM] || ["$nOnth" -gt "$MY"] ||
["$year” -1t "$REFYR'] && Param Error

Exit script on bad val ue(s).

Uses or-list / and-Ilist.

#

Exercise: Inplement nore rigorous date checking.

strip_leading zero () # Better to strip possible |eading zero(s)

{
}

day_i ndex ()

{

#+ from day and/or nonth
return ${1#0} #+ since otherwi se Bash will interpret them
#+ as octal values (POSIX 2, sect 2.9.2.1).

Gauss' Fornul a:
Days from March 1, 1600 to date passed as param

#
#
NNNNNNNANNNNNNN
day=$1

mont h=$2

year =$3

et "month = $nmonth - 2"
if ["$nonth" -le 0]
t hen
let "month += 12"
let "year -= 1"
fi

let "year -= $REFYR'
let "indexyr = $year /| $CENTURY"

let "Days = $DI Y*$year + $year/$LEAPCYCLE - $i ndexyr \

+ $i ndexyr/ $LEAPCYCLE + $ADJ_DI Y*$nonth/$M Y + $day - $DI M
For an in-depth explanation of this algorithm see
#+ http://webl ogs. asp. net/ pgrebori o/ archi ve/ 2005/ 01/ 06/ 347968. aspx

echo $Days

cal cul ate_difference () # Difference between two day indices.

{
}

let "diff = $1 - $2" # d obal vari abl e.

abs () # Absol ute val ue

{

Uses gl obal "val ue" variable.
if ["$1" -1t 0] # If negative

401

Contributed Scripts

t hen #+ t hen
let "value = 0 - $1" #+ change sign
el se #+ el se
et "value = $1" #+ leave it al one.
f
}
if [$# -ne "$ARGS"] # Require two command-1line parans.
t hen

Param Error
f

Parse Date $1

check_date $day $nonth $year # See if valid date.
strip_l eadi ng_zero $day # Renove any | eading zeroes
day=$? #+ on day and/or nonth.
strip_l eading_zero $nonth

mont h=$?

let "datel = “day_i ndex $day $nonth $year’

Parse Date $2
check_date $day $nonth $year

strip_l eading_zero $day

day=$?
strip_l eading_zero $nonth
mont h=$?

dat e2=$(day_i ndex $day $nonth $year) # Conmand substitution.

cal cul ate_di fference $datel $date2

abs $diff # Make sure it's positive.
di f f =$val ue

echo $diff
exit O

Exercise

H o o-- e e e - -

|1f given only one comuand-|ine paranmeter, have the script
#+ use today's date as the second

Conpare this script with
#+ the inplenmentati on of Gauss' Formula in a C program at
#+ http: // buschencrew. hypermart. net/ sof t war e/ dat edi f

402

Contributed Scripts

Example A.8. Making a dictionary

#!/ bi n/ bash
makedi ct.sh [nake dictionary]

Modi fication of /usr/sbin/nkdict (/usr/sbin/cracklib-forman) script.
Original script copyright 1993, by Alec Muffett.

#

This nodified script included in this docunent in a nanner

#+ consistent with the "LI CENSE' docunent of the "Crack" package

#+ that the original script is a part of.

This script processes text files to produce a sorted |ist
#+ of words found in the files.

This nmay be useful for conpiling dictionaries

#+ and for other |exicographic purposes.

E BADARGS=85
if [! -r "$1"] # Need at |east one
t hen #+ valid file argunent.

echo "Usage: $0 fil es-to-process"”
exit $E_BADARGS
f

SORT="sort" # No | onger necessary to define
#+ options to sort. Changed from
#+ original script.

cat $* | # Dunp specified files to stdout.
tr A-Z a-z | # Convert to | owercase.
tr ' " "\012" | # New. change spaces to new i nes.
tr -cd '"\012[a-2z][0-9]" | # Get rid of everything
#+ non-al phanuneric (in orig. script).
tr -c '\012a-z' '\012' | # Rather than del eting non-al pha
#+ chars, change themto new i nes.
sort | # $SORT options unnecessary now.
uniq | # Renove dupli cates.
grep -v " # Delete lines starting with #.
grep -v '*§ # Delete blank l|ines.
exit $?

Example A.9. Soundex conversion

#!/ bi n/ bash
soundex. sh: Cal cul ate "soundex" code for nanes

Soundex scri pt

403

Contributed Scripts

by

Mendel Cooper

t hegrendel . abs@mai | . com
rel date: 23 January, 2002
#

Pl aced in the Public Donain

#

A slightly different version of this script appeared in
#+ Ed Schaefer's July, 2002 "Shell Corner" colum

#+ in "Unix Review' on-line,

#+ http://ww. uni xr evi ew. conf docurent s/ uni 1026336632258/

ARGCOUNT=1 # Need name as argument.

if [$# -ne "$ARGCOUNT"]

t hen
echo "Usage: "~basenane $0° nane"
exit $E_WVRONGARGS

f

assign_val ue () # Assigns nunerical val ue
{ #+ to letters of nane.

val 1=bf pv # 'b,f,p,v =1

val 2=cgj kgsxz #'c,0,j,k, 0,5, x,27 =2

val 3=dt # etc.

val 4=|

val 5=m

val 6=r

Exceptionally clever use of "tr' follows.
Try to figure out what is going on here.

val ue=$(echo "$1" \

| tr -d wh \

| tr $vall 1 | tr $val2 2 | tr $val 3 3\
| tr $val4 4 | tr $val5 5| tr $val6 6 \
| tr -s 123456 \

| tr -d aeiouy)

Assign letter val ues.

Renove duplicate nunbers, except when separated by vowels.

| gnore vowel s, except as separators, so delete themlast.
Ignore '"w and 'h', even as separators, so delete themfirst.

The above command substitution lays nore pipe than a plunber <g>.

404

Contributed Scripts

i nput _nanme="$1"
echo
echo "Nanme = $i nput_name"

Change all characters of nane input to | owercase.
nane=$(echo $input_nane | tr A-Z a-z)

Just in case argunent to script is mxed case

Prefix of soundex code: first letter of nane.

char _pos=0 # Initialize character position
prefi x0=${ nane: $char _pos: 1}
prefix="echo $prefix0 | tr a-z A-Z

Uppercase 1st letter of soundex.

| et "char_pos += 1" # Bunmp character position to 2nd letter of nane.
namel=${ nane: $char _pos}

+++++++++HH A Excepti on Patch ++++++++++++++++++++++++++++++
Now, we run both the input nane and the nane shifted one char

#+ to the right through the val ue-assigning function

|1f we get the sane value out, that means that the first two characters
#+ of the name have the sane val ue assigned, and that one should cancel

However, we also need to test whether the first letter of the nane

#+ is a vowel or '"wW or 'h', because otherwi se this would bollix things up

char1="echo $prefix | tr A-Z a-z° # First letter of nane, |owercased.

assi gn_val ue $nane

s1=%val ue
assi gn_val ue $nanel
s2=%val ue
assi gn_val ue $charl
s3=%val ue
$3=9%s3 # If first letter of nane is a vowel
#+ or 'W or 'h',
#+ then its "value"” will be null (unset).

#+ Therefore, set it to 9, an otherw se
#+ unused val ue, which can be tested for

if [["$s1" -ne "$s2" || "$s3" -eq 9 1]
t hen

suf fi x=$s2
el se

suf fi x=${s2: $char _pos}
f

405

Contributed Scripts

+++++++++++++++++++++4+ end Exception Patch +++++++++++++++++++++H++HH+HH+++
paddi ng=000 # Use at nost 3 zeroes to pad.

soun=%pr ef i x$suf fi x$paddi ng # Pad with zeroes.

MAXLEN=4 # Truncate to maxi num of 4 chars.
soundex=%{ soun: 0: SMAXLEN}

echo "Soundex = $soundex"
echo

The soundex code is a method of indexing and cl assifying nanes

#+ by groupi ng together the ones that sound alike.

The soundex code for a given nane is the first letter of the nane,
#+ foll owed by a cal cul ated t hree-nunber code.

Simlar sounding names shoul d have al nbst the same soundex codes.

Exampl es:

Smith and Snythe both have a "S-530" soundex.

Harrison = H 625

Har gi son = H 622

Harriman = H 655

This works out fairly well in practice, but there are numerous anonmali es.
#

#

The U.S. Census and certain other governmental agencies use soundex,
as do geneal ogi cal researchers.

#

For nore information,

#+ see the "National Archives and Records Adm nistration home page",
#+ http://ww. nara. gov/ geneal ogy/ soundex/ soundex. ht m

Exerci se
Simplify the "Exception Patch" section of this script.

exit O

Example A.10. Game of Life

#!/ bi n/ bash

life.sh: "Life in the Sl ow Lane"
Aut hor: Mendel Cooper

License: GPL3

406

Contributed Scripts

Version 0. 2: Pat ched by Dani el Al bers
#+ to all ow non-square grids as input.
Version 0.2.1: Added 2-second del ay between generations.

BHHHHH T H T H R H R H R R
This is the Bash script version of John Conway's "Gane of Life".
"Life" is a sinple inplenentation of cellular autonata.
e e L P #
On a rectangular grid, let each "cell” be either "living" or "dead."
Designate a living cell with a dot, and a dead one with a bl ank space.
Begin with an arbitrarily drawn dot-and-bl ank grid,
#+ and let this be the starting generation: generation O. #
Determ ne each successive generation by the follow ng rules:
1) Each cell has 8 neighbors, the adjoining cells
#+ left, right, top, bottom and the 4 diagonals. #
#
123
4*5 The * is the cell under consideration.
678
#
#2) Aliving cell with either 2 or 3 living neighbors remains alive. #
SURVI VE=2 #
3) A dead cell with 3 living neighbors comes alive, a "birth."
Bl RTH=3 #
4) Al other cases result in a dead cell for the next generation.
BHHHHH T H T H P H R H R H R R

startfile=gen0 # Read the starting generation fromthe file "genO"
Default, if no other file specified when invoking script.
#
if [-n"$1"] # Specify another "generation 0" file.
t hen
startfil e="$1"
fi

HERHHHHH T H A
Abort script if "startfile"™ not specified
#+ and

#+ default file "gen0" not present.

E_NOSTARTFI LE=86

if [! -e "$startfile"]

t hen
echo "Startfile \""$startfile"\" m ssing!"
exit $E_NOSTARTFI LE

fi

HH R

ALl VE1=.

Represent living and dead cells in the start-up file.

407

Contributed Scripts

This script uses a 10 x 10 grid (may be increased,
#+ but a large grid will slow down execution).

ROW5=10
COLS=10
Change above two variables to match desired grid size.
e e #
GENERATI ONS=10 # How many generations to cycle through
Adjust this upwards
#+ if you have time on your hands.
NONE_ALI VE=85 # Exit status on premature bail out,
#+ if no cells left alive.
DELAY=2 # Pause between generati ons.
TRUE=0
FALSE=1
ALI VE=0
DEAD=1
avar = # d obal ; holds current generation
gener ati on=0 # Initialize generation count.
===
let "cells = $RONS * $COLS" # How many cells.

Arrays containing "cells.™
declare -a initia
declare -a current

di splay ()
{

al i ve=0 # How many cells alive at any given tinme.
Initially zero.

declare -a arr
arr=(“echo "$1"") # Convert passed arg to array.

el ement _count =${#arr[*]}

| ocal i
| ocal rowcheck

for ((i=0; i<$element_count; i++))
do

Insert newine at end of each row.
let "rowcheck = $i % COLS"
if ["$rowcheck" -eq 0]
t hen
echo # Newl i ne.

408

Contributed Scripts

echo -n # | ndent.

f

cel l=${arr[i]}

if ["$cell" = .]
t hen
let "alive += 1"

f

echo -n "$cel | " |
Print out array,
done

sed -e 's/_/ /g

return

}

IsvValid ()
{

if [
t hen

return $FALSE
f

-z "$1" -0 -z "$2"]

| ocal
| ocal
| ocal
| ocal
| ocal

row
| ower |limt=0
upper _limt

| eft

right

let "upper_limt $RONS * $COLS - 1"

if [
t hen

return $FALSE
f

"$1" -1t "S$lower_|imt" -o "$1"

row=%$2
let "left
et "right

= $row * $COLS"
= $left + $COLS - 1"
if [
t hen
return $FALSE
f

"$1" -t "$left" -0 "$1" -gt "$r

return $TRUE

}

_gt

changi ng underscores to spaces.

Test if cell coordinate valid.

Mandatory argunents m ssing?

Di sal |l ow negative coordi nate.

Total nunmber of cells.

"$upper_limt"]

Qut of array bounds.

Left limt.
Right linit.
ght"]

Beyond row boundary.

Valid coordi nate.

409

Contributed Scripts

IsAlive () # Test whether cell is alive.

{

Takes array, cell nunmber, and

#+ state of cell as argunents.
Get Count "$1" $2 # GCet alive cell count in neighborhood.
 ocal nhbd=$?

if ["$nhbd" -eq "$BIRTH'] # Alive in any case.
t hen

return $ALI VE
f

if ["$3" ="." -a "$nhbd" -eq "$SURVI VE"]

t hen # Alive only if previously alive.
return $ALI VE

f

return $DEAD # Defaults to dead.
}
Get Count () # Count live cells in passed cell's nei ghborhood.
Two argunents needed:
$1) variable holding array
$2) cell nunber
{

| ocal cell nunber=$2
| ocal array

| ocal top

| ocal center

| ocal bottom

|l ocal r
| ocal row
| ocal i

local t_top

| ocal t_cen

| ocal t_bot

| ocal count=0

| ocal ROW NHBD=3

array=(“echo "$1"°)

let "top = $cell _nunber - $COS - 1" # Set up cell neighborhood.
let "center = $cell _nunber - 1"

let "bottom = $cell _nunber + $COLS - 1"

let "r = $cell _nunber / $COLS"

for ((i=0; i<$ROWNHBD; i++)) # Traverse fromleft to right.
do

let "t_top = $top + $i"

let "t_cen = $center + $i"

let "t_bot = $bottom + &i "

410

Contributed Scripts

let "row = $r" # Count center row.
IsValid $t_cen $row # Valid cell position?
if [$? -eq "$TRUE"]
t hen
if [${array[$t_cen]} = "SALIVEL"] # Is it alive?
t hen # If yes, then ..
et "count += 1" # I ncrement count.

f
f

let "row = $r - 1" # Count top row
IsValid $t_top $row
if [$? -eq "$TRUE"]

t hen
if [${array[$t_top]} = "$ALIVEL"] # Redundancy here.
t hen # Can it be optim zed?

l et "count += 1"
f
f

let "row = $r + 1" # Count bottom row.
IsvValid $t_bot $row
if [$? -eq "$TRUE"]
t hen

if [${array[$t_bot]} = "S$ALI VEL"]

t hen

l et "count += 1"

f

f

done
if [${array[S$cell _nunber]} = "$ALIVEL"]
t hen

let "count -= 1" # Make sure value of tested cell itself
fi #+ is not counted.

return $count

}

next _gen () # Updat e generation array.

{

| ocal array

[ocal i=0

array=(“echo "$1"") # Convert passed arg to array.
while ["$i" -1t "$cells"]

do

IsAlive "$1" $i ${array[$i]} # Is the cell alive?

411

Contributed Scripts

if [$? -eq "S$ALIVE"]

t hen # If alive, then
array[$i]=. #+ represent the cell as a period.
el se
array[$i]="_" # O herw se underscore
fi #+ (will later be converted to space).
let "i += 1"
done
| et "generation += 1" # I ncrement generation count.

\Way was the above |ine commented out?

Set variable to pass as paraneter to "display" function

avar="echo ${array[@}" # Convert array back to string variable.
di spl ay "$avar" # Display it.

echo; echo

echo "Generation $generation - $alive alive"

if ["$alive" -eq 0]

t hen
echo
echo "Prenature exit: no nore cells alive!"
exit $NONE_ALI VE # No point in continuing
fi #+ if no live cells.
}
s ———
main ()
{

Load initial array with contents of startup file.
initial=("cat "$startfile" | sed -e "/#/d" | tr -d "\n" |\
Delete lines containing '# coment character

sed -e "s/\./\. /g -e's/_/_1g ")
Renove |inefeeds and insert space between el enents.

cl ear # Cl ear screen

echo # Title
setterm-reverse on

echo "======================="
setterm-reverse off

echo " $GENERATI ONS gener ati ons"
echo " of "

echo "\"Life in the Slow Lane\""
setterm-reverse on

echo "======================="
setterm -reverse off

412

Contributed Scripts

sl eep $DELAY # Display "splash screen" for 2 seconds.

#o------ Display first generation. --------
Gen0="echo ${initial[@}"
di spl ay "$Gen0" # Display only.
echo; echo
echo "Generation $generation - $alive alive"
sl eep $DELAY
i
| et "generation += 1" # Bunp generation count.
echo
#o------- Di spl ay second generation. -------
Cur="echo ${initial[@}"
next _gen "$Cur" # Update & display.
sl eep $DELAY
i
| et "generation += 1" # I ncrement generation count.
#o------ Mai n | oop for displaying subsequent generations ------
while ["$generation" -le "$GENERATI ONS"]
do
Cur =" $avar"

next _gen "$Cur"
| et "generation += 1"
sl eep $DELAY

done

exit 0 # CECF:. ECF

The grid in this script has a "boundary problem™

The top, bottom and sides border on a void of dead cells.

Exercise: Change the script to have the grid wap around,

+ so that the left and right sides will "touch,"”

+ as will the top and bottom

#

Exercise: Create a new "genQ" file to seed this script.

Use a 12 x 16 grid, instead of the original 10 x 10 one
Make t he necessary changes to the script,

#+ so it will run with the altered file

#

Exercise: Mddify this script so that it can determne the grid size
#+ fromthe "gen0" file, and set any variabl es necessary
#+ for the script to run

413

Contributed Scripts

Thi s woul d nake unnecessary any changes to vari abl es
#+ in the script for an altered grid size.

#

Exercise: Optimze this script.

It has redundant code.

Example A.11. Data filefor Game of Life
gen0
This is an exanple "generation 0" start-up file for "life.sh"

The "gen0" file is a 10 x 10 grid using a period (.) for live cells,
#+ and an underscore (_) for dead ones. W cannot sinply use spaces

#+ for dead cells in this file because of a peculiarity in Bash arrays.
[Exercise for the reader: explain this.]

Lines beginning with a '# are coments, and the script ignores them

+++

The following script isby Mark Moraes of the University of Toronto. Seethefile Mor aes- COPYRI GHT
for permissions and restrictions. This file is included in the combined HTML/source tarball of the ABS
Guide.

Example A.12. behead: Removing mail and news message header s

#! [/ bin/sh

Strips off the header froma mail/News nessage i.e. till the first
#+ enmpty line.

Author: Mark Mraes, University of Toronto

==> These comments added by aut hor of this docunent.

if [$# -eq 0]; then
==> If no command-line args present, then works on file redirected to stdin.
sed -e '1,/7$/d" -e "/ 1*%/d
--> Delete enpty lines and all lines until
--> first one beginning with white space.
el se
==> |If conmand-line args present, then work on files naned.
for i do
sed -e '1,/7$/d" -e '"/N 1*%/d Si
--> Ditto, as above.

414

Contributed Scripts

done

f

exit

==>
==>
==>
==>

E R B R T R R N N S T T T R I

+

Exercise: Add error checking and ot her options.

Note that the small sed script repeats, except for the arg passed
Does it make sense to enbed it in a function? Wiy or why not?

Copyright University of Toronto 1988, 1989.
Witten by Mark Moraes

Perm ssion is granted to anyone to use this software for any purpose on
any computer system and to alter it and redistribute it freely, subject
to the following restrictions:

1

3.

The author and the University of Toronto are not responsible
for the consequences of use of this software, no matter how awful,
even if they arise fromflaws in it

The origin of this software nmust not be m srepresented, either by
explicit claimor by om ssion. Since few users ever read sources,
credits nmust appear in the docunentation

Al tered versions nmust be plainly marked as such, and must not be
m srepresented as being the original software. Since few users
ever read sources, credits nmust appear in the docunmentation

This notice may not be renpved or altered.

Antek Sawicki contributed the following script, which makes very clever use of the parameter substitution
operators discussed in the section called “ Parameter Substitution”.

Example A.13. password: Generating random 8-character passwords

#!/ bi n/ bash

#
#

Random password generator for Bash 2.x +
#+ by Antek Sawi cki <tenox@ enox.tc>
#+ who generously gave usage pernission to the ABS Gui de author

#

==> Comments added by docunent author ==>

MATRI X="0123456789ABCDEFGH JKLMNOPCQRSTUVWKYZabcdef ghi j kl mopgr st uvwxyz"

415

Contributed Scripts

==> Password will consist of al phanumeric characters.
LENGTH=" 8"
==> May change ' LENGTH for |onger password.

while ["${n:=1}" -le "$LENGTH']

==> Recall that :=is "default substitution" operator.
==> So, if 'n" has not been initialized, set it to 1.
do

PASS=" $PASS${ MATRI X: $(($RANDOV/&{ #MATRI X})) : 1} "
==> Very clever, but tricky.

==> Starting fromthe innernbpst nesting...
==> ${#MATRI X} returns length of array MATRI X

==> SRANDOWGB{ #MATRI X} returns random nunber between 1

==> and [l ength of MATRI X] - 1.

==> ${ MATRI X: $((SRANDOWSB{ #MATRI X})) : 1}

==> returns expansi on of MATRI X at random position, by length 1.
==> See {var:pos:len} paranmeter substitution in Chapter 9.

==> and the associ at ed exanpl es.

==> PASS=... sinply pastes this result onto previous PASS (concatenation).
==> To visualize this nore clearly, unconment the follow ng line
echo " $PASS"

==> to see PASS being built up,

==> one character at a time, each iteration of the | oop

let n+=1

==> Increnent 'n' for next pass.
done
echo "$PASS' # ==> O, redirect to a file, as desired.
exit O
+

James R. Van Zandt contributed this script which uses named pipes and, in his words, “really exercises
guoting and escaping.”

Example A.14. fifo: Making daily backups, using named pipes

#1/ bi n/ bash
==> Script by Janes R Van Zandt, and used here with his perm ssion.

==> Conmments added by author of this document.
HERE="unane -n’ # ==> host nane

THERE=bi | bo
echo "starting rempte backup to $THERE at “date +% "

416

Contributed Scripts

==> "date +% " returns tine in 12-hour format, i.e. "08:08:34 PM

make sure /pipe really is a pipe and not a plain file
rm-rf /pipe
nkfifo /pipe # ==> Create a "naned pi pe", nanmed "/pipe"

==> 'su xyz' runs commands as user "xyz".

==> "ssh' invokes secure shell (renmote login client).

su xyz -c¢ "ssh $THERE \"cat > /hone/ xyz/backup/ ${ HERE}-daily.tar.gz\" < /pipe"&
cd /

tar -czf - bin boot dev etc hone info Iib man root sbhin share usr var > /pipe

==> Uses naned pi pe, /pipe, to communi cate between processes:

==> "tar/gzip' wites to /pipe and 'ssh’ reads from/ pi pe.

==> The end result is this backs up the main directories, from/ on down.
==> \What are the advantages of a "naned pipe" in this situation
==>+ as opposed to an "anonynous pipe", with |?

==> WII| an anonynous pi pe even work here?

==> |s it necessary to delete the pipe before exiting the script?
==> How coul d that be done?

exit O

Stéphane Chazelas used the following script to demonstrate generating prime numbers without arrays.

Example A.15. Gener ating prime number s using the modulo oper ator

#1/ bi n/ bash
prines.sh: Generate prinme nunbers, w thout using arrays.
Script contributed by Stephane Chazel as.

This does *not* use the classic "Sieve of Eratosthenes” al gorithm
#+ but instead the nore intuitive nethod of testing each candi date numnber
#+ for factors (divisors), using the "% nodul o operator

LI M T=1000 # Primes, 2 ... 1000.
Primes()
{

((n=%1+1)) # Bunmp to next integer
shift # Next paraneter in list.

echo "_n=%n i=$i _"

if ((n==LIMT))
t hen echo $*

417

Contributed Scripts

return
f

for i; do # "1" set to "@, previous values of $n.
echo "-n=$n i=%i-"
(Ci *i >n)) & break # Optimzation

((n %i)) && continue # Sift out non-primes using nodul o operator
Primes $n $@ # Recursion inside | oop

return

done

Prinmes $n $@ $n # Recursion outside |oop

Successively accumul ate
#+ positional paraneters.
"$@ is the accunulating list of prinmes.

}

Prines 1

exit $?

Pipe output of the script to 'fm' for prettier printing.

Uncomment lines 16 and 24 to help figure out what is going on
Conpare the speed of this algorithmfor generating prines

#+ with the Sieve of Eratosthenes (ex68.sh).

Exercise: Rewite this script without recursion

+

Rick Boivie'srevision of Jordi Sanfeliu's tree script.

Example A.16. tree: Displaying adirectory tree

#1/ bi n/ bash

tree.sh

Witten by Rick Boivie.

Used with permn ssion.

This is a revised and sinmplified version of a script

#+ by Jordi Sanfeliu (the original author), and patched by |an Kjos.
This script replaces the earlier version used in

#+ previous rel eases of the Advanced Bash Scripting CGuide.

Copyright (c) 2002, by Jordi Sanfeliu, Rick Boivie, and |lan Kjos.

==> Comments added by the author of this docunent.

search () {
for dir in “echo *°
==> “echo * lists all the files in current working directory,

418

Contributed Scripts

#+ ==> wi thout |ine breaks.

==> Simlar effect to for dir in *
==> bput "dir in “echo * " will not handle filenanes with bl anks.
do

if [-d"$dir"] ; then # ==> If it is a directory (-d)..
zz=0 # ==> Tenp vari abl e, keeping track of
directory |evel.
while [$zz = $1] # Keep track of inner nested | oop
do
echo -n "|

==> Di splay vertical connector synbol,
==> with 2 spaces & no line feed

in order to indent.
==> | ncrement zz.

H H HH

zz="expr $zz + 1°
done

if [-L"$dir"] ; then # ==> If directory is a synbolic |ink..
echo "+---8$dir" “Is -1 $dir | sed "s/*.*" &dir" [/
==> Display horiz. connector and list directory nanme, but..
==> delete date/time part of long listing.

el se

echo "+---&dir" # ==> Display horizontal connector synbol..

==> and print directory nane.
nundi rs="expr $nundirs + 1° # ==> Increment directory count.

if cd "$dir" ; then # ==> |f can nobve to subdirectory..
search “expr $1 + 1° # wth recursion ;-)
==> Function calls itself.
cd ..

f
f
f
done

}

if [$#!'=01 ; then
cd $1 # Move to indicated directory.
#el se # stay in current directory

f

echo "Initial directory
nundi r s=0

*pwd
search 0O

echo "Total directories = $nundirs"

exit O

Patsie's version of adirectory tree script.

Example A.17. tree2: Alternate directory tree script

#!/ bi n/ bash
tree2.sh

Lightly nodified/reformatted by ABS Gui de aut hor

419

Contributed Scripts

Included in ABS CGuide with perm ssion of script author (thanks!).

Recursive filel/dirsize checking script, by Patsie

#

This script builds a list of files/directories and their size (du -akx)
and processes this list to a hunan readabl e tree shape

The 'du -akx' is only as good as the perm ssions the owner has.

So preferably run as root* to get the best results, or use only on

directories for which you have read perm ssions. Anything you can't

read is not in the |ist.

#* ABS Cui de aut hor advi ses caution when running scripts as root!

#H#pHAH#A#AH TH S | S CONFI GURABLE #####H#H#HHHAH

TOP=5 # Top 5 biggest (sub)directories.
MAXRECURS=5 # Max 5 subdirectories/recursions deep
E BL=80 # Bl ank |ine already returned.

E D R=81 # Directory not specified.

#H#pHAH#AAH DON T CHANGE ANYTHI NG BELOW THI S LI NE #####H#H#HH#

Pl D=%$% # Qur own process ID
SELF="basenane $0° # Qur own program nane.
TMP="/t np/ ${ SELF}. ${ PI D} . t np" # Tenmporary 'du' result.

Convert nunber to dotted thousand.

function dot { echo " $*"
sed -e :a -e "S/\(.*[0-9]\)\([0-9]\{3\}\)/\1,\2/;ta'
tail -c 12; }

Usage: tree <recursion> <indent prefix> <mn size> <directory>
function tree {

recurs="$1" # How deep nested are we?

prefix="$2" # What do we display before file/dirnanme?
m nsi ze="$3" # What is the mnumumfile/dirsize?

di r nane="$4" # Which directory are we checking?

Get ($TOP) biggest subdirs/subfiles fromTW file.
LI ST="egrep "[[:space:]]${dirname}/[~/]*$" "$TM" |
awk '{if($1>" $minsize') print;}' | sort -nr | head -$TOP

[-z "SLIST"] && return # Enpty list, then go back
cnt =0
num="echo "$LIST" | we -I° # How many entries in the |ist.

Main | oop

echo "$LIST" | while read size nanme; do
((cnt+=1)) # Count entry nunber.
bnane=" basenane "$name"" # We only need a basenane of the entry.

[-d "$nanme"] && bnanme="$bnane/"
If it's a directory, append a sl ash.

420

Contributed Scripts

echo " dot $size $prefix +-S$bname"
Display the result.
Call ourself recursively if it's a directory
#+ and we're not nested too deep ($MAXRECURS)
The recursion goes up: $((recurs+l))
The prefix gets a space if it's the last entry,
#+ or a pipe if there are nore entries.
The minimumfile/dirsize becones
#+ a tenth of his parent: $((size/10)).
Last argunent is the full directory name to check
if [-d "$nane" -a $recurs -1t $MAXRECURS]; then
[$cnt -1t $num] \

|| (tree $((recurs+1)) "$prefix " $((size/10)) "$name") \

&% (tree $((recurs+1l)) "$prefix |" $((size/10)) "$nane")
f

done
[$? -eq 0] && echo " $prefix”
Every time we junp back add a 'blank' Iine.

return $E_BL
W return 80 to tell we added a bl ank Iine already.

}

#Hit# #Hit#
main program
#Hit# #Hit#
rootdir="$@

[-d "$rootdir”] ||
{ echo "$SELF: Usage: $SELF <directory>" >&2; exit $E DR }
W should be called with a directory nane.
echo "Building inventory list, please wait "
Show "pl ease wait" nessage.
du -akx "$rootdir" 1>"$TWMP' 2>/ dev/ nul
Build a tenporary list of all files/dirs and their size.
size="tail -1 "$TMP" | awk '{print $1}'"
What is our rootdirectory's size?
echo " dot $size’ $rootdir"
Display rootdirectory's entry.
tree 0 "" 0 "S$rootdir"
Display the tree bel ow our rootdirectory.

rm"$TMP" 2>/ dev/ nul
Clean up TMP file.

exit $?

Noah Friedman permitted use of his string function script. It essentially reproduces some of the C-library
string manipulation functions.

Example A.18. string functions: C-style string functions

#!/ bi n/ bash

421

Contributed Scripts

string. bash --- bash enmulation of string(3) library routines
Aut hor: Noah Friedman <friedman@rep.ai.mt.edu>
==> Used with his kind permission in this docunent.
Created: 1992-07-01
Last nodified: 1993-09-29
Public domain
Conversion to bash v2 syntax done by Chet Raney
Commentary:
Code:
#:docstring strcat:
Usage: strcat sl s2
#
Strcat appends the value of variable s2 to variable sl.
#
Exanpl e:
a="foo"
b="bar"
strcat a b
echo $a
=> f oobar
#
#: end docstring:
###; ; ; aut ol oad ==> Aut ol oadi ng of function conmented out.
function strcat ()
{
| ocal sl val s2 val
s1_val =${! 1} # indirect variabl e expansion
s2_val =${! 2}

eval "$1"=\""${sl val }${s2_val }"\"'
==> eval $1='${sl_val}${s2_val}' avoids problens,
==> if one of the variables contains a single quote.

—

:docstring strncat:
Usage: strncat sl s2 $n

Li ne strcat, but strncat appends a maxi num of n characters fromthe val ue
of variable s2. It copies fewer if the value of variabl s2 is shorter
than n characters. Echoes result on stdout.

Exampl e:
a=f oo
b=bar baz
strncat a b 3
echo $a
=> f oobar

HEHRIFHEHFHHHHHFHHHHH

:end docstring:

422

Contributed Scripts

###, ; ; aut ol oad
function strncat ()

==> indirect variable expansion

{

| ocal s1="$1"

| ocal s2="$2"

local -i n="$3"

| ocal sl val s2 val

s1_val =${!s1}

s2_val =${!s2}

if [${#s2_val} -gt ${n}]; then

s2_val =${s2_val : 0: $n} # ==> substring extraction

f

eval "$s1"=\""${sl1l val }${s2_val}"\

==> eval $1='${sl_val}${s2_val}' avoids problens,

==> if one of the variables contains a single quote.
}

:docstring strcnp:
Usage: strcnp $sl1 $s2

| ess than, equal to,

or greater than zero, depending on whether string sl1 is |exicographically

| ess than, equal to, or greater than string s2.
:end docstring:

#
#
#
Strcnp conpares its argunents and returns an integer
#
#
#

###, ; ; aut ol oad
function strcnp ()

{
["$1" = "$2"] && return O
["${1}" "< "${2}"] > /dev/null && return -1
return 1
}
#:docstring strncnp:
Usage: strncmp $s1 $s2 $n
#
Li ke strcnp, but makes the conparison by exam ning a maxi mum of n
characters (n less than or equal to zero yields equality).
#: end docstring:

###, ; ; aut ol oad
function strncnp ()

{
if [-z "${3}" -0 "${3}" -le "0"]; then
return O
f

if [${3} -ge ${#1} -a ${3} -ge ${#2} 1; then

423

Contributed Scripts

strcmp "$1" " $2"
return $?

el se
s1=%${1: 0: $3}
s2=%{2: 0: $3}
strcnp $s1 $s2
return $?

f

}

#:docstring strlen:

Usage: strlen s

#

Strlen returns the nunber of characters in string literal s.
#: end docstring:

###, ; ; aut ol oad
function strlen ()

{
eval echo "\ ${#${1}}"
==> Returns the length of the value of the variable
==> whose nane is passed as an argunent.
}
#:docstring strspn:
Usage: strspn $s1 $s2
#
Strspn returns the length of the maximuminitial segment of string si,
whi ch consists entirely of characters fromstring s2
#: end docstring:

###, ; ; aut ol oad

function strspn ()

{
Unsetting IFS all ows whitespace to be handl ed as normal chars.
| ocal |FS=
local result="${19%84!${2}]*}"

echo ${#result}
}

:docstring strcspn
Usage: strcspn $sl1 $s2

#
#
#
Strcspn returns the length of the maximuminitial segnent of string sli,
whi ch consists entirely of characters not fromstring s2
#: end docstring:
###, ; ; aut ol oad
function strcspn ()
{

Unsetting IFS all ows whitspace to be handl ed as normal chars.

| ocal |FS=

local result="${1%4 ${2}]*}"

424

Contributed Scripts

}

#
#
#
#
#
#
#

echo ${#result}

:docstring strstr:
Usage: strstr sl s2

Strstr echoes a substring starting at the first occurrence of string s2 in
string s1, or nothing if s2 does not occur in the string. If s2 points to
a string of zero length, strstr echoes sl1.

:end docstring:

###; ; ; aut ol oad

f
{

—

HHHFHHFHHHHHF R

unction strstr ()

if s2 points to a string of zero length, strstr echoes sl
[${#2} -eq 0] & & { echo "$1" ; return O; }

strstr echoes nothing if s2 does not occur in sl
case "$1" in

*$2%)

*) return 1;;

esac

use the pattern matching code to strip off the match and everything
following it
first=${1/$2*/}

then strip off the first unmatched portion of the string
echo "${1##$first}"”

:docstring strtok:
Usage: strtok sl s2

Strtok considers the string s1 to consist of a sequence of zero or nore
text tokens separated by spans of one or nore characters fromthe
separator string s2. The first call (with a non-enpty string sl

speci fied) echoes a string consisting of the first token on stdout. The
function keeps track of its position in the string sl between separate
calls, so that subsequent calls made with the first argunent an enpty
string will work through the string imediately follow ng that token. In
this way subsequent calls will work through the string s1 until no tokens
remain. The separator string s2 may be different fromcall to call

VWhen no token remains in sl, an enpty value is echoed on stdout.

:end docstring:

###; ; ; aut ol oad

f

unction strtok ()

{.
X

#

:docstring strtrunc:

425

Contributed Scripts

Usage: strtrunc $n $s1 {$s2} {$...}

#
Used by many functions like strncnp to truncate argunments for conparison
Echoes the first n characters of each string sl s2 ... on stdout.

#: end docstring:

###, ; ; aut ol oad
function strtrunc ()

{
n=$1 ; shift
for z; do
echo "${z:0: $n}"
done
}

provide string

string. bash ends here

==> Everyt hing bel ow here added by the document aut hor.

==> Suggested use of this script is to delete everything bel ow here,
==> and "source" this file into your own scripts.

strcat

stri ng0=one

stringl=two

echo

echo "Testing \"strcat\" function:"
echo "Original \"stringO\" = $string0"
echo "\"stringl\" = $stringl"

strcat stringO stringl

echo "New \"stringO\" = $string0"

echo

strlen

echo

echo "Testing \"strlen\" function:"
str=123456789

echo "\"str\" = $str"

echo -n "Length of \"str\" ="
strlen str

echo

Exerci se

Add code to test all the other string functions above.

exit O

426

Contributed Scripts

Michael Zick's complex array example uses the md5sum check sum command to encode directory infor-
mation.

Example A.19. Directory information

#! [bi n/ bash
directory-info.sh
Parses and lists directory information.

NOTE: Change lines 273 and 353 per "READVE' file.

M chael Zick is the author of this script.

Used here with his permnission.

Control s

|f overridden by conmand argunents, they nmust be in the order:
Argl: "Descriptor Directory”

Arg2: "Exclude Paths"

Arg3: "Exclude Directories”

#

Environment Settings override Defaults.

Command ar gunments override Environnent Settings.

Default location for content addressed file descriptors.
MD5UCFS=${ 1: - ${ MD5UCFS: - ' / t mpf s/ ucfs' }}

Directory paths never to list or enter
declare -a \
EXCLUDE_PATHS=${ 2: - ${ EXCLUDE_PATHS: -' (/ proc /dev /devfs /tnpfs)'}}

Directories never to list or enter
declare -a \
EXCLUDE_DI RS=${ 3: - ${ EXCLUDE_DI RS: -' (ucfs lost+found tnp wtnp)'}}

Files never to list or enter
declare -a \
EXCLUDE_FI LES=${3: - ${ EXCLUDE_FI LES: -' (core "Nane with Spaces")'}}

Here docunent used as a comment bl ock.
<<LSfi el dsDoc
List FilesystemDirectory Information # # # #

#

#

ListDirectory "Filed ob" "Field-Array-Nane"

or

ListDirectory -of "Filed ob" "Field-Array-Fil enane”
'-of" neaning 'output to filenane'

#HHEHH

String format description based on: Is (GNU fileutils) version 4.0.36
Produces a line (or nore) formatted:

i node perm ssions hard-1links owner group ...
32736 -rw------ 1 mszick nszi ck

427

Contributed Scripts

si ze day nonth date hh:mm ss year path
2756608 Sun Apr 20 08:53: 06 2003 /hone/ mszi ck/ core

Unless it is formatted:
i node perm ssions hard-1links owner group ..
266705 crwrw--- 1 root uucp

maj or m nor day nmonth date hh:mmss year path
4, 68 Sun Apr 20 09:27:33 2003 /dev/ttyS4
NOTE: that pesky comma after the maj or nunber

NOTE: the 'path' may be multiple fields:

[hore/ mszi ck/ core

/proc/982/fd/ 0 -> /dev/nul

/proc/982/fd/1 -> [hone/ nszi ck/.xsession-errors
[proc/982/fd/ 13 -> /tnp/tnpfZWQOCs (del et ed)
/proc/982/fd/7 -> /[tnp/kde-nszi ck/ ksycoca
/proc/982/fd/8 -> socket:[11586]

/proc/982/fd/9 -> pipe:[11588]

If that isn't enough to keep your parser guessing,

either or both of the path conmponents may be relative:
../Built-Shared -> Built-Static

../linux-2.4.20.tar.bz2 -> ../../../SRCS/linux-2.4.20.tar.bz2

The first character of the 11 (10?) character perm ssions field:
's' Socket

'd" Directory

"b' Bl ock device

'c' Character device

"I Symbolic Iink

NOTE: Hard |inks not marked - test for identical inode nunbers
on identical filesystens.

Al information about hard linked files are shared, except

for the names and the nane's location in the directory system

NOTE: A "Hard link" is known as a "File Alias" on sone systens.

-' An undi stingushed file

Fol | owed by three groups of letters for: User, Goup, Qhers
Character 1: '-' Not readable; 'r' Readable

Character 2: '-'" Not witable; "W Witable

Character 3, User and G oup: Conbined execute and speci al
"-' Not Executable, Not Special

'x'" Executable, Not Special

s' Executabl e, Speci al

'S Not Executable, Special

Character 3, O hers: Conbined execute and sticky (tacky?)
'-" Not Executable, Not Tacky

x' Executabl e, Not Tacky

"t' Executable, Tacky

"T" Not Executable, Tacky

Fol | owed by an access indi cator

428

Contributed Scripts

Haven't tested this one, it may be the el eventh character
or it may generate another field

" ' No alternate access

"+ Alternate access

LSfi el dsDoc

Li stDirectory()
{

local -a T

local -i of=0 # Default return in variable
OLD_ I FS=8I FS # Using BASH default ' \t\n

case "$#" in
3) case "$1" in
-of) of=1; shift ;;
*) return 1 ;;
esac ;;
2) : ;; # Poor man's "continue"
*) return 1 ;;
esac

NOTE: the (lIs) command is NOT quoted (")

T=($(ls --inode --ignore-backups --alnmpst-all --directory \
--full-time --color=none --tinme=status --sort=none \
--format=long $1))

case $of in

Assign T back to the array whose nane was passed as $2
0) eval $2=\(\"\S{T\[@]\}\" \) ;;

Wite T into filename passed as $2
1) echo "${T[@}" > "$2" ;;

esac

return O

}

|Is that string a legal nunber? # # # #
#

|1 sNunber "Var"

There has to be a better way, sigh..

I sNumber ()
{
local -i int
if [$# -eq 0]
t hen
return 1
el se
(let int=$1) 2>/dev/nul
return $? # Exit status of the let thread
f
}

Index FilesystemDirectory Information # # # #

429

Contributed Scripts

I ndexLi st "Fi el d-Array-Nanme" "I ndex-Array- Nane"

or

I ndexList -if Field-Array-Filename |ndex-Array-Nane

I ndexLi st -of Field-Array-Name |ndex-Array-Fil enane

I ndexList -if -of Field-Array-Filename |Index-Array-Filenane
##H#H

HHHHHHH

<<I ndexLi st Doc
Wal k an array of directory fields produced by ListDirectory

Havi ng suppressed the line breaks in an otherw se Iine oriented
report, build an index to the array el enent which starts each |ine.

Each line gets two index entries, the first el enent of each |ine
(inode) and the element that holds the pathname of the file.

The first index entry pair (Line-Nunber==0) are infornmational
I ndex- Array-Name[0] : Nunber of "Lines" indexed
I ndex- Array-Name[1] : "Current Line" pointer into Index-Array-Name

The follow ng index pairs (if any) hold el enent indexes into

the Fiel d- Array-Nane per:

| ndex- Array- Name[Li ne- Nunber * 2] : The "inode" field el ement.
NOTE: This di stance may be either +11 or +12 el enents.

| ndex- Array- Name[(Li ne- Nunber * 2) + 1] : The "pat hname" el enent.
NOTE: This di stance may be a vari abl e nunber of el enents.

Next |ine index pair for Line-Nunber+1

I ndexLi st Doc
I ndexLi st ()
{
local -a LIST # Local of listname passed
local -a -i INDEX=(0 0) # Local of index to return
| ocal -i Lidx Lcnt
local -i if=0 of=0 # Default to variable nanes

case "$#" in # Sinplistic option testing

0) return 1 ;;

1) return 1 ;;

2) # Poor man's conti nue
3) case "$1" in

-if) if=1;;

-of) of=1 ;;

*) return 1 ;;
esac ; shift ;;
4) if=1; of=1; shift ; shift
*) return 1
esac

Make | ocal copy of list
case "$if" in

430

Contributed Scripts

0) eval LIST=\(\"\$\{$SI\[@]\}\" \)
1) LIST=($(cat $1)) ;;
esac

Grok (grope?) the array

Lent =${#LI ST[@}

Li dx=0

until ((Lidx >= Lent))

do

i f 1IsNunmber ${LIST[$Lidx]}

t hen
|l ocal -i inode nanme
| ocal ft
i node=Li dx
| ocal ne${LI ST[$Li dx+2]} # Hard Links field
ft=${LI ST[$Li dx+1]:0: 1} # Fast- Stat
case $ft in

b) ((Lidx+=12)) ;; # Block device

c) ((Lidx+=12)) ;; # Character device

*) ((Lidx+=11)) ;; # Anything else

esac

name=Li dx

case $ft in

-) ((Lidx+=1)) ;; # The easy one

b) ((Lidx+=1)) ;; # Block device

c) ((Lidx+=1)) ;; # Character device

d) ((Lidx+=1)) ;; # The other easy one

) ((Lidx+=3)) ;; # At LEAST two nore fields
Alittle nore el egance here woul d handl e pi pes,
#+ sockets, deleted files - later

*) until 1sNunber ${LIST[$Lidx]} || ((Lidx >= Lecnt))
do
((Li dx+=1))
done
Not required
esac
| NDEX[${ #I NDEX[*] }] =$i node
| NDEX[${ #I NDEX[*] }] =$name
| NDEX[O] =${I NDEX[0] }+1 # One nore "line" found
echo "Line: ${INDEX[0]} Type: $ft Links: $mInode: \
${LI ST[$i node]} Name: ${LI ST[$nane]}"

el se

((Lidx+=1))

f

done

case "$of" in

0) eval $2=\(\"\S\{INDEX\[@]\}\" \)
1) echo "${INDEX[@}" > "$2" ;

esac

return O # What could go wrong?

}

Content ldentify File # # # #

431

Contributed Scripts

#

DigestFile Input-Array-Name D gest-Array- Nane

or

DigestFile -if Input-FileNane D gest-Array-Nane
#HHEHH

Here docunent used as a comment bl ock.
<<Di gest Fi | esDoc

The key (no pun intended) to a Unified Content File System (UCFS)
is to distinguish the files in the system based on their content.
Di stinguishing files by their name is just so 20th Century.

The content is distinguished by conmputing a checksum of that content.
This version uses the nd5sum programto generate a 128 bit checksum
representative of the file's contents.

There is a chance that two files having different content m ght
generate the same checksum usi ng nd5sum (or any checksum. Should
that becone a problem then the use of md5sum can be replace by a
cyrptographic signature. But until then..

The md5sum program i s docunmented as outputting three fields (and it
does), but when read it appears as two fields (array elenents). This
is caused by the lack of whitespace between the second and third field.
So this function gropes the nmd5sum out put and returns:

[0] 32 character checksumin hexideci mal (UCFS fil enamne)

[1] Single character: ' ' text file, '"*" binary file

[2] Filesystem (20th Century Style) nane

Not e: That nanme may be the character '-' indicating STDI N read.

Di gest Fi | esDoc

Di gestFil e()

{
local if=0 # Default, variable nane
local -a T1 T2

case "$#" in
3) case "$1" in
-if) if=1; shift ;;
*) return 1 ;;
esac ;;
2) : ;; # Poor man's "continue"
*) return 1 ;;
esac

case $if in
0) eval T1=\(\"\$\{$1\[@]\}\" \)
T2=($(echo ${T1[@} | md5sum-))

1) T2=($(nmd5sum $1))

432

Contributed Scripts

HHHHH R

esac

case ${#T2[@} in

0) return 1 ;;

1) return 1 ;;

2) case ${T2[1]:0:1} in # SanScrit-2.0.5
*) T2[${#T2[@}] =${T2[1] : 1}

T2[1] =\ *

*) T2[${#T2[@}] =${T2[1])
T2[1]=" "

esac

3) ;';; # Assunme it worked

*) return 1 ;;

esac

local -i |en=${#T2[0]}

if [$len -ne 32] ; then return 1 ; f
eval $2=\(\"\$\{T2A[@]\}\" \)

Locate File # # # #

LocateFile [-I] FileNanme Location-Array- Nane

or

LocateFile [-I] -of FileNanme Location-Array-Fil eName
##H#H

Afile location is Filesystemid and inode-nunber

Here docunment used as a coment bl ock
<<St at Fi el dsDoc
Based on stat, version 2.2
stat -t and stat -It fields
[0] name
[1] Total size
File - number of bytes
Synmbolic link - string | ength of pathname
[2] Number of (512 byte) blocks allocated
[3] File type and Access rights (hex)
[4] User ID of owner
[5] Goup ID of owner
[6] Device nunber
[7] I node number
[8] Number of hard |inks
[9] Device type (if inode device) Mjor
[10] Device type (if inode device) M nor
[11] Tine of |ast access
May be disabled in '"nount' with noatime
atime of files changed by exec, read, pipe, utime, nknod (mmap?)
atime of directories changed by addition/deletion of files
[12] Tinme of last nodification

433

Contributed Scripts

ntime of files changed by wite,

truncate, utime, nknod

ntime of directories changed by addtition/deletion of files
[13] Tinme of last change
ctime reflects tine of changed i node information (owner, group
perm ssi ons, |ink count

-- Per

Return code: O
Size of array: 14
Contents of array

-> real nane

I i nkname returns the Iinknanme (link) information
| i nknanme returns the real nane i nformation

but

El ement 0: /home/nmszick

El emrent 1: 4096

El emrent 2: 8

El emrent 3: 41e8

El emrent 4: 500

El emrent 5: 500

El emrent 6: 303

El ement 7: 32385

El emrent 8: 22

El emrent 9: O

El emrent 10: O

El enrent 11: 1051221030

El ement 12: 1051214068

El ement 13: 1051214068

For alink in the formof |inkname

stat -t

stat -1t

stat -tf and stat -I1tf fields

[0] name

[1] ID-0? # Maybe soneday,

[2] ID-0? # does not have either
fields,

Li nux stat structure
LABEL nor UU D
currently information nust come

fromfile-systemspecific utilities

These wi

be munged i nto:

[1] UUID if possible

[2] Vol une Label
Not e: "mpunt -1' does return the | abe

i f possible

[3] Maxi mum | ength of fil enanes
[4] Filesystemtype

[5] Total
[6] Free bl ocks

[7] Free blocks for non-root
[8] Block size of the fil esystem

[9] Tota

bl ocks in the fil esystem

i nodes

[10] Free inodes

-- Per

Return code: O
Size of array: 11
Contents of array

El enent
El enent

0:
1

/ home/ nezi ck
0

user(s)

and could return the UU D

Contributed Scripts

El emrent 2: O

El emrent 3: 255

El emrent 4: ef53

El ement 5: 2581445

El enment 6: 2277180

El ement 7: 2146050

El emrent 8: 4096

El ement 9: 1311552

El enment 10: 1276425

St at Fi el dsDoc

LocateFile [-1] FileNane Location-Array-Nane
LocateFile [-1] -of FileNanme Location-Array-Fil eNane

LocateFil e()

{
local -a LOC LOC1 LOC2
| ocal | k="" of =0

case "$#" in
0) return 1 ;;
1) return 1 ;;
2) 5y
*) while (("$#" > 2))
do
case "$1" in
-1) Tk=-1;;
-of) of=1 ;;
*) return 1 ;;
esac
shift
done ;;
esac

More Sanscrit-2.0.5
LOCl=($(stat -t $lk $1))
LOC2=($(stat -tf $lk $1))
Uncomment above two lines if systemhas "stat” command install ed.
LOC=(${LCCl[@:0:1} ${LCCl[@:3:11}
${LOC2[@: 1:2} ${LOC2[@:4:1})

case "$of" in

0) eval $2=\(\"\$\{LOO[@]\}\" \) ;;

1) echo "${LO @}" > "$2" ;;
esac

return O

VWich yields (if you are lucky, and have "stat" installed)
-*-*. Llocation Discriptor -*-*-

Return code: O

Size of array: 15

Contents of array

El ement 0: /home/mszick 20th Century name

HHHHH R

435

Contributed Scripts

El ement 1: 41e8 Type and Perm ssi ons
El emrent 2: 500 User

El ement 3: 500 G oup

El emrent 4: 303 Devi ce

El emrent 5: 32385 inode

El emrent 6: 22 Li nk count

Element 7: 0 Devi ce Maj or

El emrent 8: O Devi ce M nor

El ement 9: 1051224608 Last Access

El ement 10: 1051214068 Last Modify
El ement 11: 1051214068 Last Status
El ement 12: 0 UUI D (to be)

Element 13: 0 Vol une Label (to be)
El ement 14: ef53 Filesystemtype

S HHFHHF R

And then there was sone test code

L
{

|l ocal -a Ta

stArray() # ListArray Nane

eval Ta=\(\"\$\{$1\[@]\}\" \)
echo
echo "-*-*- List of Array -*-*-"
echo "Size of array $1: ${#Ta[*]}"
echo "Contents of array $1:"
for ((i=0 ; i<${#Ta[*]} ; i++))
do
echo -e "\tElenent $i: ${Ta[S$i]}"
done
return O

}

declare -a CUR DIR

For small arrays
ListDirectory "${PW}" CUR DIR
ListArray CUR DR

declare -a DIR DI G
DigestFile CURDIR DIR DI G
echo "The new \"name\" (checksun) for ${CUR DI R9]} is ${DIR D FO0]}"

declare -a DIR_ENT

BIGDR# For really big arrays - use a tenporary file in randi sk
BIGDIR# ListDirectory -of "${CUR D R 11]}/*" "/tnmpfs/junk2"
ListDirectory "${CUR DI R[11]}/*" DI R_ENT

declare -a DIR I DX
BIGD R # IndexList -if "/tnpfs/junk2" DI R_IDX
I ndexLi st DIR_ENT DI R_I DX

436

Contributed Scripts

declare -a IDX DI G

BIGD R # DIR ENT=($(cat /tnpfs/junk2))

BIIGDR# DigestFile -if /tnpfs/junk2 1DX D G

DigestFile DIR_ENT I DX D G

Small (should) be able to parallize IndexList & DigestFile

Large (should) be able to parallize IndexList & DigestFile & the assignnent
echo "The \"nane\" (checksun) for the contents of ${PWD} is ${IDX DI 0]}"

declare -a FILE LCC
LocateFile ${PW)} FILE LOC
Li stArray FILE LOC

exit O
Stéphane Chazel as demonstrates object-oriented programming in a Bash script.

Mariusz Gniazdowski contributed a hash library for usein scripts.

Example A.20. Library of hash functions

Hash:

Hash function library

Aut hor: Mariusz Gni azdowski <mariusz.gn-at-gmail.conp
Date: 2005-04-07

F*

Functions nmaking enul ati ng hashes in Bash a little |ess painful.

Limtations:
* Only gl obal variables are supported.
* Each hash instance generates one gl obal variable per val ue.
* Variable nanmes collisions are possible
if you define variable |ike _ _hash__hashname_key
* Keys must use chars that can be part of a Bash variable nane
(no dashes, periods, etc.).
The hash is created as a variabl e:
hashname_keynamne

So if somobne will create hashes |ike:

nyhash_ + nykey = nyhash__nykey

nyhash + _nykey = nyhash__nykey
Then there will be a collision.
(Thi s should not pose a mmjor problem)

+

#######ﬁt######
*

Hash_config_varname_prefix=__hash__

Emul at es: hash[key] =val ue

Par ans:

1 - hash

2 - key

3 - val ue

function hash_set {

eval "${Hash_config varnanme_prefix}${1} ${2}=\"${3}\""

#
#
#
#
#
#

437

Contributed Scripts

}

Enul ates: val ue=hash[key]

#

Parans:

1 - hash

2 - key

3 - value (nanme of gl obal variable to set)

function hash_get _into {
eval "$3=\"\$${Hash_config_varname_prefix}${1}_${2}\""
}

Emul ates: echo hash[key]

Par ans:

1 - hash

2 - key

3 - echo params (like -n, for exanple)

function hash_echo {

eval "echo $3 \"\$${Hash_config_varname_prefix}${1}_${2}\""

}

#
#
#
#
#
#

Enmul ates: hashl[keyl] =hash2[key2]
#

Parans:

1 - hashl

2 - keyl

3 - hash2

4 - key2

function hash_copy {

eval "${Hash_config_varnane_prefix}${1}_${2}\
=\ "\ $${ Hash_confi g_varnane_prefix}${3}_${4}\""
}

Emul ates: hash[keyN- 1] =hash[key2] =. . . hash[key1]
Copies first key to rest of keys.

Par ans:
1 - hashl
2 - keyl
3 - key2
N - keyN
unction hash_dup {
| ocal hashName="$1" keyNane="$2"
shift 2
until [${#} -le 0]; do
eval "${Hash_config_varnane_prefix}${hashNane} _${1}\
=\ "\ $${ Hash_confi g_var nane_prefi x} ${ hashNanme} _${ keyNanme}\""

S H O HHHHHH R

438

Contributed Scripts

shift;
done;

Enul ates: unset hash[key]

#

Par ans:
1 - hash
2 - key

function hash_unset ({
eval "unset ${Hash_config varname_prefix}${1}_${2}"

}

Enul ates sonething simlar to: ref=&hash[key]

#

The reference is nane of the variable in which value is held.
#

Parans:

1 - hash

2 - key

3 - ref - Name of global variable to set.

function hash_get _ref_into {
eval "$3=\"${Hash_config_varname_prefix}${1}_${2}\""

}

Enul ates sonething simlar to: echo &ash[key]

#

That reference is name of variable in which value is held.
#

Parans:

1 - hash

2 - key

3 - echo paranms (like -n for exanple)

function hash_echo_ref {
eval "echo $3 \"${Hash_config_varname_prefix}${1}_${2}\""

}

Enul ates sonething similar to: $$hash[key] (parantl, parang, ...)

Par ans:

1 - hash

2 - key

3,4, ... - Function paraneters

unction hash_call {

| ocal hash key

hash=$1

key=$2

shift 2

eval "eval \"\$${Hash_confi g _varnanme_prefix}${hash}_${key} \\\"\\\$@\\"\""

R H O HHH

439

Contributed Scripts

}

Enul ates sonething simlar to: isset(hash[key]) or hash[key] ==NULL
#

Parans:

1 - hash

2 - key

Returns:

0 - there is such key

1 - there is no such key

function hash_is_set {

eval "if [[\"\${${Hash_config varnane_prefix}${1} _${2}-a}\" = \"a\" &&
\ "\ ${${Hash_confi g_varname_prefix}${1}_${2}-b}\" = \"b\"]]
then return 1; else return 0; fi"

}

Enul ates sonething simlar to:

foreach($hash as $key => $val ue) { fun($key, $val ue); }

#

1t is possible to wite different variations of this function
Here we use a function call to make it as "generic" as possible.
#

Parans:

1 - hash

2 - function nane

function hash_foreach {

| ocal keynane ol dl FS="$I FS"
| FS='
for i in $(eval "echo \${!${Hash_config_varname_prefix}${1}_*}"); do
keynane=$(eval "echo \${i ##${Hash_config_varnane_prefix}${1}_}")
eval "$2 $keynanme \"\$$i\""
done
| FS=" $ol dI FS"

}

NOTE: In lines 103 and 116, anpersand changed.
But, it doesn't matter, because these are conment |ines anyhow.

Here is an example script using the foregoing hash library.

Example A.21. Colorizing text using hash functions

#1/ bi n/ bash
hash-exanpl e. sh: Col ori zing text.
Aut hor: Mariusz Gni azdowski <mariusz.gn-at-gmail.conp

Hash.lib # Load the library of functions.
hash_set colors red "\ 033[0; 31nt
hash_set col ors bl ue "\ 033[0; 34nt
hash_set colors |ight_blue "\ 033[1; 34nt
hash_set colors light_red "\ 033[1; 31nt

440

Contributed Scripts

hash_set col ors cyan "\ 033[0; 36nt
hash_set colors light_green "\033[1;32nf
hash_set colors |ight_gray "\ 033[0; 37nt

hash_set col ors green "\ 033[0; 32nt
hash_set col ors yell ow "\ 033[1; 33nt
hash_set colors light_purple "\033[1; 35nt
hash_set col ors purple "\ 033[0; 35nt

hash_set colors reset_color "\033[0;00nt

$1 - keyname
$2 - val ue
try_colors() {
echo -en "$2"
echo "This line is $1."
}
hash_foreach colors try_colors
hash_echo col ors reset_color -en

echo -e "\nLet us overwite sone colors with yellow \n

It's hard to read yellow text on sone termnals.

hash_dup colors yellow red light_green blue green Iight_gray cyan
hash_foreach colors try_colors

hash_echo col ors reset_color -en

echo -e '"\nLet us delete themand try colors once nore . . .\n'

for i in red light_green blue green |light_gray cyan; do
hash_unset colors $

done

hash_foreach colors try_colors
hash_echo col ors reset_color -en
hash_set other txt "Qher exanples . "
hash_echo ot her txt

hash_get into other txt text

echo $text

hash_set other ny_fun try_colors
hash_cal |l other my_fun pur pl e
hash_echo col ors reset_color -en

hash_echo col ors purple’

echo; echo "Back to normal ?"; echo
exit $?
On sone termnals, the "light" colors print in bold,

and end up | ooking darker than the normal ones.
Wiy is this?

An example illustrating the mechanics of hashing, but from a different point of view.

441

Contributed Scripts

Example A.22. More on hash functions

#1/ bi n/ bash

ld

Copyright 2005 diver Beckstein

Rel eased under the GNU Public License

Aut hor of script granted perm ssion for inclusion in ABS Cuide.
(Thank you!)

pseudo hash based on indirect paraneter expansion
APl : access through functions:

create the hash:
newhash Lovers
add entries (note single quotes for spaces)

addhash Lovers Tristan Isol de
addhash Lovers 'Romeo Montague' 'Juliet Capulet’

access val ue by key
get hash Lovers Tristan ----> |lsolde
show al | keys
keyshash Lovers ---->"Tristan' 'Roneo Mntague

Convention: instead of perls' foo{bar} = boing" syntax,
use

_foo_bar=boing’ (two underscores, no spaces)

1) store key in _NAME keys[]
2) store value in _NAME val ues[] using the sanme integer index
The integer index for the last entry is _NAVE ptr

HHFIFHFHFFEHFFHFEHFHEHFEHFHFEHFHHFEHFHEHFHSFHF ST HF R

NOTE: No error or sanity checks, just bare bones.

function _inihash () {
private function
call at the beginning of each procedure
defines: _keys _values _ptr
#
Usage: _ini hash NAME
[ocal name=$1
keys=${nane}_keys
val ues=$%${ nanme} _val ues
ptr=${nane}_ptr

442

Contributed Scripts

function newhash () {
Usage: newhash NAME
NAMVE shoul d not contain spaces or dots.
Actually: it nust be a legal nanme for a Bash vari abl e.
W rely on Bash automatically recognising arrays.
[ocal name=$1
| ocal _keys _values _ptr
_ini hash ${nane}
eval ${_ptr}=0

function addhash () {
Usage: addhash NAME KEY ' VALUE with spaces

argunents with spaces need to be quoted with single quotes '

| ocal nanme=$1 k="$2" v="$3"
| ocal _keys _values _ptr
_ini hash ${nane}

#echo "DEBUG addhash): ${_ptr}=${!_ptr}"

eval let ${_ptr}=${_ptr}+1

eval "$_keys[${! _ptr}]=\"${kI\""

eval "$_values[${!_ptr}]=\"${vi\""
}

function gethash () {
Usage: gethash NAME KEY
Ret urns boi ng
ERR=0 if entry found, 1 otherw se
That's not a proper hash --
#+ we sinply linearly search through the keys.
l ocal nane=$1 key="$2"
| ocal _keys _values _ptr
local k v i found h
_ini hash ${nane}

_ptr holds the highest index in the hash
f ound=0

for i in $(seq 1 ${!_ptr}); do
h="\${${_keys}[${i}]}" # Safer to do it in two steps,
eval k=${h} #+ especially when quoting for spaces.
if ["${k}" = "${key}"]; then found=1l; break; f

done;

[${found} = 0] && return 1;

else: i is the index that matches the key
h="\${${_val ues}[${i}]}"

eval echo "${h}"

return O;

}

function keyshash () {

Contributed Scripts

Usage: keyshash NAME

Returns list of all keys defined for hash name.
l ocal nane=$1 key="$2"

| ocal _keys _values _ptr

local ki h

_ini hash ${nane}

_ptr holds the highest index in the hash

for i in $(seq 1 ${!_ptr}); do
h="\${${_keys}[${i}]}" # Safer to do it in two steps,
eval k=${h} #+ especially when quoting for spaces.
echo -n "'"${k}"' "

done;

Now, let's test it.

(Per comments at the beginning of the script.)
newhash Lovers

addhash Lovers Tristan Isol de

addhash Lovers 'Romeo Montague' 'Juliet Capulet’

Qutput results.

echo

get hash Lovers Tristan # | sol de

echo

keyshash Lovers # 'Tristan' ' Romeo Mont ague

echo; echo

exit O

Exerci se

Add error checks to the functions.

Now for a script that installs and mounts those cute USB keychain solid-state “ hard drives.”

Example A.23. Mounting USB keychain storage devices

#1/ bi n/ bash

==> usb. sh

==> Script for mounting and installing pen/keychain USB storage devices.
==> Runs as root at system startup (see bel ow).

==>

==> Newer Linux distros (2004 or |ater) autodetect

==> and install USB pen drives, and therefore don't need this script.

==> But, it's still instructive.

This code is free software covered by GNU GPL |icense version 2 or above.
Pl ease refer to http://ww.gnu.org/ for the full license text.

#* H*

444

Contributed Scripts

Sone code lifted fromusb-munt by Mchael Hamlton's usb-nmount (LGPL)
see http://users.actrix. co.nz/ nm chael /usbmount. htm

Put this in /etc/hotplug/usb/di skonkey.

Then | ook in /etc/hotplug/usb.di stmap, and copy all usb-storage entries

i nto /etc/ hotplug/usb. usermap, substituting "usb-storage" for "di skonkey".
O herwise this code is only run during the kernel nodul e invocation/renoval
(at least in ny tests), which defeats the purpose.

TODO

Handl e nore than one di skonkey device at one tine (e.g. /dev/di skonkeyl
#+ and / mmt/ di skonkeyl), etc. The bi ggest problemhere is the handling in
devl abel, which | haven't yet tried.

HFHIFHFFHFHFHFHFEHFHHTFHTEHR
+ + +

AUTHOR and SUPPORT

Konstantin Ri abitsev, <icon |inux duke edu>.
Send any problemreports to ny email address at the nonent.

:tt:tt:tt:tt:tt:tt:tt:ﬁ_t

==> Comment s added by ABS Gui de aut hor.

SYM_I NKDEV=/ dev/ di skonkey

MOUNTPO NT=/ mt / di skonkey

DEVLABEL=/ sbhi n/ devl| abel

DEVLABELCONFI G=/ et c/ sysconfi g/ devl abel
| AME$0

##
Functions |ifted near-verbatimfrom usb-munt code.
#
function all AttachedScsi Usb {
find /proc/scsi/ -path '/proc/scsi/usb-storage* -type f |
xargs grep -1 'Attached: Yes'
}
function scsi DevFronfscsi Usb {
echo $1 | awk -F'[-/]1" "{ n=$(NF-1);
print "/dev/sd" substr("abcdefghijkl mopqgrstuvwxyz", n+l1, 1) }°
}

if ["${ACTION}" = "add"] && [-f "${DEVICE}"]; then
##
lifted fromusbcam code.
#

if [-f /var/run/console.lock]; then
CONSOLEOWNER="cat /var/run/consol e. | ock®
elif [-f /var/lock/console.lock]; then
CONSOLEOMWNER="cat /var/ | ock/ consol e. | ock”
el se

Contributed Scripts

f
for

done
if [

CONSOLEOWNER=

procEntry in $(all AttachedScsi Usb); do
scsi Dev=3$(scsi DevFronScsi Usb $procEntry)
Sonme bug with usb-storage?
Partitions are not in /proc/partitions until they are accessed
#+ sonmehow.
/sbin/fdisk -1 $scsiDev >/dev/nul
#
Most devices have partitioning info, so the data would be on
#+ [dev/sd?1l. However, sone stupider ones don't have any partitioning
#+ and use the entire device for data storage. This tries to
#+ guess senmi-intelligently if we have a /dev/sd?1 and if not, then
#+ it uses the entire device and hopes for the better
#
if grep -q “basename $scsiDev'1l /proc/partitions; then
part="$scsi Dev"" 1"
el se
part =$scsi Dev
f
#
Change ownership of the partition to the consol e user so they can
#+ nmount it.
#
if [! -z "$CONSOLEOMER']; then
chown $CONSOLEOMNER: di sk $part
f
#
This checks if we already have this UU D defined with devl abel
1f not, it then adds the device to the |ist.
#
prodi d=" $DEVLABEL printid -d $part’
if ! grep -q $prodid $DEVLABELCONFI G then
cross our fingers and hope it works
$DEVLABEL add -d $part -s $SYM.I NKDEV 2>/ dev/ nul
f
#
Check if the mount point exists and create if it doesn't.
#
if [! -e $MOUNTPO NT]; then
nkdir -p $MOUNTPO NT
f
#
Take care of /etc/fstab so nounting is easy.
#
if ! grep -q "~$SYM.I NKDEV" /etc/fstab; then
Add an fstab entry
echo -e \
" $SYMLI NKDEW t\ t SMOUNTPO NT\ t \ t aut o\ t noaut o, owner , kudzu 0 0"
>> [etc/fstab
f

| -z "$REMOVER']; then
H#

446

\

Contributed Scripts

Make sure this script is triggered on device renoval.
#
nkdir -p “dirnanme $REMOVER
In -s $I AM $REMOVER
fi

elif ["${ACTION}" = "renpve"]; then
#
If the device is nmounted, unmount it cleanly.
#

if grep -g "$MOUNTPO NT" /etc/mtab; then
unmount cl eanly
umount -1 $MOUNTPOI NT

fi

#

Remove it from/etc/fstab if it's there.

#

if grep -q ""$SYM.I NKDEV" /etc/fstab; then
grep -v ""$SYM.I NKDEV"' /etc/fstab > /etc/.fstab. new
nv -f /etc/.fstab.new /etc/fstab

fi

fi

exit O

Converting atext fileto HTML format.

Example A.24. ConvertingtoHTML

#1/ bi n/ bash
tohtm .sh [v. 0.2.01, reldate: 04/13/12, a teeny bit |ess buggy]

Convert a text file to HTM. format.

Aut hor: Mendel Cooper

Li cense: GPL3

Usage: sh tohtm .sh < textfile > htmfile

Script can easily be nodified to accept source and target fil enanes.

H H HHH

Assunpti ons:

1) Paragraphs in (target) text file are separated by a blank line.

2) Jpeg images (*.jpg) are located in "imges" subdirectory.
In the target file, the image nanes are encl osed in square brackets,
for example, [imageOl.] pg].

3) Enphasized (italic) phrases begin with a space+tunderscore

+ or the first character on the line is an underscore,

+ and end with an underscore+space or underscore+end-of-Iine.

HHFHHHHHH

Settings

FNTSI ZE=2 # Smal | - nedi um font si ze
| MGDI R="i mages" # lmage directory

Headers

HDRO1=' <! DOCTYPE HTML PUBLIC "-//WBC// DTD HTM. 4.01 Transitional //EN'>'
HDRO2='<!-- Converted to HTM. by ***tohtm .sh*** script -->'
HDRO3='<!-- script author: M Leo Cooper <thegrendel.abs@mail.conp -->'

447

Contributed Scripts

HDR10=" <ht m >

HDR11=' <head>"

HDR11a=' </ head>"

HDR12a='<titl e>

HDR12b="</titl e>

HDR121=" <META NAME=" GENERATOR' CONTENT="tohtm .sh script">'
HDR13=' <body bgcol or ="#dddddd" >' # Change background color to suit.
HDR14a=' <f ont size=

HDR14b=" >

Footers

FTR10=" </ body>

FTR11="</htm >'

Tags

BOLD=" "

CENTER=" <cent er >"

END CENTER="</ cent er >"

LF="
"

wite_headers ()

{

echo "$HDRO1"
echo

echo " $HDRO2"
echo " $HDRO3"
echo

echo

echo " $HDR10"
echo "$HDR11"

echo "$HDR121"

echo "$HDR11a"

echo " $HDR13"

echo

echo -n "$HDR14a"

echo -n "$FNTSI ZE"

echo "$HDR14b"

echo

echo "$BOLD"' # Everything in bold (nore easily readable).

}

process_text ()

{
while read |ine # Read one line at a tine.
do
{
if [! "$line"] # Blank line?
t hen # Then new paragraph nust foll ow
echo
echo "$LF" # Insert two
 tags.
echo "$LF"
echo
conti nue # Skip the underscore test.
el se # O herw se .

Contributed Scripts

if [["$line" =~ \[*jpg\] 1] # |s a graphic?
t hen # Strip away brackets.
temp=$(echo "$line" | sed -e "s/\[//' -e "s/\]//I")
i ne=""$CENTER" <ing src="\"$I MGDI R"/ $tenp\"> "$END_CENTER"
Add inmage tag.
And, center it.
f

f

echo "$line" | grep -q _
if ["$?" -eq 0] # If line contains underscore ..
t hen

Convert underscored phrase to italics.
temp=$(echo "$line"
sed -e 's/ [<i>" -e s/ _[I<\/i>]"
sed -e 's/™ [/<i>" -e 's/_[<\[i>]")
Process only underscores prefixed by space,
#+ or at beginning or end of |ine.
Do not convert underscores enbedded within a word!

l'i ne="$t enp"
Slows script execution. Can be optim zed?
===
f
echo
echo "$line"
echo

Don't want extra blank lines in generated text!
} # End while
done
} # End process_text ()

wite footers () # Term nation tags.

{
echo "$FTR10"
echo "$FTR11"
}

min () {

=========

write headers
process_t ext
write footers

449

Contributed Scripts

exit $?

[Exerci ses:

H o o-m e e e a - - -

1) Fixup: Check for closing underscore before a comma or period.
2) Add a test for the presence of a closing underscore

#+ in phrases to be italicized.

Here is something to warm the hearts of webmasters and mistresses: a script that saves weblogs.

Example A.25. Preserving weblogs

#1/ bi n/ bash
archi vewebl ogs. sh v1.0

Troy Engel <tengel @I uid. cone

Slightly nodified by docunment author.

Used with perm ssion.

#

This script will preserve the normally rotated and

#+ thrown away webl ogs from a default RedHat/Apache installation.
1t will save the files with a date/time stanp in the fil enane,
#+ bzi pped, to a given directory.

#

Run this fromcrontab nightly at an off hour,

#+ as bzi p2 can suck up sone serious CPU on huge | ogs:

0 2 * * * [opt/sbin/archi vewebl ogs. sh

PROBLEM=66

Set this to your backup dir.
BKP_DI R=/ opt / backups/ webl ogs

Default Apache/ RedHat stuff
LOG DAYS="4 3 2 1"

LOG Dl R=/var /Il og/ httpd

LOG FI LES="access_| og error_| og"
Default RedHat program | ocations
LS=/bin/ls

MW=/ bi n/ nv

| D=/usr/bin/id

CUT=/ bi n/ cut

COL=/ usr/ bi n/ col um

Bz2=/ usr/ bi n/ bzi p2

Are we root?

USER="$ID -u’

if ["X$USER' = "X0"]; then
echo "PANIC. Only root can run this script!”
exit $PROBLEM

fi

450

Contributed Scripts

Backup dir exists/witable?

if [! -x $BKP_DIR]; then
echo "PANIC. $BKP_DIR doesn't exist or isn't witable!"
exit $PROBLEM

f

Move, rename and bzip2 the | ogs
for logday in $LOG DAYS; do
for logfile in $LOG FI LES; do
MYFI LE="$LOG DI R/ $l ogfi | e. $I ogday"
if [-wS$MFILE]; then
DTS="$LS -1go --tine-style=+%%Pd $MYFILE | $COL -t | $CUT -d ' ' -f7°
$W $MYFI LE $BKP_DI R/ $l ogfi |l e. $DTS
$BZ2 $BKP_DI R/ $l ogfi | e. $DTS
el se
Only spew an error if the file exits (ergo non-witable).
if [-f SMWFILE]; then
echo "ERROR $MYFILE not writable. Skipping."
f
f
done
done

exit O

How to keep the shell from expanding and reinterpreting text strings.

Example A.26. Protecting literal strings

#! [bi n/ bash
protect _literal.sh

set -vXx
:<<-' _Protect_Literal _String_Doc'

Copyright (c) Mchael S. Zick, 2003; Al Rights Reserved
Li cense: Unrestricted reuse in any form for any purpose.
VWarranty: None
Revi si on: $I D$

Docunmentation redirected to the Bash no-operation
Bash will '/dev/null' this block when the script is first read.
(Unconment the above set command to see this action.)

Renove the first (Sha-Bang) |ine when sourcing this as a library
procedure. Also comment out the exanple use code in the two
pl aces where shown.

Usage:
_protect_literal _str 'Wiatever string neets your ${fancy}'
Just echos the argunent to standard out, hard quotes
restored.

451

Contributed Scripts

$(_protect_literal _str 'Whatever string neets your ${fancy}')
as the right-hand-side of an assignnent statenent.

Does:
As the right-hand-side of an assignment, preserves the
hard quotes protecting the contents of the literal during
assi gnment .

Not es:

The strange nanes (_*) are used to avoid tranpling on
the user's chosen names when this is sourced as a
[ibrary.

_Protect _Literal _String_Doc

The "for illustration' function form

_protect _literal str() {

Pick an un-used, non-printing character as |ocal |FS.

Not required, but shows that we are ignoring it.

| ocal | FS=$'\x1B' # \ ESC char act er

Encl ose the All-El enents-Of in hard quotes during assignnent.
[ocal tnp=$ \x27' $@' \ x27

[ocal tnp=$'\"'$@ \""’ # Even uglier
| ocal | en=${#t np} # Info only.
echo $tnp is $len | ong. # Qutput AND information
}
This is the short-named version
_pl's() {
| ocal |FS=$'x1B # \ESC character (not required)
echo $'\x27' $@' \ x27' # Hard quoted paraneter glob

}

:<<-' Protect_Literal _String_Test
Renobve the above "# " to disable this code. # #

See how that | ooks when printed.

echo

echo "- - Test One - -"

_protect _literal _str 'Hello $user'
_protect _literal _str 'Hello "${usernane}
echo

Wi ch yields:

- - Test One - -

'Hello $user' is 13 |ong.

'Hello "${username}"' is 21 |ong

Looks as expected, but why all of the trouble?

452

Contributed Scripts

The difference is hidden inside the Bash internal order
#+ of operations.
VWi ch shows when you use it on the RHS of an assignnent.

Declare an array for test val ues.
declare -a arrayZz

Assign elenments with various types of quotes and escapes.

arrayZ=(zero "$(_pls "Hello ${Me}')" "Hello ${You}' "\'Pass: ${pwp\'")
Now list that array and see what is there.
echo "- - Test Two - -"
for ((i=0; i<${#arrayZzZ[*]} ; i++))
do
echo Elenent $i: ${arrayZ[$i]} is: ${#arrayzZ[$i]} |ong.
done
echo
Wi ch yields:
- - Test Two - -
Elenment 0: zero is: 4 |long. # Qur marker el enent
Element 1: 'Hello ${Me}' is: 13 long. # Qur "$(_pls "...")"
Element 2: Hello ${You} is: 12 long. # Quotes are m ssing
Elenment 3: \'Pass: \'" is: 10 | ong. # ${pw} expanded to nothi ng
Now make an assignment with that result.
declare -a array2=(${arrayZ[@})
And print what happened.
echo "- - Test Three - -"
for ((i=0; i<${#array2[*]} ; i++))
do
echo Elenent $i: ${array2[$i]} is: ${#array2[$i]} |ong.
done
echo
Wi ch yields:
- - Test Three - -
Element 0: zero is: 4 |long. # Qur marker el enent.
Element 1: Hello ${Me} is: 11 |ong. # Intended result.
Elenent 2: Hello is: 5 long. # ${You} expanded to not hing.
Elenent 3: 'Pass: is: 6 |ong. # Split on the whitespace
Elenent 4: ' is: 1 |ong. # The end quote is here now
Qur Elenment 1 has had its leading and trailing hard quotes stripped.
Al though not shown, |eading and trailing whitespace is also stripped.
Now that the string contents are set, Bash will always, internally,
#+ hard quote the contents as required during its operations.

\Why?

Considering our "$(_pls '"Hello ${Me}')" construction

0" " -> Expansion required, strip the quotes.

$(...) -> Replace with the result of..., strip this.

_pls' ' ->called with literal arguments, strip the quotes.

453

Contributed Scripts

The result returned includes hard quotes; BUT the above processing
#+ has al ready been done, so they become part of the value assigned.

Simlarly, during further usage of the string variable, the ${M}
#+ is part of the contents (result) and survives any operations
(Until explicitly told to evaluate the string).

H nt: See what happens when the hard quotes ($' \x27') are repl aced
#+ with soft quotes ($' \x22') in the above procedures.
Interesting also is to renove the addition of any quoting.

Protect _Literal _String_Test

#_
Renpve the above "# " to disable this code. # #

exit O

But, what if you want the shell to expand and reinterpret strings?

Example A.27. Unprotecting literal strings

#! [bi n/ bash
unprotect _literal.sh

set -vXx
:<<-'_UnProtect_Literal _String_Doc'

Copyright (c) Mchael S. Zick, 2003; Al Rights Reserved
Li cense: Unrestricted reuse in any form for any purpose.
VWarranty: None
Revi si on: $I D$

Docurent ation redirected to the Bash no-operation. Bash wil|l
"/dev/null" this block when the script is first read.
(Unconment the above set command to see this action.)

Renove the first (Sha-Bang) |ine when sourcing this as a library
procedure. Also comment out the exanple use code in the two
pl aces where shown.

Usage:
Conpl enent of the "$(_pls 'Literal String')" function
(See the protect _literal.sh exanple.)

StringVar=$(_upls ProtectedSringVari abl e)

Does:
VWhen used on the right-hand-side of an assignnent statenent;
makes the substitions enbedded in the protected string.

Not es:
The strange nanes (_*) are used to avoid tranpling on
the user's chosen nanes when this is sourced as a

Contributed Scripts

[ibrary.

_UnProtect_Literal _String_Doc

_upls() {
| ocal |FS=$'x1B # \ESC character (not required)
eval echo $@ # Substitution on the gl ob.

}

:<<-' _UnProtect_Literal _String_Test
Renpbve the above "# " to disable this code. # #

_plI's() {
| ocal |FS=$'x1B # \ESC character (not required)
echo $'\x27' $@' \ x27' # Hard quoted paraneter glob

}

Declare an array for test val ues.
declare -a arrayZz

Assign elenments with various types of quotes and escapes.
arrayZ=(zero "$(_pls "Hello ${Me}')" "Hello ${You}' "\'Pass: ${pwp\'")

Now make an assignment with that result.
declare -a array2=(${arrayZ[@})

Wi ch yi el ded:

- - Test Three - -

Elenment 0: zero is: 4 long # Qur marker el enent.

Element 1: Hello ${Me} is: 11 |ong # Intended result.

Elenent 2: Hello is: 5 long # ${You} expanded to not hi ng.
Elenent 3: 'Pass: is: 6 long # Split on the whitespace

Elenent 4: ' is: 1 long # The end quote is here now
set -vx

Initialize '"Me' to sonething for the enbedded ${Me} substitution
This needs to be done ONLY just prior to evaluating the

#+ protected string.

(This is why it was protected to begin with.)

Me="to the array guy."

Set a string variable destination to the result.
newvar =$(_upl s ${array2[1]})

Show what the contents are.
echo $newvar

Do we really need a function to do this?
newer Var =$(eval echo ${array2[1]})
echo $newer Var

455

Contributed Scripts

1 guess not, but the _upls function gives us a place to hang
#+ the docunentation on.

This hel ps when we forget what a # construction |ike:

#+ $(eval echo ...) neans.

What if Me isn't set when the protected string is eval uated?
unset Me

newest Var=$(_upls ${array2[1]})

echo $newest Var

Just gone, no hints, no runs, no errors.

Wiy in the world?

Setting the contents of a string variable containing character
#+ sequences that have a neaning in Bash is a general problemin
#+ script progranm ng.

This problemis now solved in eight |lines of code
#+ (and four pages of description).

VWere is all this going?
Dynam c content Web pages as an array of Bash strings.
Content set per request by a Bash 'eval' conmand
+ on the stored page tenpl ate.
Not intended to replace PHP, just an interesting thing to do.
#it
Don't have a webserver application?
No problem check the exanple directory of the Bash source;
#+ there is a Bash script for that also.

HH R

UnProtect Literal String_Test

#_
Renpbve the above "# " to disable this code. # #

exit O

This interesting script helps hunt down spammers.

Example A.28. Spammer I dentification

#!/ bi n/ bash
$1d$
Above line is RCS info.

The | atest version of this script is available fromhttp://ww. norethan. org.

by M chael S. Zick

#

#

Spammer-identification

#

Used in the ABS CGuide with pernission.

456

Contributed Scripts

HERHHHHH T H R R
Docunment ati on

See also "Quickstart™ at end of script.

HERHHHHH T H R R

1<<-'_is_spanmer_Doc_
Copyright (c) Mchael S. Zick, 2004
Li cense: Unrestricted reuse in any form for any purpose.

Warranty: None -{lts a script; the user is on their own.}-

| mpati ent ?
Application code: goto "# # # Hunt the Spanmer' program code # # #"
Exampl e output: ":<<-'_is_spammrer_outputs_""

How to use: Enter script name w thout argunments.
O goto "Quickstart" at end of script.

Provi des
G ven a dommin nane or |P(v4) address as input:

Does an exhaustive set of queries to find the associated
networ k resources (short of recursing into TLDs).

Checks the I P(v4) addresses found agai nst Bl ackli st
nameservers.

If found to be a blacklisted |IP(v4) address,
reports the blacklist text records.
(Usual Iy hyper-links to the specific report.)

Requi res
A wor ki ng Internet connection
(Exercise: Add check and/or abort if not on-line when running script.)
Bash with arrays (2.05b+).

The external program'dig --

a utility programprovided with the 'bind set of prograns.
Specifically, the version which is part of Bind series 9.x
See: http://ww.isc.org

Al'l usages of 'dig" are limted to wapper functions,
which may be rewitten as required.
See: di g _w appers. bash for details.

("Addi ti onal docunentation" -- bel ow)

Usage
Script requires a single argunment, which may be:
1) A domai n narne;
2) An IP(v4) address;
3) Afilename, with one name or address per |ine.

Script accepts an optional second argunent, which may be:
1) A Bl acklist server nane;
2) Afilename, with one Bl acklist server nane per line.

457

Contributed Scripts

If the second argunent is not provided, the script uses
a built-in set of (free) Blacklist servers.

See al so, the Quickstart at the end of this script (after "exit').

Ret urn Codes
0 - Al &K
1 - Script failure
2 - Sonething is Blacklisted

Optional environment vari abl es
SPAMVER _TRACE
If set to a witable file,
script will Iog an execution flow trace.

SPAMVER _DATA
If set to a witable file, script will dunmp its
di scovered data in the formof GaphViz file
See: http://ww. research. att.conf sw tool s/ graphviz

SPAMMVER LIM T
Limts the depth of resource tracing.

Default is 2 | evels.

A setting of O (zero) means 'unlimted . . .
Caution: script mght recurse the whole Internet!

Alimt of 1 or 2 is nost useful when processing
a file of dommin nanmes and addresses.
A higher limt can be useful when hunting spam gangs.

Addi tional docunentation
Downl oad the archived set of scripts
explaining and illustrating the function contained within this script.
http://bash.deta.in/mszick_clf.tar.bz2

Study notes
This script uses a | arge nunber of functions.
Nearly all general functions have their own exanple script.
Each of the exanple scripts have tutorial |evel coments.

Scripting project
Add support for |1P(v6) addresses.
| P(v6) addresses are recogni zed but not processed.

Advanced proj ect
Add the reverse | ookup detail to the discovered information

Report the del egation chain and abuse contacts.

458

Contributed Scripts

Modi fy the GraphViz file output to include the
newl y di scovered information.

__is_spammer_Doc_

BHABHBHABHBHHBH AR H BB H BB B R R R H

Special |FS settings used for string parsing.

Whi t espace == :Space: Tab: Li ne Feed: Carri age Return
WEP_I FS=$' \ x20' $' \ x09' $' \ xOA" $' \ xOD

No Whitespace == Line Feed: Carriage Return
NO_WSP=$'\ x0A' $' \ xOD

Field separator for dotted decinmal |P addresses
ADR_| FS=${ NO_W&P} ' ."'

Array to dotted string conversions
DOT_I FS=' . "' ${ WSP_I FS}

Pendi ng operations stack machine # #

This set of functions described in func_stack. bash.
(See "Additional docunentation" above.)

###

d obal stack of pending operations.

declare -f -a _pending_

d obal sentinel for stack runners

declare -i _p_ctrl_

d obal holder for currently executing function
declare -f _pend_current _

Debug version only - renove for regular use # #

#

#

The function stored in _pend_hook_is called
inmedi ately before each pending function is

eval uated. Stack clean, _pend_current_ set.
#
#

This thingy denonstrated in pend_hook. bash.
declare -f _pend_hook_
###

The do not hing function
pend_dummy() { : ; }

Clear and initialize the function stack.
pend_init() {

unset _pending [@

pend_func pend_stop_mark

_pend_hook_=' pend_dunmmry' # Debug only.

459

Contributed Scripts

}

Discard the top function on the stack

pend_pop() {
if [${#_pending_[@} -gt O]
t hen
local -i _top_
top=${#_pending_ [@}-1
unset _pending_[$_top_]
f
}

pend_func function_name [$(printf '%\n' argunments)]
pend_func() {

 ocal | FS=${NO_W&P}

set -f

pending[${#_pending_[@}] =%@

set +f

}

The function which stops the rel ease
pend_stop_mark() {

_p_ctrl_=0
}

pend_mar k() {
pend_func pend_stop_mark

}
Execute functions until 'pend_stop_nmark’
pend_rel ease() {
local -i _top_ # Declare _top_ as integer
_p_ctrl_=${#_pending_[@}
while [${_p_ctrl_} -gt 0]
do
top=${#_pending_ [@}-1
_pend_current _=${_pending_[$_top_]}
unset _pending_[$_top_]
$_pend_hook_ # Debug only.
eval $_pend_current _
done
}
Drop functions until 'pend_stop_nark’
pend_drop() {
local -i _top_

local _pd_ctrl_=${#_pending_[@}
while [${_pd_ctrl_} -gt 0]

do
top=%_pd ctrl_-1
if ["${_pending_[$_top_]}" == 'pend_stop_nark']
t hen
unset _pending_[$_top_]
br eak

460

Contributed Scripts

el se
unset _pending_[$_top_]
_pd_ctrl _=$ top_
f
done
if [${#_pending_ [@} -eq O]
t hen
pend_func pend_stop_mark
f
}

#H### Array editors ####

This function described in edit_exact. bash.
(See "Additional docunentation," above.)
edit _exact <excludes_array_nane> <target_array_name>
edit_exact() {
[$# -eq 2] ||
[$# -eq 3] || return 1
| ocal -a _ee_ Excl udes
| ocal -a _ee_Target
| ocal _ee x

| ocal _ee t
 ocal | FS=${NO_W5P}
set -f

eval _ee_Excludes=\(\$\{$1\[@]\} \)
eval _ee_Target=\(\$\{$2:[@]\} \)

| ocal _ee_|l en=${#_ee_Target[@} # Original |ength.

| ocal _ee_cnt=${#_ee_Excl udes[@} # Exclude list |ength.

[${_ee_len} -ne 0] || return O # Can't edit zero | ength.
[${_ee_cnt} -ne 0] || return O # Can't edit zero | ength.
for ((x = 0; x < ${_ee_cnt} ; x++))

do

_ee_x=${_ee_Excl udes[$x]}
for ((n=0; n< ${_ee len} ; n++t))

do
_ee_t=${_ee_Target[$n]}
if [x"${ ee t}" == x"${_ee_x}"]
t hen
unset _ee_Target[$n] # Discard match.
[$# -eq 2] && break # If 2 argunents, then done.
f
done
done
eval $2=\(\$\{_ee_Target\[@]\} \)
set +f
return O

}

This function described in edit_by_ gl ob. bash.
edit_by gl ob <excludes_array_nanme> <target_array_nane>
edit_by _glob() {

[$# -eq 2] ||

[$# -eq 3] || return 1

461

Contributed Scripts

| ocal -a _ebg_ Excl udes

| ocal -a _ebg_Target

| ocal _ebg_x

| ocal _ebg_t

 ocal | FS=${ NO_W5P}

set -f

eval _ebg_Excludes=\(\$\{$1\[@]\} \)
eval _ebg Target=\(\$\{$2A[@]\} \)

| ocal _ebg_l en=${#_ebg_Target[@}

| ocal _ebg_cnt=${#_ebg_Excl udes[@}

[${ _ebg len} -ne 0] || return O

[${ _ebg cnt} -ne 0] || return O

for ((x = 0; x < ${_ebg cnt} ; x++))
do

_ebg_x=${_ebg_Excl udes[$x]}
for ((n=0; n< ${_ebg_len} ; n+t+))

do
[$# -eq 3] & & _ebg_x=${_ebg x}'*' # Do prefix edit
if [${_ebg_Target[$n]:=}] #+ if defined & set.
t hen
_ebg_t=${_ebg_Target [$n]/ #${_ebg_x}/}
[${# ebg_t} -eq 0] && unset _ebg_Target[$n]
f
done
done
eval $2=\(\$\{_ebg _Target\[@]\} \)
set +f
return O

}

This function described in unique_lines. bash.
uni que_l i nes <in_nane> <out _nane>
uni que_lines() {

[$# -eq 2] || return 1

local -a _ul _in

local -a _ul _out

local -i _ul _cnt

local -i _ul_pos

local _ul _tnp

 ocal | FS=${ NO_W5P}

set -f

eval _ul_ina\(\$\{$1\[@]\} \)

ul _cnt=${# ul _in[@}

for ((_ul _pos =0 ; _ul_pos < ${_ul _cnt} ; _ul_pos++))

do
if [${_ul_in[${_ul _pos}]:=} 1] # If defined & not enpty
t hen

_ul _top=${_ul _in[${_ul _pos}1}
_ul _out[${# ul _out[@}]=%${_ul _tnp}
for ((zap = _ul _pos ; zap < ${_ul _cnt} ; zap++))
do
[${_ul _in[${zap}]:=}] &&
["x"${_ul __in[${zap}]} == "x"${ _ul _tnp}] &&
unset _ul _in[${zap}]

462

Contributed Scripts

done
f
done
eval $2=\(\$\{_ul _out\[@]\} \)
set +f
return 0

}

This function described in char_convert. bash.

to_l ower <string>

to_lower() {
[$# -eq 1] || return 1
| ocal _tl _out
_tl_out=${1// A a}
_tl _out=${ _tl _out//Bl b}
_tl_out=${_tl _out//Cc}
_tl _out=${ tl _out//D d}
_tl_out=${_tl _out//FE e}
_tl _out=${ tl _out//F/f}
_tl_out=${_tl _out// G g}
_tl _out=${ tl _out//H h}
_tl _out=${ tl _out//1/i}
_tl _out=${ tl _out//J/j}
_tl _out=${ _tl _out//K/k}
_tl _out=${ tl _out//L/l}
_tl_out=${_tl_out//Mn}
_tl_out=${_tl _out//Nn}
_tl_out=${_tl_out// O o}
_tl_out=${_tl _out//P/p}
_tl_out=${_tl _out//Q q}
_tl_out=${ _tl _out//Rir}
_tl_out=${_tl _out//S/ s}
_tl_out=${_tl _out//T/t}
_tl_out=${_tl _out// U u}
_tl_out=${_tl _out//V/v}
_tl_out=${_tl_out//Ww}
_tl_out=${_tl _out// X x}
_tl_out=${_tl _out//Y/y}
_tl_out=${_tl _out//Z z}
echo ${_tl _out}
return O

}

Application hel per functions

Not everybody uses dots as separators (APNIC, for exanple).
This function described in to_dot. bash
to_dot <string>

to_dot() {
[$# -eq 1] || return 1
echo ${1//[# @9A/.}
return O

}

463

Contributed Scripts

This function described in is_nunber. bash.
is_number <input>

i s_nunber() {
["$#" -eq 1] || return 1 # is blank?
[x"$1" == 'x0"] & return O # is zero?
| ocal -i tst
let tst=$1 2>/ dev/null # else is nuneric
return $?
}

This function described in is_address. bash.
is_address <input>
i s_address() {
[$# -eq 1] || return 1 # Bl ank ==> fal se
| ocal -a _ia_input
 ocal | FS=${ADR | FS}
_ia_input=($1)
if [${#ia_input[@} -eq 4]
i s_nunber ${_ia_input[0]}
i s_nunber ${_ia_input[1]}
i s_nunber ${_ia_input[2]}
i s_nunber ${_ia_input[3]}
[${_ia_input[0]} -It 256]
[${_ia_input[1]} -It 256]
[${_ia_input[2]} -It 256]
[${_ia_input[3]} -It 256]
t hen
return O
el se
return 1

FEEEERERE

fi
}

This function described in split_ip.bash.
split_ip <IP_address>
#+ <array_name_norne [<array_nane_rev>]
split_ip() {
[$# -eq 3] || # Either three
[$# -eq 2] || return 1 #+ or two argunents
| ocal -a _si_input
 ocal | FS=${ADR | FS}
_Si_input=($1)
| FS=${ WEP_I FS}
eval $2=\(\ \$\{_si_input\[@]\}\ \)
if [$# -eq 3]
t hen
Build query order array.
local -a _dns_ip
_dns_i p[0] =${_si _input[3]}
_dns_ip[1] =${_si _input[2]}
_dns_ip[2] =${_si _input[1]}
_dns_i p[3] =${_si _input[0]}
eval $3=\(\ \$\{ _dns_ip\[@]\}\ \)
f

464

Contributed Scripts

return O

}

This function described in dot_array. bash.
dot _array <array_nane>
dot _array() {
[$# -eq 1] || return 1 # Single argunent required.
| ocal -a _da_input
eval _da_input=\(\ \$\{$SN\[@]\}\ \)
 ocal | FS=${DOT_I| FS}
| ocal _da_out put=${_da_i nput[@}
| FS=${ WEP_I FS}
echo ${_da_out put}
return O

}

This function described in file_to_array. bash
file_to_array <file_name> <line_array_nane>
file_to_array() {
[$# -eq 2] || return 1 # Two argunents required.
 ocal | FS=${NO_W&P}
local -a _fta_ tnp_
_fta_tnp_=($(cat $1))
eval $2=\(\$\{_fta_tnp \[@]\} \)
return O

}

Columi zed print of an array of multi-field strings.
col _print <array_name> <m n_space> <
#+ tab_stop [tab_stops]>
col _print() {

[$# -gt 2] || return O

local -a _cp_inp

local -a _cp_spc

local -a _cp_line

local _cp_mn

| ocal _cp_ntnt

| ocal _cp_pos

| ocal _cp_cnt

| ocal _cp_tab

local -i _cp

| ocal -i _cpf

local _cp_ fld

WARNI NG FOLLOW NG LI NE NOT BLANK -- I T IS QUOTED SPACES.
| ocal _cp_max='

set -f

 ocal | FS=${ NO_W5P}

eval _cp_inp=\(\ \$\{$1\[@]\}\ \)

[${# cp_inp[@} -gt O] || return O # Enpty is easy.
_cp_ntnt =$2

_cp_mn=${_cp_nex: 1: ${_cp_nctnt }}

shift

shift

_cp_cnt =$#

465

Contributed Scripts

for ((_cp=0; _cp < _cp_cnt ; _cp+t+t))
do
_cp_spc[${# _cp_spc[@}]="${_cp_nax: 2: $1}" #"
shi ft
done
_cp_cnt=${# _cp_inp[@}
for ((_cp=0; _cp < _cp_cnt ; _cp+t+t))
do
_Ccp_pos=1
| FS=${ NO_ WP} $' \ x20
_cp_line=(${_cp_inp[${_cp}]})
| FS=${ NO_W&P}
for ((_cpf =0 ; _cpf < ${# cp_line[@} ; _cpf++))
do
_cp_tab=${_cp_spc[${_cpf}]: ${_cp_pos}}
if [${# cp_tab} -It ${ _cp_ncnt}]
t hen
_Ccp_tab="${_cp_nin}"
f
echo -n "${_cp_tab}"
((_cp_pos = ${_cp_pos} + ${# cp_tab}))
_cp_fld="${_cp_line[${_cpf}]l}"
echo -n ${_cp_fld}
((_cp_pos = ${_cp_pos} + ${# cp_fld}))
done
echo
done
set +f
return O

}

'Hunt the Spanmer' data flow # # #

Application return code
declare -i _hs_RC

Original input, fromwhich |IP addresses are renpved
After which, domain nanes to check
declare -a uc_nane

Original input |IP addresses are noved here
After which, |IP addresses to check
declare -a uc_address

Names agai nst whi ch address expansion run
Ready for name detail | ookup
decl are -a chk_nane

Addresses agai nst whi ch name expansi on run
Ready for address detail | ookup
decl are -a chk_address

Recursion is depth-first-by-name.
The expand_i nput _address maintains this |ist

466

Contributed Scripts

#+ to prohibit |ooking up addresses tw ce during

#+ domai n nane recursion

decl are -a been_there_addr

been_t here_addr=('127.0.0.1") # Witelist |ocal host

Names whi ch we have checked (or given up on)
decl are -a known_nane

Addresses whi ch we have checked (or given up on)
decl are -a known_address

List of zero or nore Blacklist servers to check

Each 'known_address' w |l be checked agai nst each server,
#+ with negative replies and failures suppressed.

declare -a |list_server

Indirection limt - set to zero == no limt
i ndi rect =${ SPAMMER LI M T: =2}

'Hunt the Spanmer' information output data # # #

Any domain name may have nultiple | P addresses.
Any | P address may have nultiple domai n nanes.
Therefore, track unique address-nanme pairs.
decl are -a known_pair

declare -a reverse_pair

In addition to the data flow vari abl es; known_address
#+ known_nane and |ist_server, the followng are output to the
#+ external graphics interface file.

Authority chain, parent -> SOA fields.
declare -a auth_chain

Reference chain, parent name -> child nane
declare -a ref_chain

DNS chain - domain nane -> address
decl are -a nane_address

Name and service pairs - domain name -> service
decl are -a name_srvc

Name and resource pairs - domain nane -> Resource Record
decl are -a nane_resource

Parent and Child pairs - parent name -> child nane
This MAY NOT be the same as the ref _chain foll owed!
declare -a parent_child

Address and Bl acklist hit pairs - address->server
declare -a address_hits

Dump interface file data

467

Contributed Scripts

declare -f _dot_dunp
_dot _dunp=pend_dumy # Initially a no-op

Data dunp is enabled by setting the environment variabl e SPAMVER DATA
#+ to the name of a witable file.
declare _dot _file

Hel per function for the dunp-to-dot-file function
dunp_to_dot <array_nanme> <prefix>
dunp_to_dot () {
| ocal -a _dda_tnp
|l ocal -i _dda_cnt
| ocal _dda_forn¥ "${2}' ¥®4u Y%\ n
 ocal | FS=${NO_W&P}
eval _dda_tnp=\(\ \$\{$1\[@]\}\ \)
_dda_cnt=${#_dda_t np[@}
if [${_dda_cnt} -gt 0]

t hen
for ((_dda = 0 ; _dda < _dda_cnt ; _dda++))
do
printf "${_dda_forn}" \
"${_dda}" "${_dda_tnp[${_dda}]}" >>${_dot_file}
done
f
}
Which will also set _dot_dunp to this function .
dunp_dot () {
local -i _dd_cnt

echo '# Data vintage: '$(date -R) >${_dot _fil e}

echo '# ABS Guide: is_spamer. bash; v2, 2004-nmsz' >>${_dot _file}
echo >>${ dot _file}

echo 'digraph G {' >>$%${ _dot_file}

if [${#known_nane[@} -gt O]
t hen
echo >>${ dot _file}
echo '# Known domai n nane nodes' >>${ dot_fil e}
_dd_cnt =${#known_nane[@}
for ((_dd =0 ; _dd < _dd_cnt ; _dd++))
do
printf ' NY®4u [abel ="%"] ;\n" \
"${_dd}" "${known_name[${_dd}]}" >>${_dot _fil e}
done
f

if [${#known_address[@} -gt O]
t hen
echo >>${ dot _file}
echo '# Known address nodes' >>${_dot_fil e}
_dd_cnt =${#known_addr ess[@}
for ((_dd =0 ; _dd < _dd_cnt ; _dd++))
do
printf ' A¥®4u [| abel ="9%"] ;\n" \

468

Contributed Scripts

"${_dd}" "${known_address[${_dd}]}" >>${_dot_fil e}

done
f
echo >>${ dot _file}
echo '/*' >>${ dot _file}
echo ' * Known relationships :: User conversion to' >>${ dot _file}
echo ' * graphic formby hand or programrequired.' >>${ dot _file}
echo ' *' >>${ dot _file}

if [${#auth_chain[@} -gt O]
t hen
echo >>${ dot _file}
echo '# Authority ref. edges followed & field source.' >>${_dot _file}
dunp_to_dot auth_chain AC
f

if [${#ref_chain[@} -gt O]

t hen
echo >>${ dot _file}
echo '# Nane ref. edges followed and field source.' >>${ dot _file}
dunp_to_dot ref_chain RC

f

if [${#nane_address[@} -gt O]

t hen
echo >>${ dot _file}
echo '# Known nanme->address edges' >>${_dot _file}
dunp_t o_dot nane_address NA

f

if [${#nane_srvc[@} -gt O]

t hen
echo >>${ dot _file}
echo '# Known name->servi ce edges' >>${_dot _file}
dunp_to_dot nane_srvc NS

f

if [${#nane_resource[@} -gt O]

t hen
echo >>${ dot _file}
echo '# Known name->resource edges' >>${ dot _file}
dunp_t o_dot nanme_resource NR

f

if [${#parent_child[@} -gt O]

t hen
echo >>${ dot _file}
echo '# Known parent->child edges' >>${_dot _file}
dunp_to_dot parent_child PC

f

if [${#list_server[@} -gt O]
t hen

469

Contributed Scripts

echo >>${ dot _file}
echo '# Known Bl acklist nodes' >>${_dot_file}
_dd_cnt=${#list_server[@}
for ((_dd =0 ; _dd < _dd_cnt ; _dd++))
do
printf ' LSY®4u [l abel ="%"] ;\n" \
"${_dd}" "${list_server[${_dd}]}" >>${_dot_file}
done
f

uni que_l i nes address_hits address_hits
if [${#address_hits[@} -gt O]
t hen
echo >>${ dot _file}
echo '# Known address->Bl acklist_hit edges' >>${ dot _file}
echo '# CAUTION: dig warnings can trigger false hits.' >>${_dot _file}
dunp_to_dot address_hits AH
f

echo >>${ dot _file}
echo ' *' >>${ dot _file}
echo ' * That is a lot of relationships. Happy graphing.' >>${_dot _file}
echo ' */' >>${ dot _file}
echo '}’ >>${ dot _file}

return O

}

'Hunt the Spanmer' execution flow # # #

Execution trace is enabled by setting the

#+ environnment vari abl e SPAMVER TRACE to the nanme of a witable file.
declare -a _trace_l og

declare _log_file

Function to fill the trace |og
trace_l ogger () {
_trace_log[${#_trace_l og[@}]=${_pend_current _}

}

Dunmp trace log to file function vari abl e.
declare -f _log_dunp
_l og_dunp=pend_dumy # Initially a no-op

Dunp the trace log to a file.
dump_l og() {
local -i _dl _cnt
_dl _cnt=${#_trace_l og[@}
for ((_dl =0 ; _dl < _dl _cnt ; _dl++))
do
echo ${_trace_log[${_dl}]} >> ${ log file}
done
_dl _cnt=${#_pending_[@}
if [${_dl _cnt} -gt 0]
t hen
_dl _cnt=${_dl _cnt}-1

470

Contributed Scripts

echo '# # # Qperations stack not enpty # # # >> ${_log_ file}
for ((_dl = ${_dl _cnt} ; _dl >=0; _dl--))

do
echo ${_pending [${_dI}]} >> ${ log file}
done
f
}
Uility program'dig" wappers # #
#

These wappers are derived fromthe

#+ exanpl es shown in di g_w appers. bash.

#

The major difference is these return
#+ their results as a list in an array.

#

See dig_wrappers.bash for details and
#+ use that script to devel op any changes.
#

###

Short formanswer: 'dig" parses answer.

Forward | ookup :: Name -> Address
short_fwd <domai n_name> <array_nane>
short _fwd() ({

local -a _sf_reply

local -i _sf _rc

local -i _sf _cnt

| FS=${ NO_W&P}
echo -n "."'

echo 's%mu: "${1}
_sf_reply=($(dig +short ${1} -c in -t a 2>/dev/null))

_sf _rc=%$?
if [${_sf_rc} -ne 0]
t hen

_trace_log[${# trace_log[@}]="## Lookup error '${_sf _rc}' on '${1}' ##
[${_sf_rc} -ne 9] && pend_drop
return ${_sf_rc}
el se
Some versions of 'dig return warnings on stdout.
_sf_cnt=${#_sf_reply[@}
for ((_sf =0 ; _sf < ${_sf_cnt} ; _sf++))
do
["x"${_sf_reply[${_sf}]1:0:2} == "x;;'] &&
unset _sf _reply[${_sf}]
done
eval $2=\(\$\{_sf _reply\[@]\} \)
f
return O

}

Reverse | ookup :: Address -> Name
short_rev <ip_address> <array_nane>

471

Contributed Scripts

short _rev() {
local -a _sr_reply

local -i _sr_rc

local -i _sr_cnt

| FS=${ NO_W&P}
echo -n ".'

echo 'srev: '${1}
_sr_reply=($(dig +short -x ${1} 2>/dev/null))

_sr_rc=%$?
if [${_sr_rc} -ne 0]
t hen

_trace_log[${# trace_log[@}]="## Lookup error '${_sr_rc}' on '${1}' ##
[${_sr_rc} -ne 9] &R pend_drop
return ${_sr_rc}
el se
Some versions of 'dig return warnings on stdout.
_sr_cnt=${#_sr_reply[@}
for ((_sr =0 ; _sr < ${_sr_cnt} ; _sr++))
do
["x"${_sr_reply[${_sr}]:0:2} == "x;;'] &&
unset _sr_reply[${_sr}]
done
eval $2=\(\$\{_sr_reply\[@]\} \)
f
return O

}

Special format | ookup used to query bl acklist servers.
short _text <ip_address> <array_nane>
short _text() {

local -a _st _reply

local -i _st _rc
local -i _st_cnt
| FS=${ NO_W&P}

echo 'stxt: '${1}
_st_reply=($(dig +short ${1} -c in -t txt 2>/dev/null))

st _rc=%$?
if [${_st_rc} -ne 0]
t hen

_trace_log[${# trace_log[@}]="##Text |ookup error '${_st_rc}' on '${1}' ##
[${_st_rc} -ne 9] &R pend_drop
return ${_st_rc}
el se
Some versions of 'dig return warnings on stdout.
_st_cnt=${#_st_reply[@}
for ((_st =0 ; _st < ${# st _cnt} ; _st++))
do
["x"${_st_reply[${_st}]:0:2} == "x;;'] &&
unset _st_reply[${_st}]
done
eval $2=\(\$\{_st _reply\[@]\} \)
f
return O

472

Contributed Scripts

The long forms, a.k.a., the parse it yourself versions

RFC 2782 Servi ce | ookups

dig +noall +nofail +answer _|dap._tcp.openldap.org -t srv

_<service>. _<protocol >. <domai n_nane>

_| dap. _tcp. openl dap.org. 3600 IN SRV 0 0 389 | dap. openl dap. org.
domain TTL Class SRV Priority Wight Port Target

Forward | ookup :: Name -> poor nan's zone transfer
long_fwd <domai n_nane> <array_nane>
[ong_fwd() {
local -a _If_reply
local -i _If_rc
local -i _If_cnt
| FS=${ NO_W\&P}
echo -n ' :'
echo "I fwd: ' ${1}
I _reply=($(
dig +noall +nofail +answer +authority +additional \
${1} -t soa ${1} -t nx ${1} -t any 2>/dev/null))
I f _rc=%$?
if [${_If_rc} -ne 0]
t hen
_trace_log[${# trace log[@}]="# Zone | ookup err '${ If_rc}' on '${1}' #
[${_If_rc} -ne 9] &R pend_drop
return ${_If_rc}
el se
Some versions of 'dig return warnings on stdout.
_If_cnt=${#_If _reply[@}
for ((_If =0 ; _If <${_If_cnt} ; _If++))
do
["x"${_If_reply[${_If}]1:0:2} == "x;;'] &&
unset _If _reply[${_If}]
done
eval $2=\(\$\{_If_reply\[@]\} \)
f
return O

}

The reverse | ookup domai n name corresponding to the | Pv6 address:

4321:0:1: 2: 3: 4: 567: 89ab

would be (nibble, I.E: Hexdigit) reversed

b.a.9.8.7.6.5.0.4.0.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.1.2.3.4.1P6. ARPA

Reverse | ookup :: Address -> poor man's del egation chain
long_rev <rev_ip_address> <array_nanme>

long_rev() {

local -a _Ir_reply

#* H*

local -i _Ir_rc
local -i _Ir_cnt
local _Ir_dns
_lr_dns=${1}'.in-addr.arpa.’
| FS=${ NO_W&P}

echo -n "'

473

Contributed Scripts

echo 'lrev: '${1}
lr_reply=($(
dig +noall +nofail +answer +authority +additional \
${ _Ir_dns} -t soa ${_Ir_dns} -t any 2>/dev/null))

Ir_re=%$?
if [${_Ir_rc} -ne 0]
t hen

_trace_log[${# trace log[@}]="# Deleg I kp error '${ Ir_rc}' on '${1}' #

[${_Ir_rc} -ne 9] &R pend_drop
return ${_lr_rc}
el se
Some versions of 'dig return warnings on stdout.
_lr_cnt=${#_Ir_reply[@}
for ((_Ir =0 ; _Ir <${_Ir_cnt} ; _lr++))
do
["x"${ _Ir_reply[${_Ir}]:0:2} =="x;;"'] &&
unset _Ir_reply[${_Ir}]
done
eval $2=\(\$\{_Ir_reply\[@]\} \)
fi
return O

}

Application specific functions # #

Mung a possi bl e nanme; suppresses root and TLDs.
name_fixup <string>
nanme_fi xup() {

local -a _nf_tnp

local -i _nf_end
|l ocal _nf_str
| ocal IFS

_nf_str=$(to_l oner ${1})

_nf_str=$(to_dot ${_nf_str})

_nf_end=${# nf_str}-1

[${_nf_str:${_nf_end}} '="'."] &&
_nf_str=${_nf_str}'.'

| FS=${ ADR | FS}

_nf_tmp=(${_nf_str})

| FS=${ W&P_| FS}

_nf_end=${#_nf _tnp[@}

case ${_nf_end} in

0) # No dots, only dots.
echo
return 1

1) # Only a TLD
echo
return 1

2) # Maybe okay.
echo ${_nf_str}
return O
Needs a | ookup table?

474

Contributed Scripts

if [${#_nf_tnp[1]} -eq 2]
then # Country coded TLD
echo
return 1
el se
echo ${_nf_str}
return O
f
esac
echo ${_nf_str}
return O

}

Grope and mung original input(s).
split_input() {

[${#uc_name[@} -gt O] || return O
local -i _si_cnt
local -i _si_len

| ocal _si_str
uni que_l i nes uc_nane uc_nane
_Si_cnt=${#uc_nane[@}
for ((_si =0 ; _si < _si_cnt ; _si++))
do
_Si_str=${uc_nane[$_si]}
if is_address ${_si_str}
t hen
uc_address[${#uc_address[@}]=${_si _str}
unset uc_name[$_si]
el se

if ! uc_nane[$_si]=$(nanme_fixup ${_si_str})

t hen
unset ucname[$_si]
f
f
done
uc_nanme=(${uc_nane[@})
_Si_cnt=${#uc_nane[@}
_trace_log[${# trace_log[@}]="#Input '${_si_cnt}'
_Si_cnt=${#uc_address[@}
_trace_log[${# trace_log[@}]="#Input '${_si_cnt}'

unchkd name input(s).#

unchkd addr input(s).#

data # # #

return O
}
Discovery functions -- recursively interlocked by externa
The leading "if list is enpty; return 0' in each is required. # #

Recursion limter
limt_chk() <next_level>
limt_chk() {
local -i _lc Im
Check indirection limt.
if [${indirect} -eq 0] || [$# -eq 0]
t hen

475

Contributed Scripts

}
#
#
#
#

#

The 'do-forever' choice
echo 1 # Any value will do.
return 0 # OK to continue.
el se
Limting is in effect.
if [${indirect} -1t ${1}]

t hen
echo ${1} # What ever.
return 1 # Stop here.
el se
_le_Im=${1}+1 # Bump the given limt.
echo ${_lc_Int} # Echo it.
return O # OK to continue.

f
f

For each nane in uc_nane:

Move nane to chk_nane.

Add addresses to uc_address.
Pend expand_i nput _addr ess.
Repeat until nothing new found.

expand_i nput _name <indirection_limt>
expand_i nput _name() {

[${#uc_name[@} -gt O] || return O
| ocal -a _ein_addr

| ocal -a _ein_new

local -i _ucn_cnt

local -i _ein_cnt

| ocal _ein_tst

_ucn_cnt =${#uc_nane[@}

if ! _ein_cnt=$(limt_chk ${1})
t hen
return O
f
for ((_ein =0 ; _ein < _ucn_cnt ; _ein++))
do
if short_fwd ${uc_nane[${_ein}]} _ein_new
t hen
for ((_ein_cnt =0 ; _ein_cnt < ${# ein_neW@}; _ein_cnt++))
do
_ein_tst=${_ein_new ${_ein_cnt}]}
if is_address ${_ein_tst}
t hen
_ein_addr[${# ein_addr[@}]=${ _ein_tst}
f
done
f
done
uni que_l i nes _ein_addr _ein_addr # Scrub duplicates.
edit _exact chk_address _ei n_addr # Scrub pendi ng detail

edit _exact known_address _ei n_addr # Scrub al ready detail ed.

476

Contributed Scripts

}
#
#
#
#

#

expand_i nput _address() {
[${#uc_address[@} -gt O]

if [${# _ein_addr[@} -gt O]

t hen

Anyt hi ng new?

uc_address=(${uc_address[@} ${_ein_addr[@})
pend_func expand_i nput _address ${1}
_trace_log[${# trace log[@}]="#Add ' ${# ein_addr[@}"

f

edit _exact chk_name uc_nane
edit _exact known_name uc_narme
if [${#uc_nane[@} -gt O]

t hen

unchkd addr inp.#

Scrub pending detail.

chk_nanme=(${chk_nane[@} ${uc_nane[@})
pend_func detail each_nane ${1}

f
unset uc_name[@
return O

For each address in uc_address:
Move address to chk_address.

Add nanes to uc_narne.
Pend expand_i nput _nane.

Repeat until nothing new found.
expand_i nput _address <indirection_limt>

| ocal -a _eia_addr
| ocal -a _eia_name
| ocal -a _eia_new
|l ocal -i _uca_cnt
local -i _eia_cnt

| ocal _eia_tst

|| return O

uni que_l i nes uc_address _ei a_addr

unset uc_address[@

edit _exact been_there_addr _eia_addr

_uca_cnt=${# eia_addr[@}
[${_uca_cnt} -gt 0] &&

Scrub al ready detail ed.

been_t here_addr=(${been_there_addr[@} ${_eia_addr[@})

for ((_eia=0; _eia < _uca_cnt ; _eia++))

do

if short_rev ${ eia_addr[${_eia}]} _eia_new

t hen
for ((_eia_cnt
do

0 ;

_eia_cnt < ${#_eia_new @}

_eia_tst=${ _eia_new ${ _eia_cnt}]}
if _eia_tst=$(nanme_fixup ${_eia_tst})

t hen

_eia_nanme[${# _eia_nane[@}]=${ _eia_tst}

f
done
f
done

uni que_l ines _eia _nane _eia_nhane
edit _exact chk_name _eia_nane

_eia_cnt++))

Scrub duplicates.
Scrub pendi ng detail.

477

Contributed Scripts

edit _exact known_name _ei a_nane # Scrub al ready detail ed.
if [${#_eia_nane[@} -gt O] # Anyt hi ng new?
t hen

uc_nanme=(${uc_nane[@} ${_eia_nane[@})

pend_func expand_i nput _nanme ${1}

_trace_log[${#_trace_log[@}] =" #Add ' ${#_eia_nane[@}' unchkd nane inp.#
f

edit _exact chk_address _ei a_addr # Scrub pendi ng detail
edit _exact known_address _ei a_addr # Scrub al ready detail ed.
if [${# eia_addr[@} -gt O] # Anyt hi ng new?

t hen

chk_address=(${chk_address[@} ${ _eia_addr[@})
pend_func detail each_address ${1}

f

return O

}

The parse-it-yourself zone reply.

The input is the chk_name list.

detail _each_name <indirection_ limt>

detail _each_name() {
[${#chk_name[@} -gt O] || return O
| ocal -a _den_chk Nanmes to check
| ocal -a _den_nane Nanmes found here
| ocal -a _den_address Addr esses found here
| ocal -a _den_pair Pai rs found here
| ocal -a _den_rev Reverse pairs found here
local -a _den_tnp Li ne bei ng parsed
| ocal -a _den_auth SQA contact bei ng parsed
| ocal -a _den_new The zone reply
| ocal -a _den_pc Parent-Child gets big fast
| ocal -a _den_ref So does reference chain
|l ocal -a _den_nr Nane- Resource can be big
| ocal -a _den_na Name- Addr ess
| ocal -a _den_ns Namne- Ser vi ce
| ocal -a _den_achn Chain of Authority
|l ocal -i _den_cnt Count of names to detai
local -i _den_Int Indirection limt
| ocal _den_who Naned bei ng processed
| ocal _den_rec Record type bei ng processed
| ocal _den_cont Cont act dormain
| ocal _den_str Fi xed up name string
| ocal _den_str2 Fi xed up reverse
 ocal | FS=${WsP_I| FS}

HHR I HEHFHHEHFHHFHHHF TR

Local, unique copy of nanes to check
uni que_l i nes chk_name _den_chk
unset chk_nanme[@ # Done with gl obals.

Less any nanes al ready known
edit _exact known_name _den_chk
_den_cnt=${#_den_chk[@}

If anything left, add to known_nane.

478

Contributed Scripts

[${_den_cnt} -gt 0] &&
known_name=(${known_nane[@} ${_den_chk[@})

for the list of (previously) unknown nanes .
for ((_den = 0 ; _den < _den_cnt ; _den++))
do
_den_who=${_den_chk[${_den}]}
if long_fwd ${_den_who} _den_new
t hen
uni que_l i nes _den_new _den_new
if [${#_den_new[@} -eq O]
t hen
_den_pair[${# _den_pair[@}]="0.0.0.0 ' ${_den_who}
fi

Parse each line in the reply.
for ((_line =0 ; _line < ${# den_newf @} ; _line++))
do
| FS=${ NO_W5P} $' \ x09' $' \ x20'
_den_tnp=(${_den_new[${_line}]})
| FS=${ WEP_I FS}
|f usable record and not a warni ng nessage . . .

if [${# _den_tnp[@} -gt 4] && ['x'${_den_tnp[0]} '= "Xx;;"

t hen
_den_rec=${_den_t np[3]}
_den_nr[${#_den_nr[@}] =${_den_who}' ' ${_den_rec}
Begin at RFCL033 (+++)
case ${_den_rec} in

#<name> [<ttl>] [<class>] SOA <origi n> <person>
SQA) # Start OF Authority
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_nanme[${#_den_nane[@}]=${_den_str}
_den_achn[${#_den_achn[@}] =${ _den_who}' ' ${_den_str}' SOA
SOA origin -- domain nane of naster zone record
if _den_str2=$(nanme_fixup ${_den_tnp[4]})
t hen
_den_nane[${#_den_nane[@}]=${_den_str2}
_den_achn[${#_den_achn[@}]=${_den_who}' '${_den_str2}' SOQA. O
fi
Responsible party e-mail address (possibly bogus).
Possibility of first.|ast@omain.nane ignored.

set -f
if _den_str2=$(nanme_fixup ${_den_tnp[5]})
t hen

| FS=${ ADR | FS}

_den_aut h=(${_den_str2})

| FS=${ W&P_| FS}

if [${#_den_auth[@} -gt 2]

t hen
_den_cont =${_den_aut h[1]}
for ((_auth = 2 ; _auth < ${# den_auth[@} ; _auth++))
do

479

Contributed Scripts

_den_cont=${_den_cont}'."' ${_den_aut h[${_aut h}]}

done

_den_nane[${#_den_nane[@}]=${_den_cont}' .’

_den_achn[${#_den_achn[@}]=${_den_who}' '${_den_cont}'. SOA. C

fi
fi
set +f
fi

A) # IP(v4) Address Record
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_nane[${#_den_nane[@}]=${ _den_str}
_den_pair[${# den_pair[@}]=${_den_tmp[4]}' '${_den_str}
_den_na[${#_den_na[@}] =${_den_str}' '${_den_tnp[4]}
_den_ref [${# den_ref[@}] =${_den_who}' '${_den_str}' A
el se
_den_pair[${# den_pair[@}]=${_den_tnmp[4]}" unknown. domai n'
_den_na[${#_den_na[@}] =" unknown. domai n ' ${_den_t np[4] }
_den_ref [${# den_ref[@}]=%{_den_who}' unknown. domain A
fi
_den_address[${#_den_address[@}]=${_den_t np[4]}
_den_pc[${#_den_pc[@}] =%${_den_who}' ' ${_den_tnp[4]}

NS) # Name Server Record
Domai n nane being serviced (may be other than current)
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_nanme[${#_den_nane[@}]=${_den_str}
_den_ref [${# den_ref[@}]=%{_den_who}"' '${_den_str}' NS

Domai n nane of service provider
if _den_str2=$(nanme_fixup ${_den_tnp[4]})
t hen
_den_nane[${#_den_nane[@}]=${_den_str2}
_den_ref [${# _den_ref[@}]=${_den_who}' '${_den_str2}' NSH
_den_ns[${#_den_ns[@}]=${_den_str2}' NS
_den_pc[${#_den_pc[@}] =${_den_str}' '${_den_str2}
fi
fi

MX) # Mail Server Record
Domai n nanme being serviced (w | dcards not handl ed here)

if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen

_den_nane[${#_den_nane[@}]=${ _den_str}

_den_ref [${# den_ref[@}]=$%{_den_who}"' '${_den_str}' MX
fi
Domai n nane of service provider
if _den_str=$(nanme_fixup ${_den_tnp[5]})

480

Contributed Scripts

t hen
_den_nane[${#_den_nane[@}]=${ _den_str}
_den_ref[${# _den_ref[@}]=${_den_who}' '${_den_str}' MH
_den_ns[${#_den_ns[@}]=${_den_str}' M
_den_pc[${#_den_pc[@}] =${ _den_who}' ' ${_den_str}
fi

PTR) # Reverse address record
Speci al nane
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_ref[${# _den_ref [@}]=${_den_who}' '${_den_str}' PTR
Host name (not a CNAME)
if _den_str2=$(nanme_fixup ${_den_tnp[4]})
t hen
_den_rev[${#_den_rev[@}]=${_den_str}' '${_den_str2}
_den_ref [${#_den_ref [@}]=${_den_who}' '${_den_str2}' PTRH
_den_pc[${#_den_pc[@}] =${ _den_who}' ' ${_den_str}
fi
fi

AAAA) # I P(v6) Address Record
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_nanme[${#_den_nane[@}]=${_den_str}
_den_pair[${# den_pair[@}]=${_den_tmp[4]}' '${_den_str}
_den_na[${#_den_na[@}] =${_den_str}' '${_den_tnp[4]}
_den_ref [${# _den_ref [@}]=${_den_who}' '${_den_str}' AAAA
el se
_den_pair[${# den_pair[@}]=${_den_tnp[4]}"' unknown. domai n'
_den_na[${#_den_na[@}] =" unknown. domai n ' ${_den_t np[4] }
_den_ref [${# den_ref[@}]=%{_den_who}' unknown. donui n'
fi
No processing for |Pv6 addresses
_den_pc[${#_den_pc[@}] =%${_den_who}' ' ${_den_tnp[4]}

CNAME) # Alias nane record
N cknane
if _den_str=$(nanme_fixup ${_den_tnp[0]})
t hen
_den_nane[${#_den_nane[@}]=${ _den_str}
_den_ref [${# _den_ref [@}]=${_den_who}' '${_den_str}' CNAME
_den_pc[${#_den_pc[@}] =${ _den_who}' ' ${_den_str}
fi
Host nane
if _den_str=$(nanme_fixup ${_den_tnp[4]})
t hen
_den_nane[${#_den_nane[@}]=${ _den_str}
_den_ref [${# _den_ref[@}]=${_den_who}' '${_den_str}' CHOST'
_den_pc[${#_den_pc[@}] =${_den_who}' ' ${_den_str}
fi

481

Contributed Scripts

TXT)
esac
f
done
el se # Lookup error == "A record 'unknown address

_den_pair[${# _den_pair[@}]="0.0.0.0 '${_den_who}
f
done

Control dot array grow h.

uni que_l i nes _den_achn _den_achn # Works best, all the sane.
edit _exact auth_chain _den_achn # Works best, unique itens.
if [${#_den_achn[@} -gt O]
t hen

| FS=${ NO_W&P}

aut h_chain=(${auth_chain[@} ${_den_achn[@})
| FS=${ WSP_| FS}
f

uni que_l ines _den_ref _den_ref # Works best, all the sane.
edit _exact ref_chain _den_ref # Works best, unique itens.
if [${# _den_ref[@} -gt O]
t hen

| FS=${ NO_W&P}

ref _chain=(${ref _chain[@} ${ _den_ref[@})
| FS=${ WSP_| FS}
f

uni que_l i nes _den_na _den_na

edit _exact nanme_address _den_na

if [${#_den_na[@} -gt O]

t hen
| FS=${ NO_W&P}
nane_address=(${nane_address[@} ${_den_na[@})
| FS=${ WBP_I| FS}

f

uni que_l ines _den_ns _den_ns

edit _exact name_srvc _den_ns

if [${#_den_ns[@} -gt O]

t hen
| FS=${ NO_W&P}
name_srvc=(${nanme_srvc[@} ${_den_ns[@})
| FS=${ WBP_I| FS}

f

uni que_l ines _den_nr _den_nr
edit _exact nanme_resource _den_nr
if [${#_den_nr[@} -gt O]
t hen
| FS=${ NO_W\&P}
nanme_r esource=(${nane_resource[@} ${_den_nr[@})

482

Contributed Scripts

| FS=${ WBP_| FS}
fi

uni que_l i nes _den_pc _den_pc

edit _exact parent_child _den_pc

if [${#_den_pc[@} -gt O]

t hen
| FS=${ NO_W&P}
parent _child=(${parent_child[@} ${_den_pc[@})
| FS=${ WBP_I| FS}

fi

Update |ist known_pair (Address and Name).

uni que_l ines _den_pair _den_pair

edi t _exact known_pair _den_pair

if [${#_den_pair[@} -gt 0] # Anything new?

t hen
| FS=${ NO_W\&P}
known_pai r=(${known_pair[@} ${_den pair[@})
| FS=${ WBP_I| FS}

fi

Update |ist of reverse pairs.

uni que_lines _den_rev _den_rev

edi t _exact reverse_pair _den_rev

if [${#_den_rev(@} -gt 0] # Anyt hi ng new?

t hen
| FS=${ NO_W\&P}
reverse_pair=(${reverse_pair[@} ${_den_revi@})
| FS=${ WBP_I| FS}

fi

Check indirection limt -- give up if reached.
if ! _den_lm=$(limt_chk ${1})
t hen

return O

fi

Execution engine is LIFO Order of pend operations is inportant.
Did we define any new addresses?

uni que_l i nes _den_address _den_address # Scrub duplicates.

edit _exact known_address _den_address # Scrub al ready processed.
edit _exact un_address _den_address # Scrub already waiting.
if [${#_den_address[@} -gt O] # Anyt hi ng new?

t hen

uc_address=(${uc_address[@} ${_den_address[@})

pend_func expand_i nput_address ${_den_Int}

_trace_log[${# trace_log[@}]="# Add ' ${#_den_address[@}' unchkd addr.
fi

Did we find any new nanes?

uni que_l i nes _den_nane _den_nane # Scrub duplicates.
edit _exact known_name _den_nane # Scrub al ready processed.
edit _exact uc_nane _den_nane # Scrub already waiting.

483

Contributed Scripts

if [${#_den_nane[@} -gt O]
t hen

Anyt hi ng new?

uc_nanme=(${uc_nane[@} ${_den_nane[@})
pend_func expand_i nput_name ${_den_Int}
_trace_log[${# _trace_l og[@}] =" #Added ' ${#_den_nane[@}' unchkd nane#

f
return O

}

The parse-it-yourself del egation reply

Input is the chk_address list.

detail _each_address <indirection limt>

detai | _each_address() {
[${#chk_address[@} -gt 0] |

if [${#chk_address[@} -gt O]
t hen

return O
uni que_l i nes chk_address chk_address
edit _exact known_address chk_address

known_address=(${known_address[@} ${chk_address[@})

unset chk_address[@
f
return O

}

Application specific output functions # #

Pretty print the known pairs.
report_pairs() {
echo
echo ' Known network pairs.'
col _print known_pair 2 5 30

if [${#auth_chain[@} -gt O]
t hen
echo

echo ' Known chain of authority.'
col _print auth_chain 2 5 30 55

f

if [${#reverse_pair[@} -gt O]

t hen
echo
echo ' Known reverse pairs.'

col _print reverse_pair 2 5 55

f
return O

}

Check an address against the |list of blacklist servers.

A good place to capture for GaphViz

check_|ists <ip_address>
check_lists() {
[$# -eq 1] || return 1
|l ocal -a _cl_fwd _addr

addr ess->st at us(server(reports))

Contributed Scripts

| ocal -a _cl _rev_addr
local -a _cl _reply
local -i _cl _rc

local -i _Is _cnt

| ocal _cl_dns_addr
local _cl _Ikup

split_ip ${1} _cl_fwd_addr _cl _rev_addr
_cl _dns_addr=$(dot _array _cl _rev_addr)'."'
_I's_cnt=${#list_server[@}

echo ' Checki ng address ' ${1}
for ((_cl =0 ; _cl < Is_cnt : _cl++))
do

_cl _I'kup=${_cl _dns_addr}${list_server[${_cl}]}
if short_text ${_cl _Ikup} _cl_reply
t hen
if [${#_cl _reply[@} -gt O]
t hen
echo ' Records from'${list_server[${_cl}]}
address_hits[${#address_hits[@}]=%${1}"' '${list_server[${_cl}]}
_hs_RC=2
for ((_clr =0 ; _clr < ${#.cl _reply[@} ; _clr++))
do
echo ' "${_cl _reply[${_clr}]}
done
f
f
done
return O

}

The usual application glue # #

Who did it?
credits() {
echo
echo ' Advanced Bash Scripting CGuide: is_spanmmrer.bash, v2, 2004-nsz’

}

How to use it?
(See also, "Quickstart" at end of script.)
usage() {
cat <<-'_usage_statenent_'
The script is_spammer.bash requires either one or two argunents.

arg 1) May be one of:
a) A domain nane
b) An | Pv4 address
c) The nane of a file with any m x of nanes
and addresses, one per |ine.

arg 2) May be one of:
a) A Blacklist server domain nane
b) The nanme of a file with Bl acklist server

485

Contributed Scripts

domai n nanes, one per |ine.

c) If not present, a default list of (free)
Bl acklist servers is used

d) If a filename of an enpty, readable, file
is given,
Bl ackl i st server |ookup is disabled.

Al script output is witten to stdout.

Return codes: 0 -> All OK, 1 -> Script failure,
2 -> Sonething is Blacklisted.

Requires the external program'dig" fromthe 'bind-9
set of DNS progranms. See: http://ww.isc.org

The domai n name | ookup depth limt defaults to 2 |evels.
Set the environnent variable SPAMVER LIMT to change.
SPAMMVER LI M T=0 neans 'unlimted

Limt may al so be set on the conmand-Ii ne.
If arg#l is an integer, the limt is set to that value
and then the above argunent rules are applied.

Setting the environnment variable ' SPAMVER DATA" to a fil enane
will cause the script to wite a GraphViz graphic file

For the devel opnent version;
Setting the environment variable ' SPAMVER TRACE to a fil enanme
wi || cause the execution engine to log a function call trace

_usage_st at enent _

}

The default list of Blacklist servers:
Many choi ces, see: http://ww. spews.org/lists. htn

declare -a default_servers

See: http://ww. spanhaus. org (Conservative, well maintained)
defaul t _servers[0] =" sbl - xbl . spamhaus. org

See: http://ordb.org (Open mail rel ays)

defaul t _servers[1]="rel ays. ordb. org’

See: http://ww. spantop. net/ (You can report spanmers here)
defaul t _servers[2] =" bl.spantop. net

See: http://ww. spews.org (An 'early detect' system

defaul t _servers[3]="12.spews. dnsbl . sorbs. net’

See: http://ww. dnsbl . us. sorbs. net/usi ng. shtm

defaul t _servers[4] =" dnsbl. sorbs. net

See: http://dsbl.org/usage (Various mail relay lists)
defaul t _servers[5]="list.dsbhl.org

defaul t _servers[6]="nultihop.dsbl.org

defaul t _servers[7] = unconfirned. dsbl.org

User input argunment #1
setup_input () {

486

Contributed Scripts

if [-e ${1} 1 & [-r ${1} 1 # Nane of readable file
t hen
file_to_array ${1} uc_nane
echo 'Using filename > ${1}' < as input.'
el se
if is_address ${1} # | P address?
t hen
uc_address=(${1})
echo 'Starting with address > ${1}' <
el se # Must be a nane.
uc_nanme=(${1})
echo 'Starting with domain name >' ${1}'<'
fi
fi
return O

}

User input argunment #2
setup_servers() {
if [-e ${1} 1 & [-r ${1} 1 # Nane of a readable file
t hen
file_to_array ${1} list_server
echo 'Using filename > ${1}' < as bl acklist server list.'
el se
list_server=(${1})
echo 'Using blacklist server > ${1}' <
fi
return O

}

User environnment variabl e SPAMVER TRACE
live log die() {
if [${SPAMMER TRACE: =}] # Wants trace | og?
t hen
if [! -e ${SPAMMER TRACE}]
t hen
if ! touch ${SPAMVER TRACE} 2>/dev/ null
t hen
pend_func echo $(printf "%\ n" \
"Unable to create log file > ${ SPAMVER TRACE}' <')
pend_r el ease
exit 1
fi
_log_fil e=${ SPAMVER_TRACE}
_pend_hook_=trace_| ogger
_l og_dunp=dunp_I og
el se
if [! -w ${SPAMMER TRACE}]
t hen
pend_func echo $(printf "%\ n" \
"Unable to wite log file > ${ SPAMVER TRACE}' <')
pend_r el ease
exit 1
fi

487

Contributed Scripts

_log_fil e=${ SPAMVER_TRACE}
echo '' > ${_log_file}
_pend_hook_=trace_| ogger
_l og_dunp=dunp_I og
fi
fi
return O

}

User environnment vari abl e SPAMVER DATA
data_capture() {
if [${SPAMMER DATA: =}] # Wants a data dunp?
t hen
if [! -e ${SPAMVER DATA}]
t hen
if ! touch ${SPAMVER DATA} 2>/dev/ null
t hen
pend_func echo $(printf "9%g]n" \
"Unable to create data output file >' ${ SPAMVER DATA}' <')
pend_r el ease
exit 1
fi
_dot _fi | e=${ SPAMVER _DATA}
_dot _dunp=dunp_dot
el se
if [! -w ${SPAMVER DATA}]
t hen
pend_func echo $(printf "9%g\n" \
"Unable to wite data output file > ${ SPAMVER DATA}' <')
pend_r el ease
exit 1
fi
_dot _fi | e=${ SPAMVER_DATA}
_dot _dunp=dunp_dot
fi
fi
return O

}

rope user specified argunents.
do_user_args() {
if [$# -gt 0] && is_nunber $1

t hen
i ndirect=%$1
shift
fi
case $# in # Did user treat us well?
1)
if | setup_input $1 # Needs error checking.
t hen
pend_r el ease
$_| og_dunp
exit 1

488

Contributed Scripts

f
list_server=(${default_servers[@})
_list_cnt=${#list_server[@}
echo 'Using default blacklist server list.'
echo 'Search depth Iimt: '"${indirect}
2)
if | setup_input $1 # Needs error checking.
t hen
pend_r el ease
$ | og_dunp
exit 1
f
if ! setup_servers $2 # Needs error checking.
t hen
pend_r el ease
$ | og_dunp
exit 1
f
echo 'Search depth Iimt: '"${indirect}
*) v
pend_func usage
pend_r el ease
$_| og_dunp
exit 1
esac
return O

}

A general purpose debug tool
list_array <array_name>
list_array() {
[$# -eq 1] || return 1 # One argunment required.

local -a _la_lines

set -f

 ocal | FS=${ NO_W5P}

eval _la_lines=\(\ \$\{$1\[@]\}\ \)

echo

echo "Elenent count "${# la_ lines[@}" array "${1}
local _In_cnt=${#_la_lines[@}

for ((i =0; i <${_In_cnt}; _i++))
do
echo 'Element '$ i' > ${ la lines[$_i]}' <
done
set +f
return O
}
'Hunt the Spammer' program code # #
pend_init # Ready stack engine.

489

Contributed Scripts

pend_func credits # Last thing to print.

Deal with user # #

live_ log die # Setup debug trace | og.
dat a_capture # Setup data capture file.
echo

do_user _args $@

Haven't exited yet - There is some hope # #
Di scovery group - Execution engine is LIFO - pend
in reverse order of execution.

_hs_RC=0 # Hunt the Spamrer return code
pend_nmar k
pend_func report_pairs # Report nane-address pairs.

The two detail _* are nmutually recursive functions.

They al so pend expand_* functions as required.

These two (the last of ???) exit the recursion.

pend_func detail each_address # Get all resources of addresses.
pend_func detail _each_name # Get all resources of nanes.

The two expand_* are nutually recursive functions,

#+ whi ch pend additional detail _* functions as required.

pend_func expand_i nput_address 1 # Expand i nput names by address.
pend_func expand_i nput_nanme 1 # #xpand i nput addresses by name.

Start with a unique set of names and addresses.
pend_func uni que_lines uc_address uc_address
pend_func uni que_lines uc_nanme uc_nane

Separate m xed i nput of names and addresses.
pend_func split_input
pend_r el ease

Pairs reported -- Unique list of IP addresses found
echo

_i p_cnt=${#known_address[@}

if [${#list_server[@} -eq O]

t hen
echo 'Bl acklist server list enpty, none checked.’
el se
if [${_ip_cnt} -eq 0]
t hen
echo ' Known address list enpty, none checked.’
el se

_ip_cnt=${_ip_cnt}-1 # Start at top.
echo ' Checki ng Bl acklist servers.'

for ((_ip = _ipcnt ; _ip>=0; _ip--))
do

pend_func check_lists $(printf "%\ n" ${known_address[$_ip]})
done

f
f
pend_r el ease

490

Contributed Scripts

$_dot _dunp # Graphics file dunp
$ | og_dunp # Execution trace
echo

HERHHHHH PR H T H
Exanpl e output fromscript
HERHHHHH PR H T H
1 <<-' _is_spammer_outputs_

./is_spanmmrer. bash 0 web4. al oj ament os7. com

Starting with domai n nane >web4. al oj anment 0s7. conx
Usi ng default blacklist server |ist.
Search depth limt: O

Known network pairs.

66. 98. 208. 97 web4. al oj ament 0s7. com
66. 98. 208. 97 nsl. al oj ament 0s7. com
69. 56. 202. 147 ns2. al oj ament 0s. ws.
66. 98. 208. 97 al oj ament os7. com

66. 98. 208. 97 web. al oj ament 0s7. com
69. 56. 202. 146 nsl. al oj ament 0s. ws.
69. 56. 202. 146 al oj ament 0s. ws.

66. 235. 180. 113 nsl. al oj ament os. org.
66. 235.181. 192 ns2. al oj ament os. or g.
66. 235. 180. 113 al oj ament os. org.

66. 235. 180. 113 web6. al oj ament os. or g.
216.234. 234. 30 nsl.t hepl anet.com
12.96. 160. 115 ns2.t hepl anet . com
216.185.111.52 mai | 1. t hepl anet . com
69.56.141. 4 spool i ng. t hepl anet. com
216.185.111. 40 t hepl anet . com
216.185.111. 40 www. t hepl anet . com
216.185.111.52 mai | . t hepl anet. com

Checki ng Bl acklist servers.
Checki ng address 66.98. 208. 97
Records from dnsbl . sorbs. net

"Spam Recei ved See: http://ww. dnsbl . sorbs. net/| ookup. shtnl ?66. 98. 208. 97"
Checki ng address 69. 56. 202. 147
Checki ng address 69. 56. 202. 146
Checki ng address 66.235.180. 113
Checki ng address 66.235.181. 192
Checki ng address 216.185. 111. 40
Checki ng address 216.234.234. 30
Checki ng address 12.96. 160. 115
Checki ng address 216.185.111.52
Checki ng address 69.56.141.4

Advanced Bash Scripting Guide: is_spanmer.bash, v2, 2004-nsz

_I's_spamrer _out puts_

4901

Contributed Scripts

exit ${_hs_RC}

HERHHHH P H T H R H R
The script ignores everything fromhere on down
#+ because of the 'exit' command, just above. #
HERHHHH P H T H R H R

Qui ckstart

Prerequi sites

Bash version 2.05b or 3.00 (bash --version)

A version of Bash which supports arrays. Array
support is included by default Bash configurations.

"dig,' version 9.x.x (dig $HOSTNAME, see first line of output)
A version of dig which supports the +short options.
See: di g _w appers. bash for details.

Optional Prerequisites
"nanmed,' a local DNS caching program Any flavor wll do.
Do twice: dig $HOSTNAME

Check near bottom of output for: SERVER 127.0.0. 1#53
That means you have one runni ng.

Optional G aphics Support

‘date,’ a standard *nix thing. (date -R)

dot Programto convert graphic description file to a

di agram (dot -V)

A part of the G aph-Viz set of prograns.

See: [http://ww. research. att.com sw tool s/ graphvi z| | G aphVi z]

"dotty,' a visual editor for graphic description files.
Also a part of the G aph-Viz set of prograns.

Quick Start

In the same directory as the is_spamer. bash script;
Do: ./is_spamer. bash

Usage Details

1. Bl acklist server choices.

492

Contributed Scripts

(a) To use default, built-in list: Do nothing.
(b) To use your own |ist:

i. Create a file with a single Blacklist server
domai n nane per line.

ii. Provide that filenane as the |ast argunment to
the script.

(c) To use a single Blacklist server: Last argunent
to the script.

(d) To disable Blacklist |ookups:

i. Create an enpty file (touch spammrer.nul)
Your choice of fil enane.

ii. Provide the filenanme of that enpty file as the
| ast argunment to the script.

2. Search depth limt.
(a) To use the default value of 2: Do not hing.

(b) To set a different limt:
Alimt of O neans: no limt.

i. export SPAMMVER LIM T=1
or whatever limt you want.

ii. OR provide the desired limt as the first
argunent to the script.

3. Optional execution trace |og.
(a) To use the default setting of no | og output: Do nothing.
(b) To wite an execution trace |og:
export SPAMVER TRACE=spamer. | og
or whatever filename you want.
4. Optional graphic description file.
(a) To use the default setting of no graphic file: Do nothing.
(b) To wite a G aph-Viz graphic description file
export SPAMVER DATA=spanmer . dot
or whatever filename you want.

5. Wiere to start the search.

(a) Starting with a single domain nane:

493

Contributed Scripts

i. Wthout a command-line search limt: First
argunent to script.

ii. Wth a conmmand-line search |imt: Second
argunent to script.

(b) Starting with a single |IP address:

i. Wthout a command-line search limt: First
argunent to script.

ii. Wth a conmand-line search |imt: Second
argunent to script.

(c) Starting with (m xed) nultiple name(s) and/or address(es):
Create a file with one nane or address per |ine.
Your choice of filenane.

i. Wthout a command-line search [imt: Filenane as
first argument to script.

ii. Wth a conmand-line search limt: Fil enane as
second argunent to script.

6. What to do with the display output.

(a) To view display output on screen: Do not hing.

(b) To save display output to a file: Redirect stdout to a fil enane.

(c) To discard display output: Redirect stdout to /dev/null
7. Temporary end of decision making.

press RETURN

wait (optionally, watch the dots and col ons).
8. Optionally check the return code.

(a) Return code 0: Al XK

(b) Return code 1: Script setup failure

(c) Return code 2: Something was bl ackli sted.
9. Where is ny graph (diagram?
The script does not directly produce a graph (diagram.
It only produces a graphic description file. You can
process the graphic descriptor file that was out put

with the 'dot' program

Until you edit that descriptor file, to describe the
rel ati onshi ps you want shown, all that you will get is

494

Contributed Scripts

a bunch of | abel ed nanme and address nodes.

Al of the script's discovered relationships are within
a conmment block in the graphic descriptor file, each
with a descriptive headi ng.

The editing required to draw a |line between a pair of
nodes fromthe information in the descriptor file may
be done with a text editor

G ven these |ines sonewhere in the descriptor file:

Known domai n nane nodes

NOOOO [| abel ="guardproof.info."] ;

NO0OO2 [I abel ="t hi rd. guardproof.info."] ;

Known addr ess nodes

A0000 [I| abel ="61. 141. 32.197"] ;

/*
Known nane- >address edges

NAOOOO t hird. guardproof.info. 61.141.32.197

Known parent->child edges
PCO000 guardproof.info. third.guardproof.info.
*/

Turn that into the followi ng lines by substituting node
identifiers into the rel ationshi ps:

Known donmmi n nane nodes
NOOOO [| abel ="guardproof.info."] ;

NO0OO2 [I abel ="t hi rd. guardproof.info."] ;

Known addr ess nodes

A0000 [I| abel ="61. 141. 32. 197"] ;

495

Contributed Scripts

PCO000 guardproof.info. third.guardproof.info.

NOOOO- >N0002

NAOOOO third. guardproof.info. 61.141.32.197

NO002- >A0000

/*
Known nane- >address edges

NAOOOO t hird. guardproof.info. 61.141.32.197

Known parent->child edges
PCO000 guardproof.info. third.guardproof.info.
*/

Process that with the 'dot' program and you have your
first network diagram

In addition to the conventional graphic edges, the
descriptor file includes simlar format pair-data that
descri bes services, zone records (sub-graphs?),

bl ackl i sted addresses, and other things which m ght be
interesting to include in your graph. This additiona

i nformati on could be displayed as different node
shapes, colors, line sizes, etc.

The descriptor file can also be read and edited by a
Bash script (of course). You should be able to find
nost of the functions required within the

"i s_spanmer. bash" script.

End Quickstart.

Addi ti onal Note

M chael Zick points out that there is a "nakevi z. bash” interactive
Web site at rediris.es. Can't give the full URL, since this is not

496

Contributed Scripts

a publically accessible site.

Another anti-spam script.

Example A.29. Spammer Hunt

#1/ bi n/ bash

whx.sh: "whoi s" spanmer | ookup

Aut hor: Valter Dnes

Slight revisions (first section) by ABS CGui de author.
Used in ABS Guide with perm ssion.

Needs version 3.x or greater of Bash to run (because of =~ operator).
Comment ed by script author and ABS Cui de aut hor.

#* H*

E BADARGS=85 # M ssing command-1|ine arg.

E NOHOST=86 # Host not found.

E Tl MEQUT=87 # Host | ookup tined out.

E_UNDEF=88 # Some ot her (undefined) error.

HOSTWAI T=10 # Specify up to 10 seconds for host query reply.
The actual wait may be a bit | onger.

OUTFI LE=whoi s. t xt # Qutput file.

PORT=4321

if [-z "$1"] # Check for (required) conmand-line arg.

t hen

echo "Usage: $0 domain name or |P address"”
exit $E_BADARGS
fi

if [["$1" =~ [a-zA-Z][a-zA-Z]$]] # Ends in two al pha chars?
t hen # It's a domain nanme &&
#+ must do host | ookup.
| PADDR=$(host -W $HOSTWAIT $1 | awk '{print $4}')
Doi ng host | ookup
#+ to get |P address.
Extract final field.
el se
| PADDR="$1" # Conmand-line arg was | P address.
fi

echo; echo "I P Address is: "$I PADDR'"; echo

if [-e "$OUTFILE"]
t hen

rm-f "$COUTFI LE"

echo "Stale output file \"$OUTFILE\" renpved."; echo
fi

497

Contributed Scripts

Sanity checks.
(This section needs nore work.)

if [-z "$I PADDR"]
No response.
t hen
echo "Host not found!"
exit $E_NOHOST # Bail out.
f

if [["8I PADDR =~ "[;;]]]
;; Connection tined out; no servers could be reached.
t hen
echo "Host | ookup tined out!™
exit $E_TIMEQUT # Bail out.
f

if [["$I PADDR'" =~ [(NXDOVAIN)]1$ 1]
Host xxxxxxxxx.xxx not found: 3(NXDOVAI N)
t hen
echo "Host not found!"
exit $E_NOHOST # Bail out.
f

if [["$IPADDR'" =~ [(SERVFAIL)]$ 1]
Host xxxxxxxxx.xxx not found: 2(SERVFAIL)
t hen

echo "Host not found!"
exit $E_NOHOST # Bail out.
f

AFRI NI Cquery() {
Define the function that queries AFRINIC. Echo a notification to the
#+ screen, and then run the actual query, redirecting output to $OUTFILE

echo "Searching for $I PADDR in whois.afrinic.net"
whoi s -h whois.afrinic.net "$l PADDR' > $OUTFI LE

Check for presence of reference to an rwhois.
Warn about non-functional rwhois.infosat.net server
#+ and attenpt rwhois query.
if grep -e "“remarks: .*rwhois\.[~]\+" "$COUTFI LE"
t hen
echo " " >> $QUTFI LE
echo "***" >> $QUTFI LE
echo "***" >> $QUTFI LE
echo "Warning: rwhois.infosat.net was not working \

498

Contributed Scripts

as of 2005/02/02" >> $OUTFI LE
echo " when this script was witten." >> $OUTFI LE
echo "***" >> $QUTFI LE
echo "***" >> $QUTFI LE
echo " " >> $QUTFI LE
RWHO S="grep "~remarks: .*rwhois\.[~ J\+" "$QUTFILE" | tail -n 1 |\
sed "s/\ (M *\)\(rwhoi s\, ¥\)\ (4. %\)/\2/"
whoi s -h ${RWHO S}: ${ PORT} "$I PADDR' >> $OUTFI LE
f
}

APNI Cquery() {
echo "Searching for $IPADDR i n whois. apni c. net"

whoi s -h whoi s. apni c. net "$l PADDR' > $QUTFI LE

Just about every country has its own internet registrar

1 don't normally bother consulting them because the regional registry
#+ usual |y supplies sufficient information

There are a few exceptions, where the regional registry sinmly

#+ refers to the national registry for direct data.

These are Japan and South Korea in APNIC, and Brasil in LACN C.

The following if statement checks $QUTFILE (whois.txt) for the presence
#+ of "KR' (South Korea) or "JP" (Japan) in the country field.

|If either is found, the query is re-run against the appropriate

#+ national registry.

if grep -E "“country:[]+KR$" "$OUTFILE"
t hen
echo "Searching for $IPADDR i n whois. krnic. net"
whoi s -h whoi s. krnic.net "$l PADDR' >> $CQUTFI LE
elif grep -E "“country:[]+JP$" "S$OUTFI LE"
t hen
echo "Searching for $I PADDR i n whois.nic.ad.jp"
whois -h whois.nic.ad.jp "$l PADDR'/e >> $CQUTFI LE
f

}

ARl Nquery() {
echo "Searching for $I PADDR in whois.arin.net"

whoi s -h whois.arin.net "$l PADDR' > $OUTFI LE

Several large internet providers listed by ARIN have their own

#+ internal whois service, referred to as "rwhois".

A large block of IP addresses is listed with the provider

#+ under the ARIN registry.

To get the I P addresses of 2nd-level |1SPs or other |arge custoners,
#+ one has to refer to the rwhois server on port 4321

1 originally started with a bunch of "if" statenents checking for
#+ the larger providers.

This approach is unwi eldy, and there's al ways anot her rwhois server
#+ that | didn't know about.

A nore el egant approach is to check $OQUTFILE for a reference

#+ to a whois server, parse that server nane out of the comment section
#+ and re-run the query against the appropriate rwhois server.

499

Contributed Scripts

The parsing looks a bit ugly, with a long continued |ine inside

#+ backti cks.

But it only has to be done once, and will work as new servers are added.
#@ ABS Guide author comment: it isn't all that ugly, and is, in fact,

#@ an instructive use of Regul ar Expressions.

if grep -E ""Comment: .*rwhois.[”]+" "$OUTFILE"

t hen
RWHO S="grep -e "~Comment:.*rwhois\.[” J\+" "S$QUTFILE" | tail -n 1 |\
sed "s/™M (L F\)\(rwhois\. [~ J\H)N (L *S\) /N 2/
echo "Searching for $I PADDR in ${RWHO S}"
whoi s -h ${RWHO S}: ${ PORT} "$I PADDR' >> $OQUTFI LE

f

}

LACNI Cquery() {
echo "Searching for $I PADDR i n whois. | acnic.net"
whoi s -h whois. | acnic.net "$l PADDR' > $OUTFI LE

The following if statement checks $OUTFILE (whois.txt) for
#+ the presence of "BR' (Brasil) in the country field.
If it is found, the query is re-run agai nst whois.registro.br

if grep -E "“country:[]+BR$" "$OUTFILE"
t hen
echo "Searching for $I PADDR i n whois.registro. br"
whoi s -h whois.registro.br "$l PADDR' >> $CQUTFI LE
f

}

Rl PEquery() {
echo "Searching for $IPADDR in whois.ripe.net"
whoi s -h whois.ripe.net "$l PADDR' > $OUTFI LE

}

Initialize a few vari abl es.

* slash8 is the npst significant octet

* slashl6 consists of the two nost significant octets
* octet2 is the second nost significant octet

sl ash8="echo $I PADDR | cut -d. -f 1°
if [-z "$slash8"] # Yet another sanity check
t hen
echo "Undefined error!”
exit $E_UNDEF
f
sl ash16="echo $I PADDR | cut -d. -f 1-2°
N Period specified as
if [-z "$slashle"]
t hen
echo "Undefined error!”

cut" delimter.

500

Contributed Scripts

exit $E_UNDEF
fi

octet2="echo $slashl6 | cut -d. -f 2°

if [-z "$octet2"]
t hen
echo "Undefined error!”

exit $E_UNDEF
fi

Check for various odds and ends of
There is no point in querying for t

reserved space.
hose addresses.

if [$slash8 == 0]; then
echo $I PADDR is '"This Network"' space\; Not querying
elif [$slash8 == 10]; then
echo $I PADDR is RFC1918 space\; Not querying
elif [$slash8 == 14]; then
echo $I PADDR is '"Public Data Network"' space\; Not querying
elif [$slash8 == 127]; then
echo $I PADDR is | oopback space\; Not querying
elif [$slashl6 == 169.254]; then
echo $I PADDR is |ink-local space\; Not querying
elif [$slash8 == 172] & & [$octet2 -ge 16] & [$octet2 -le 31];then
echo $I PADDR is RFC1918 space\; Not querying
elif [$slashl6 == 192.168]; then
echo $I PADDR is RFC1918 space\; Not querying
elif [$slash8 -ge 224]; then
echo $I PADDR is either Milticast or reserved space\; Not querying
elif [$slash8 -ge 200] & & [$slash8 -1e 201]; then LACN Cquery "$I PADDR'
elif [$slash8 -ge 202] & & [$slash8 -1e 203]; then APN Cquery "$| PADDR'
elif [$slash8 -ge 210] & & [$slash8 -1e 211]; then APN Cquery "$| PADDR'
elif [$slash8 -ge 218] & & [$slash8 -1e 223]; then APN Cquery "$| PADDR'
1f we got this far w thout making a decision, query AR N
|If areference is found in $OUTFILE to APNIC, AFRINIC, LACNIC, or RIPE

#+ query the appropriate whois server.

el se
ARl Nquery " $I PADDR"

if grep "whois.afrinic.net" "$OUTFILE";

AFRI NI Cquery " $I PADDR"

elif grep -E ""OrglD: []+RI PE$" "$OUTFILE";

Rl PEquery " $I PADDR"

elif grep -E ""OrglD:[]+APNI C$" "$OUTFI LE";

APNI Cquery "$!| PADDR'

elif grep -E ""OrglD:[]+LACNIC$" "S$SOQUTFI LE"

LACNI Cquery " $| PADDR'
fi

B@ ------ - -
Try also:
wget

t hen

t hen

t hen

t hen

http://1ogi.cc/ nw whoi s. php3?ACTI ON=doQuer y &DOVAI N=$1 PADDR

501

Contributed Scripts

We've now finished the querying.
Echo a copy of the final result to the screen.

cat $OUTFI LE
O "l ess $OQUTFI LE"

exit O

#@ ABS Gui de aut hor conments:

#@ Not hing fancy here, but still a very useful tool for hunting spamrers.
#@ Sure, the script can be cleaned up sonme, and it's still a bit buggy,
#@ (exercise for reader), but all the same, it's a nice piece of coding
#@ by Walter Dnes.

#@ Thank youl

“Little Monster's’ front end to wget.

Example A.30. Making wget easier to use

#1/ bi n/ bash
wgetter2. bash

Author: Little Monster [nonster @monstruum co. uk]

==> Used in ABS Guide with perm ssion of script author.

==> This script still needs debuggi ng and fi xups (exercise for reader).
==> |t could al so use sone additional editing in the coments.

H H B H

This is wgetter2 --
#+ a Bash script to make wget a bit nore friendly, and save typing.

Carefully crafted by Little Mnster.

More or less conplete on 02/02/2005.

If you think this script can be inproved,

#+ emai|l me at: nonster @onstruum co. uk

==> and cc: to the author of the ABS Cuide, please.
This script is licenced under the GPL.

You are free to copy, alter and re-use it,

#+ but please don't try to claimyou wote it.

Log your changes here instead.

===t
changel og:

07/ 02/ 2005. Fixups by Little Mnster.

02/ 02/ 2005. Mnor additions by Little Mnster.

(See after # +++++++++++)

29/01/2005. Mnor stylistic edits and cl eanups by aut hor of ABS Cui de.
Added exit error codes.

22/ 11/2004. Finished initial version of second version of wgetter:

wgetter2 i s born.

502

Contributed Scripts

01/12/2004. Changed 'runn' function so it can be run 2 ways --

either ask for a file name or have one input on the CL.

01/12/2004. Made sensible handling of no URL's given.

01/12/2004. WNMade | oop of main options, so you don't

have to keep calling wgetter 2 all the tine.

Runs as a session instead.

01/12/2004. Added |ooping to 'runn' function.

Sinplified and i nproved.

01/12/2004. Added state to recursion setting.

Enabl es re-use of previous val ue.

05/12/2004. Modified the file detection routine in the 'runn' function
so it's not fooled by enpty val ues, and is cl eaner

01/ 02/ 2004. Added cookie finding routine fromlater version (which

isn't ready yet), so as not to have hard-coded paths.

===t
Error codes for abnormal exit.

E USAGE=67 # Usage nessage, then quit.

E NO OPTS=68 # No command-|ine args entered.

E NO URLS=69 # No URLs passed to script.

E NO SAVEFI LE=70 # No save fil enanme passed to script.

E USER EXI T=71 # User decides to quit.

Basic default wget conmand we want to use.

This is the place to change it, if required.

NB: if using a proxy, set http_proxy = yourproxy in .wgetrc.

O herw se delete --proxy=on, bel ow.

===

Set sone other variables and explain them

pattern=" -A .jpg,.JPG .jpeg, .JPEG .gif,.AF, .htm.htm,.shtn,.php"
wget's option to only get certain types of file.

comment out if not using
t oday="date +% # Used for a filenane.
honme=$HOME # Set HOME to an internal variable.

In case sone other path is used, change it here.
dept hDef aul t =3 # Set a sensible default recursion
Dept h=$dept hDef ault # Ot herwi se user feedback doesn't tie in properly.
Ref A="" # Set blank referring page.
Fl ag="" # Default to not saving anything,

#+ or whatever else might be wanted in future.
[ister="" # Used for passing a list of urls directly to wget.
Wopt i ons="" # Used for passing wget sone options for itself.
inFile="" # Used for the run function
newri | e="" # Used for the run function

savePat h="$hone/ w save"
Confi g="$hone/ . wgetter2rc"

503

Contributed Scripts

This is where sone variables can be stored,

#+ if permanently changed fromwi thin the script.
Cooki e_Li st ="$hone/ . cooki el i st"

So we know where the cookies are kept
cFl ag="" # Part of the cookie file selection routine.

Define the options available. Easy to change letters here if needed.
These are the optional options; you don't just wait to be asked.

save=s # Save command instead of executing it.

cook=c # Change cookie file for this session

hel p=h # Usage gui de.

[ist=l # Pass wget the -i option and URL |ist.

runn=r # Run saved commands as an argunment to the option

i npu=i # Run saved conmmands interactively.

wopt=w # Allow to enter options to pass directly to wget.
o

if [-z "$1"]; then # Make sure we get sonething for wget to eat.
echo "You nmust at |east enter a URL or option!”
echo "-$hel p for usage."
exit $E_NO OPTS

f

+++++++ A
added added added added added added added added added added added added

if [! -e "$Config"]; then # See if configuration file exists.
echo "Creating configuration file, $Config"
echo "# This is the configuration file for wgetter2" > "$Config"

echo "# Your custom sed settings will be saved in this file" >> "$Config"
el se
source $Config # lnport variables we set outside the script.

f

if [! -e "$Cookie_List"]; then

Set up a list of cookie files, if there isn't one.

echo "Hunting for cookies . "

find -name cookies.txt >> $Cookie List # Create the list of cookie files.
fi # Isolate this inits own "if' statenent,

#+ in case we got interrupted while searching.

if [-z "$cFlag"]; then # If we haven't already done this .

echo # Make a nice space after the comrand pronpt.
echo "Looks |ike you haven't set up your source of cookies yet."
n=0 # Make sure the counter

#+ doesn't contain random val ues.
whil e read; do
Cooki es[$n] =$REPLY # Put the cookie files we found into an array.
echo "$n) ${Cookies[$n]}" # Create a nenu.
n=$((n + 1)) # Increment the counter

504

Contributed Scripts

done < $Cooki e_Li st # Feed the read statenent.

echo "Enter the nunmber of the cookie file you want to use."
echo "If you won't be using cookies, just press RETURN. "
echo

echo "I won't be asking this again. Edit $Config"

echo "If you decide to change at a | ater date"

echo "or use the -${cook} option for per session changes."

read

if [! -z $SREPLY]; then # User didn't just press return.
Cooki e=" --1o0ad-cooki es ${Cooki es[$REPLY] }"

Set the variable here as well as in the config file.

echo "Cookie=\" --|oad-cookies ${Cookies[$REPLY]}\"" >> $Config
f
echo "cFlag=1" >> $Config # So we know not to ask again.
f

end added section end added secti on end added section end added section
+++++++ A

Anot her vari abl e.
This one may or may not be subject to variation.
A bit like the small print.
Cooki esON=$Cooki e
echo "cookie file is $Cooki esON' # For debuggi ng.
echo "home is ${hone}" # For debuggi ng
CGot caught with this onel

wopt s()

{

echo "Enter options to pass to wget."

echo "It is assumed you know what you're doing."

echo

echo "You can pass their arguments here too."

That is to say, everything passed here is passed to wget.

read Wopts
Read in the options to be passed to wget.

Wopti ons=" $Wopts"

N \Why the | eadi ng space?
Assign to another variable.

Just for fun, or sonething

echo "passing options ${Wpts} to wget"
Mainly for debuggi ng.

1s cute.
return
}

505

Contributed Scripts

save_func()

{
echo "Settings will be saved."
if [! -d $savePath]; then # See if directory exists.
nkdi r $savePat h # Create the directory to save things in
#+ if it isn't already there.
f
Fl ag=S

Tell the final bit of code what to do.
Set a flag since stuff is done in main

return

}

usage() # Tell them how it worKks.

echo "Wl come to wgetter. This is a front end to wget."

echo "It will always run wget with these options:™

echo " $ConmmandA"

echo "and the pattern to match: $pattern \
(whi ch you can change at the top of this script).”

echo "It will also ask you for recursion depth, \
and if you want to use a referring page.”

echo "Wjetter accepts the follow ng options:™

echo ""

echo "-$help : Display this help."

echo "-$save : Save the command to a file $savePat h/ wget - ($t oday) \
instead of running it."

echo "-$runn : Run saved wget conmmands instead of starting a new one -"

echo "Enter filename as argunent to this option.”

echo "-$inpu : Run saved wget conmands interactively --"

echo "The script will ask you for the fil ename."

echo "-$cook : Change the cookies file for this session."”

echo "-$list : Tell wget to use URL's froma list instead of \
fromthe command-Iline."

echo "-$wopt : Pass any other options direct to wget."

echo ""

echo "See the wget man page for additional options \
you can pass to wget."

echo ""

exit $E_USAGE # End here. Don't process anything el se.

list_func() # G ves the user the option to use the -i option to wget,
#+ and a list of URLs.
{
while [1]; do
echo "Enter the name of the file containing URL's (press g to change

506

Contributed Scripts

your mnd)."
read urlfile
if [! -e"S$urlfile"] & ["S$urlfile" !'=q]; then

Look for a file, or the quit option
echo "That file does not exist!"”
elif ["$urlfile" = q]; then # Check quit option

echo "Not using a url list.”
return
el se
echo "using $urlfile.”
echo "If you gave url's on the conmand-line, 1'll use those first."
Report wget standard behaviour to the user.
lister=" -i $urlfile" # This is what we want to pass to wget.
return
f
done
}

cookie func() # Gve the user the option to use a different cookie file.
{
while [1]; do
echo "Change the cookies file. Press return if you don't want to change
it."
read Cookies
NB: this is not the sane as Cookie, earlier.
There is an 's' on the end.
Bit |ike chocol ate chi ps.
if [-z "$Cookies"]; then # Escape cl ause for wusses.
return
elif [! -e "$Cookies"]; then
echo "File does not exist. Try again." # Keep em going
el se
Cooki esON=" - - | oad- cooki es $Cooki es" # File is good -- use it!
return
f
done

}

run_func()
{
if [-z "$OPTARG']; then
Test to see if we used the in-line option or the query one.
if [! -d "$savePath"]; then # If directory doesn't exist
echo "$savePath does not appear to exist."
echo "Pl ease supply path and fil enane of saved wget conmands:”
read newFile
until [-f "$newFile"]; do # Keep going till we get sonething.
echo "Sorry, that file does not exist. Please try again.”
Try really hard to get sonething.
read newFile
done

507

Contributed Scripts

o
if [-z (grep wget ${newfile})]; then

Assunme they haven't got the right file and bail out.
echo "Sorry, that file does not contain wget commands. Aborting."
exit
fi
#

This is bogus code.
It doesn't actually work.
I f anyone wants to fix it, feel free

filePath="%{newrile}"

el se

echo "Save path is $savePath"
echo "Please enter name of the file which you want to use.”
echo "You have a choice of:"

I s $savePat h # G ve them a choi ce.
read inFile
until [-f "$savePath/$inFile"]; do # Keep going till

#+ we get sonet hing.
if [! -f "${savePath}/${inFile}"]; then # If file doesn't exist.
echo "Sorry, that file does not exist. Please choose from"
s $savePath # If a mistake is made.
read inFile
f
done
filePath="%{savePath}/${inFile}" # Make one variable
f
el se filePat h="${savePat h}/ ${ OPTARG " # Wi ch can be many things .
f

if [! -f "$filePath"]; then # If a bogus file got through
echo "You did not specify a suitable file."
echo "Run this script with the -${save} option first."
echo "Aborting."
exit $E_NO SAVEFI LE
f
echo "Using: $filePath”
whil e read; do
eval $REPLY
echo "Conpl eted: $REPLY"
done < $filePath # Feed the actual file we are using into a 'while' |oop

exit

}

Fish out any options we are using for the script.
This is based on the deno in "Learning The Bash Shell"” (O Reilly).

508

Contributed Scripts

whil e getopts ": $save$cook$hel p$li st $runn: $i npuswopt " opt
do
case $opt in

$save) save_func;
$cook) cooki e_func;
$hel p) usage; ;
$list) list_func;;
$runn) run_func;

Save sone wgetter sessions for |ater
Change cookie file.
Get hel p.
Al ow wget to use a list of URLs.
Useful if you are calling wgetter from
+ for exanple, a cron script.
$i npu) run_func;; VWen you don't know what your files are naned.
$wopt) wopts;; Pass options directly to wget.
\'?) echo "Not a valid option.”
echo "Use -${wopt} to pass options directly to wget,"

HHHHHHHH

echo "or -${help} for help";; # Catch anything el se
esac
done
shift $((OPTIND - 1)) # Do funky magic stuff with $#.

if [-z "$1"] & [-z "$lister"]; then
We should be left with at |east one URL
#+ on the conmmand-line, unless a list is
#+ being used -- catch enpty CL's.
echo "No URL's given! You nmust enter themon the sane |ine as wgetter2."
echo "E.g., wgetter2 http://somesite http://anothersite.™
echo "Use $help option for nmore information."
exit $E_NO URLS # Bail out, with appropriate error code.
f

URLS=" $@
Use this so that URL |ist can be changed if we stay in the option | oop.

while [1]; do
This is where we ask for the nost used options.
(Mostly unchanged fromversion 1 of wgetter)
if [-z $curDepth]; then
Current=""
el se Current=" Current value is $curDepth"
f
echo "How deep should I go? \
(integer: Default is $depthDefault.$Current)"
read Depth # Recursion -- how far should we go?
i nput B="" # Reset this to blank on each pass of the |oop
echo "Enter the name of the referring page (default is none)."
read inputB # Need this for sone sites.

echo "Do you want to have the output |ogged to the term nal”
echo "(y/n, default is yes)?"

read noHi de # Otherwise wget will just log it to a file.
case $noHide in # Now you see me, now you don't.
y|Y) hide="";;
n| N) hide=" -b";
*) hide="";

509

Contributed Scripts

esac

if [-z ${Depth}]; then
User accepted either default or current depth,
#+ in which case Depth is now enpty.
if [-z ${curDepth}]; then
See if a depth was set on a previous iteration
Dept h="$dept hDef aul t "
Set the default recursion depth if nothing
#+ el se to use
el se Depth="$curDepth" # Oherw se, set the one we used before.
f
f
Recurse=" -1 $Depth" # Set how deep we want to go.
cur Dept h=$Dept h # Renenber setting for next tine.

if [! -z $inputB]; then
Ref A=" --referer=3$i nput B" # Option to use referring page.
f

WEETTER="${ CommandA} ${ pat t er n} ${ hi de} ${ Ref A} ${ Recur se}\
${ Cooki esON} ${ | i st er} ${Wopti ons} ${ URLS}"
Just string the whole | ot together
NB: no enbedded spaces.
They are in the individual elenments so that if any are enpty,
#+ we don't get an extra space.

if [-z "${CookiesON}"] && ["$cFlag" = "1"] ; then
echo "Warning -- can't find cookie file"
This should be changed,
#+ in case the user has opted to not use cookies.
f

if ["$Flag" = "S"]; then
echo "$WGETTER' >> $savePat h/ wget - ${t oday}
Create a unique filename for today, or append to it if it exists.
echo "$inputB' >> $savePath/site-list-${today}
Mke a list, soit's easy to refer back to,
#+ since the whole conmand is a bit confusing to | ook at.
echo "Command saved to the file $savePat h/wget - ${t oday}"
Tell the user.
echo "Referring page URL saved to the file$ \
savePath/site-1ist-${today}"
Tell the user.
Saver=" with save option"”
Stick this somewhere, so it appears in the loop if set.
el se

n n
echo khkkkhkkhkhkkhkhkkhkhkkhkh*x

echo "*****Gatting*****"
echo LIRS S R I I b I b S b b o L
echo
echo "$WGETTER'

echo ""
echo LIRS S R I I b I b S b b o L

510

Contributed Scripts

eval "$WGETTER'
fi
echo ""
echo "Starting over$Saver."
echo "If you want to stop, press g."
echo "Qtherwi se, enter some URL's:"
Let them go again. Tell about save option being set.

read
case $REPLY in
Need to change this to a "trap' cl ause.

g/ Q) exit $E_USER EXIT;; # Exercise for the reader?

*) URLS=" $REPLY";;

esac
echo ""
done

exit O

Example A.31. A podcasting script

#1/ bi n/ bash

Dbashpodder. sh:

By Linc 10/1/2004

Find the latest script at

#+ http://1inc. homeuni x. org: 8080/ scri pt s/ bashpodder

Last revision 12/14/2004 - Many Contri but ors!

|1f you use this and have made inprovenments or have coments
#+ drop ne an email at linc dot fessenden at gmail dot com

1'd appreciate it!

F*

==> ABS Gui de extra coments.

==> Author of this script has kindly granted perm ssion
==>+ for inclusion in ABS Cui de.

==> HHHRBHHHHHT T H T H T H R
#

==> What is "podcasting"?

==> It's broadcasting "radi o shows" over the Internet.

==> These shows can be played on i Pods and other nusic file players.
==> This script makes it possible.

==> See docunmentation at the script author's site, above.

==> HHBHHHHBHABHBHHBH BB BB R R R R AR R

511

Contributed Scripts

Make script crontab friendly:
cd $(dirnane $0)
==> Change to directory where this script lives.

datadir is the directory you want podcasts saved to:
dat adi r =$(dat e +%- %m %)
==> WII| create a date-labeled directory, named: YYYY-MV DD

Check for and create datadir if necessary:
if test ! -d $datadir

t hen

nkdi r $dat adi r
f

Delete any tenp file:
rm-f tenp.log

Read the bp.conf file and wget any url not already
#+ in the podcast.log file:
whi | e read podcast
do # ==> Main action follows.
file=$(wget -q $podcast -O - | tr "\r' "\n" | tr \'" \" | \
sed -n "s/.xurl="\([*"]*\)".*/\1/p")
for url in $file
do
echo $url >> tenp.log
if ! grep "$url" podcast.log > /dev/nul
t hen
wget -q -P $datadir "$url"
f
done
done < bp. conf

Move dynamically created log file to permanent log file:
cat podcast.log >> tenp.|og

sort temp.log | uniq > podcast.| og

rmtenp. | og

Create an nBu playlist:

I's $datadir | grep -v nBu > $datadi r/ podcast. nBu

exit O

HERHHHHH PR H A H R R
For a different scripting approach to Podcasti ng,
see Phil Salkie's article,

"Internet Radio to Podcast with Shell Tool s"

in the Septenber, 2005 issue of LINUX JOURNAL
http://ww. | inuxjournal.confarticle/8171

HERHHHHH PR H R H R R

Example A.32. Nightly backup to afirewire HD

#! / bi n/ bash

512

Contributed Scripts

ni ghtly-backup. sh
http://ww. richardneill.org/source. php#ni ghtly-backup-rsync
Copyright (c) 2005 Richard Neill <backup@ichardneill.org>.
This is Free Software |icensed under the GNU GPL
==> Included in ABS Guide with script author's kind perm ssion
==> (Thanks!)
This does a backup fromthe host computer to a locally connected
#+ firewire HDD using rsync and ssh.
(Script should work with USB-connected device (see lines 40-43).
1t then rotates the backups.
Run it via cron every night at 5am
This only backs up the hone directory.
|1f ownerships (other than the user's) should be preserved,
#+ then run the rsync process as root (and re-instate the -0).
W save every day for 7 days, then every week for 4 weeks,
#+ then every nmonth for 3 nonths.
See: http://ww. m kerubel . org/ conmput ers/rsync_snapshot s/
#+ for nore explanation of the theory.
Save as: $HOWE bi n/ni ghtly-backup_firew re-hdd. sh
Known bugs:
H o o-m e e e e a - o
i) ldeally, we want to exclude ~/.tnp and the browser caches.
Q1) If the user is sitting at the conputer at 5am
#+ and files are nodified while the rsync is occurring,
#+ t hen t he BACKUP_JUSTI NCASE branch gets triggered.
To sone extent, this is a
#+ feature, but it also causes a "di sk-space | eak".
BEGA N CONFI GURATI ON SECTI ON ########H R HHHHH R HHH T H T
LOCAL_USER=rj n # User whose hone directory should be backed up
MOUNT_PQO NT=/ backup # Mount poi nt of backup drive.
NO trailing slash!
This nmust be unique (eg using a udev symlink)
MOUNT_PO NT=/ nedi a/ di sk # For USB-connected devi ce.

SOURCE_DI R=/ hone/ $LOCAL_USER # NO trailing slash - it DOES matter to rsync.
BACKUP_DEST_DI R=$MOUNT_PQ NT/ backup/ * host nane -s" . ${LOCAL_USER}. ni ght | y_backup

DRY_RUN=f al se #1f true, invoke rsync with -n, to do a dry run

Commrent out or set to false for nornmal use.
VERBOSE=f al se # |f true, make rsync verbose.

Commrent out or set to fal se otherw se.
COVPRESS=f al se # If true, conpress.

Good for internet, bad on LAN.

Commrent out or set to fal se otherw se.

##

E_

Exit Codes
VARS_NOT_SET=64

513

Contributed Scripts

E_COVMANDLI NE=65
E_MOUNT_FAI L=70

E_NOSOURCEDI R=71

E_UNMOUNTED=72

E_BACKUP=73

##t###t END CONFI GURATI ON SECTI ON HHHHHHHH

Ch
if [
[
[
[

t hen
e
e

fi

if [
t hen

eck that all the inportant variables have been set:
-z "$LOCAL_USER' 1 ||

-z "$SOURCE_ DIR" 1 ||

-z "SMOUNT_PO NT"] ||

-z "$BACKUP_DEST_DI R']

cho "One of the variables is not set! Edit the file: $0. BACKUP FAI LED."
xit $E VARS NOT_SET

"$#" 1= 0] # |f command-line paran(s)
Here docunent (ation).

cat <<- ENDOFTEXT

Automatic Nightly backup run from cron.

Read the source for nore details: $0

The backup directory is $BACKUP_DEST DI R .

It will be created if necessary; initialisation is no |onger required.

WARNI NG Contents of $BACKUP_DEST DIR are rotated.
Directories named 'backup.\$i' wll eventually be DELETED.
We keep backups from every day for 7 days (1-8),

then every week for 4 weeks (9-12),

then every nonth for 3 nonths (13-15).

You may wish to add this to your crontab using 'crontab -e'
Back up files: $SOURCE_DIR to $BACKUP_DEST_DI R
#+ every night at 3:15 am
15 03 * * * [home/ $LOCAL_USER/ bi n/ ni ght | y- backup_firew re-hdd. sh

Don't forget to verify the backups are working,
especially if you don't read cron's mail!"

ENDOFTEXT
exit $E_COMVANDLI NE

fi

Parse the options.

=== c
if ["$DRY_RUN' == "true"]; then
DRY_RUN="-n"
echo "WARNI NG "
echo "THIS IS A 'DRY RUN !'"
echo "No data will actually be transferred!”
el se

DRY_RUN=""

514

Contributed Scripts

fi

if ["$VERBOSE"' == "true"]; then
VERBCSE=" - v"

el se
VERBOSE=""

fi

if ["$COVMPRESS"' == "true"]; then
COVPRESS="-z"

el se
COVPRESS=""

fi

Every week (actually of 8 days) and every nonth,

#+ extra backups are preserved.

DAY_OF_MONTH="date +%" # Day of nmonth (01..31).

if [$DAY_OF_MONTH = 01]; then # First of nonth.
MONTHSTART=t r ue

elif [$DAY_OF _MONTH = 08 \
-0 $DAY_OF MONTH = 16 \
-0 $DAY_OF MONTH = 24]; then

Day 8,16,24 (use 8, not 7 to better handl e 31-day nonths)
WEEKSTART=t r ue
fi

Check that the HDD i s nounted.

At least, check that *something* is nounted here!

W can use sonething unique to the device, rather than just guessing
#+ the scsi-id by having an appropriate udev rule in

#+ /etc/udev/rul es. d/ 10-rul es. | ocal

#+ and by putting a relevant entry in /etc/fstab.

Eg: this udev rule:

BUS="scsi", KERNEL="sd*", SYSFS{vendor}="WDC WD16",

SYSFS{ nmodel } =" 00JB- 00GVAO ", NAME="9%", SYM.INK="I|acie_1394d%"

if mount | grep $MOUNT_PO NT >/dev/null; then
echo "Munt point $MOUNT_PO NT is indeed mobunted. OK'
el se
echo -n "Attenpting to nmount $MOUNT_PO NT..."
If it isn't nmounted, try to mount it.
sudo nmount $MOUNT_PA NT 2>/ dev/ nul |

if mount | grep $MOUNT_PO NT >/dev/null; then
UNMOUNT _LATER=TRUE
echo "K'
Note: Ensure that this is also unnounted
#+ if we exit prematurely with failure.
el se
echo "FAl LED'
echo -e "Nothing is nmounted at $MOUNT_PO NT. BACKUP FAI LED! "

515

Contributed Scripts

exit $E_MOUNT_FAI L
f
f

Check that source dir exists and is readabl e.

if [! -r $SOURCE DIR] ; then
echo "$SOURCE DI R does not exist, or cannot be read. BACKUP FAI LED. "
exit $E_NOSOURCEDI R

fi

Check that the backup directory structure is as it should be.
If not, create it.

Create the subdirectories.

Note that backup.0 will be created as needed by rsync.

for ((i=1;i<=15;i++)); do
if [! -d $BACKUP_DEST_DI R/ backup. $i]; then

if /bin/nkdir -p $BACKUP_DEST_DI R/ backup. $i ; then

NNANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN l\b [] t est br acket S.
echo "Warning: directory $BACKUP_DEST DI R/ backup.$i is mssing,"
echo "or was not initialised. (Re-)creating it."

el se
echo "ERROR directory $BACKUP_DEST DI R/ backup. $i "
echo "is mssing and could not be created."

if ["$UNMOUNT_LATER' == "TRUE"]; then
Before we exit, unnmount the mount point if necessary.
cd

sudo umpbunt $MOUNT_PO NT &&
echo "Unmounted $MOUNT_PO NT again. Gving up."
fi
exit $E_UNMOUNTED
fi
fi
done

Set the permission to 700 for security
#+ on an ot herw se perm ssive nmulti-user system
if ! /bin/chmd 700 $BACKUP_DEST_DIR ; then
echo "ERROR: Coul d not set perm ssions on $BACKUP_DEST DIR to 700."

if ["$UNMOUNT_LATER' == "TRUE"]; then
Before we exit, unnmount the mount point if necessary.
cd ; sudo urmount $MOUNT_PO NT \
&& echo "Unnounted $MOUNT_PO NT again. Gving up."
fi

exit $E_UNMOUNTED
fi

Create the symink: current -> backup.1l if required.
A failure here is not critical.

516

Contributed Scripts

cd $BACKUP_DEST_DI R
if [! -hcurrent] ; then
if ! /bin/Iln -s backup.l1l current ; then
echo "WARNING could not create symink current -> backup.1"
fi
fi

Now, do the rsync.

echo "Now doi ng backup with rsync..."

echo "Source dir: $SOURCE DI R

echo -e "Backup destination dir: $BACKUP_DEST DI R\ n"

{usr/bin/rsync $DRY_RUN $VERBCSE -a -S --del ete --nodify-w ndow=60 \
--link-dest=../backup. 1 $SOURCE_DI R $BACKUP_DEST_ DI R/ backup. 0/

Only warn, rather than exit if the rsync failed,
#+ since it may only be a m nor problem

E g., if one file is not readable, rsync will fail.
This shouldn't prevent the rotation.
Not using, e.g., “date +% since these directories

#+ are just full of links and don't consunme *that nuch* space.

if [$2!'=01]; then
BACKUP_JUSTI NCASE=backup. “date +% % .j ustincase
echo "WARNI NG the rsync process did not entirely succeed."
echo "Somet hing m ght be wong."
echo "Saving an extra copy at: $BACKUP_JUSTI NCASE"
echo "WARNING if this occurs regularly, a LOT of space will be consuned,"
echo "even though these are just hard-links!"
fi

Save a readne in the backup parent directory.

Save another one in the recent subdirectory.

echo "Backup of $SOURCE_DI R on "hostnane’ was |ast run on \
“date’" > $BACKUP_DEST_DI R/ README. t xt

echo "This backup of $SOURCE DI R on "“hostname™ was created on \
“date’" > $BACKUP_DEST_DI R/ backup. 0/ README. t xt

If we are not in a dry run, rotate the backups.
[-z "$DRY_RUN'] &&

Check how full the backup disk is.
Warn if 90% if 98%or nore, we'll probably fail, so give up.
(Note: df can output to nore than one line.)
We test this here, rather than before
#+ so that rsync may possibly have a chance.
DI SK_FULL_PERCENT="/ bi n/ df $BACKUP_DEST_DI R |
tr "\n" " " | awk '{print $12}' | grep -oE [0-9]+ °
echo "Di sk space check on backup partition \
$MOUNT_PO NT $DI SK_FULL_PERCENT% ful I . "
if [$D SK_FULL_PERCENT -gt 90]; then
echo "Warning: Disk is greater than 90% full."

517

Contributed Scripts

fi
if [$D SK_FULL_PERCENT -gt 98]; then
echo "Error: Disk is fulll Gving up."
if ["$UNMOUNT_LATER' == "TRUE"]; then
Before we exit, unnmount the mount point if necessary.
cd; sudo umpunt $MOUNT_PO NT &&
echo "Unmounted $MOUNT_PO NT again. Gving up."
fi
exit $E_UNMOUNTED
fi

Create an extra backup.
If this copy fails, give up.
if [-n "$BACKUP_JUSTI NCASE"]; then
if ! /bin/fcp -al $BACKUP_DEST_DI R/ backup. 0 \
$BACKUP_DEST_DI R/ $BACKUP_JUSTI NCASE
t hen
echo "ERROR Failed to create extra copy \
$BACKUP_DEST_DI R/ $BACKUP_JUSTI NCASE"
if ["$UNMOUNT_LATER' == "TRUE"]; then
Before we exit, unnmount the mount point if necessary.
cd ;sudo umpunt $MOUNT_PO NT &&
echo "Unmounted $MOUNT_PO NT again. Gving up."
fi
exit $E_UNMOUNTED
fi
fi

At start of nmonth, rotate the ol dest 8.
if ["SMONTHSTART" == "true"]; then
echo -e "\nStart of nonth. \
Renmovi ng ol dest backup: $BACKUP_DEST_ DI R/ backup. 15" &&
/bin/rm-rf $BACKUP_DEST DI R/ backup. 15 &&
echo "Rotating nonthly, weekly backups: \
$BACKUP_DEST_DI R/ backup. [8-14] -> $BACKUP_DEST_DI R/ backup.[9-15]" &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 14 $BACKUP_DEST DI R/ backup. 15
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 13 $BACKUP_DEST_DI R/ backup. 14
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 12 $BACKUP_DEST DI R/ backup. 13
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 11 $BACKUP_DEST DI R/ backup. 12
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 10 $BACKUP_DEST DI R/ backup. 11
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 9 $BACKUP_DEST_DI R/ backup. 10 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 8 $BACKUP_DEST_DI R/ backup. 9

FEEEE

At start of week, rotate the second-ol dest 4.

elif ["$WEEKSTART" == "true"]; then
echo -e "\nStart of week. \
Renovi ng ol dest weekly backup: $BACKUP_DEST_DI R/ backup. 12" &&
/bin/rm-rf $BACKUP_DEST DI R/ backup. 12 &&

echo "Rotating weekly backups: \
$BACKUP_DEST_DI R/ backup. [8-11] -> $BACKUP_DEST_DI R/ backup.[9-12]" &&
/ bi n/f mv $BACKUP_DEST_DI R/ backup. 11 $BACKUP_DEST_DI R/ backup. 12 &&

518

Contributed Scripts

/ bi n/ v $BACKUP_DEST_DI R/ backup. 10 $BACKUP_DEST DI R/ backup. 11 &&
/ bi n/ v $BACKUP_DEST DI R/ backup. 9 $BACKUP_DEST DI R/ backup. 10 &&

/ bi n/ v $BACKUP_DEST_DI R/ backup. 8 $BACKUP_DEST_DI R/ backup. 9

el se

echo -e "\ nRenoving ol dest daily backup: $BACKUP_DEST_DI R/ backup. 8"

/binfrm-rf

fi &%

Every day, rotate the newest 8.

echo "Rotating daily backups: \

$BACKUP_DEST_DI R/ backup. [1-7] -> $BACKUP_DEST_DI R/ backup.[2-8]" &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 7 $BACKUP_DEST_DI R/ backup. 8 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 6 $BACKUP_DEST_DI R/ backup. 7 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 5 $BACKUP_DEST_DI R/ backup. 6 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 4 $BACKUP_DEST_DI R/ backup.5 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 3 $BACKUP_DEST_DI R/ backup. 4 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 2 $BACKUP_DEST_DI R/ backup. 3 &&
/ bi n/f mv $BACKUP_DEST_DI R/ backup. 1 $BACKUP_DEST_DI R/ backup.2 &&
/ bi n/ mv $BACKUP_DEST_DI R/ backup. 0 $BACKUP_DEST_DI R/ backup.1 &&

$BACKUP_DEST_DI R/ backup. 8

SUCCESS=t r ue

if ["$UNMOUNT_LATER' ==
Unmount the nmount point

"TRUE"]; then

if it wasn't nounted to begin wth.

cd ; sudo unpbunt $MOUNT_PO NT && echo "Unnounted $MOUNT_PO NT again. "
fi
if ["$SUCCESS' == "true"]; then

echo ' SUCCESS!"

exit O

fi

Shoul d have already exited if backup worked.
echo 'BACKUP FAILED! Is this just a dry run? Is the disk full?)
exit $E_BACKUP

Example A.33. An expanded cd command

BHABHBHABHHHHBH AR H BB H B R B R R R R R R R R R

cdl |

by Phil Braham

HERHHHHH T H A
Latest version of this script available from
http://freshmeat. net/ projects/cd/

HERHHHHH T H A H

.cd_new

HHHHHH R

519

Contributed Scripts

HFHFIFTHFEHFHEHEHFHFEHFHHFEHFHHFHHHF TR

An enhancenent of the Unix cd command

There are unlinmted stack entries and special entries. The stack
entries keep the | ast cd_naxhistory

directories that have been used. The special entries can be
assigned to comonly used directories.

The special entries may be pre-assigned by setting the environment
variables CDSn or by using the -u or -U conmand.

The following is a suggestion for the .profile file:

cdl | # Set up the cd comrand
alias cd='cd_new # Replace the cd comand
cd -U # Upl oad pre-assigned entries for
#+ the stack and special entries
cd -D # Set non-default node
alias @"cd new@ # Alow @to be used to get history

For help type:

cd -h or
cd -H

BHABHBHABHHHHBH AR H BB H B R B R R R R R R R R R R

HHHHHHHH

Version 1.2.1

Witten by Phil Braham - Realtine Software Pty Ltd

(realti mre@mpx. com au)

Pl ease send any suggestions or enhancenents to the author (also at
phi | @r aham net)

RHABHBHHBHHHHBH AR H BB AR B R R R R R R R

cd_hm ()

{

${PRINTF} "9%" "cd [dir] [0-9] [@s|h] [-g [<dir>]] [-d] \

[-D [-r<n>] [dir]0-9] [-R<n>] [<dir>|0-9]

[-s<n>] [-S<n>] [-u] [-U [-f] [-F] [-h] [-H [-V]
<dir> Go to directory

0-n

@
@
@

Go to previous directory (O is previous, 1 is last but 1 etc)
nis up to max history (default is 50)

List history and special entries

List history entries

Li st special entries

-g [<dir>] Go to literal name (bypass special nanes)

-d
-D

This is to allow access to dirs called "0',"1",'-h" etc
Change default action - verbose. (See note)
Change default action - silent. (See note)

-s<n> Go to the special entry <n>*
-S<n> Go to the special entry <n>

and replace it with the current dir*

520

Contributed Scripts

-r<n> [<dir>] Go to directory <dir>
and then put it on special entry <n>*
-R<n> [<dir>] Go to directory <dir>
and put current dir on special entry <n>*
- a<n> Al ternative suggested directory. See note bel ow.
-f [<file>] File entries to <file>.
-u [<file>] Update entries from<file>
If no filename supplied then default file
(${CDPat h} ${2: -"$CDFi |l e"}) is used
-F and -U are silent versions

-V Print version nunber

-h Hel p

-H Detail ed help

*The special entries (0 - 9) are held until log off, replaced by anot her

entry or updated with the -u command

Al ternative suggested directories:

If a directory is not found then CD will suggest any

possibilities. These are directories starting with the sane letters
and if any are found they are listed prefixed with -a<n>

where <n> is a nunber.

It's possible to go to the directory by entering cd -a<n>

on the comand Iine.

The directory for -r<n> or -R<n> may be a nunber.
For exanpl e:
$cd-r34 CGotohistory entry 4 and put it on special entry 3
$cd -R3 4 Put current dir on the special entry 3
and go to history entry 4
$ cd -s3 Go to special entry 3

Note that commands R r,S and s nay be used w thout a nunber
and refer to O:
$cd-s Go to special entry O
$cd-S Go to special entry 0 and nake speci al
entry O current dir
$cd-r1 Go to history entry 1 and put it on special entry O

$cd -r Go to history entry O and put it on special entry O
if ${TEST} "$CD_MODE' = "PREV'
t hen
${ PRI NTF} "$cd_mmset"
el se
${ PRI NTF} "$cd_mset"
f
}
cd_Hm ()
{
cd_hm

${ PRI NTF} "9%s" "
The previous directories (0-$cd_maxhistory) are stored in the
envi ronnent variables CD0] - CO $cd_maxhi story]

521

Contributed Scripts

Simlarly the special directories SO - $cd_maxspecial are in

t he
and

The
The

Set

envi ronnent variable CDS[0] - CDS[$cd_maxspeci al]
may be accessed fromthe command |ine

default pathnanme for the -f and -u commands i s $CDPath
default filenane for the -f and -u commands is $CDFile

the foll ow ng environnment variabl es:

CDL_PROWPTLEN - Set to the length of pronpt you require.
Prompt string is set to the right characters of the
current directory.

If not set then pronpt is |eft unchanged

CDL_PROWPT_PRE - Set to the string to prefix the prompt.

Defaul t is:
non-root: \"\\[\\e[O1;34m\]\" (sets colour to blue).
root: \V"\\[\\e[01; 31mM\]\" (sets colour to red).
CDL_PROWPT_PCST - Set to the string to suffix the pronpt.
Defaul t is:

non-root: \"\\[\\e[OOmM\]$\"
(resets col our and displays $).
root: V"V [\ Ve[OOMN] #\ "
(resets colour and displays #).
CDPath - Set the default path for the -f & -u options.
Default is hone directory
CDFile - Set the default filename for the -f & -u options.
Default is cdfile

cd_version

}

cd_version ()

{

printf "Version: ${VERSI ON MAJOR}.${VERSI ON. M NOR} Date: ${VERSI ON DATE}\n"

}

par ans:

O H HHHHHHHH

Truncate right.

pl - string

p2 - length to truncate to
returns string in tcd

d_right_trunc ()

l ocal tlen=${2}

 ocal pl en=${#1}

| ocal str="${1}"

| ocal diff

| ocal filler="<--"

if ${TEST} ${plen} -le ${tlen}

522

Contributed Scripts

t hen
tcd="${str}"

el se
let diff=${plen}-${tlen}
el en=3
if ${TEST} ${diff} -le 2
t hen

let elen=${diff}
f
tlen=-%{tlen}
let tlen=${tlen}+${el en}
tcd=${filler:0:elen}${str:tlen}
f

}
#
Three versions of do history:
cd_dohistory - packs history and specials side by side
cd_dohi storyH - Shows only hstory
cd_dohi storyS - Shows only specials
#
cd_dohistory ()
{

cd_getrc

${ PRI NTF} "History:\n"

[ocal -i count=${cd_histcount}

whil e ${TEST} ${count} -ge O

do

cd_right_trunc "${CD{count]}" ${cd_I char}
${ PRINTF} "92d % ${cd_| char}.${cd_lchar}s " ${count} "${tcd}"

cd_right_trunc "${CDS[count]}" ${cd_rchar}
${ PRI NTF} "S% % ${cd_rchar}.${cd_rchar}s\n" ${count} "${tcd}"
count =${count }- 1

done
}
cd_dohi storyH ()
{
cd_getrc
${ PRI NTF} "History:\n"
[ocal -i count=${cd_naxhi story}
whil e ${TEST} ${count} -ge O
do
${ PRI NTF} "${count} % ${cd_flchar}.${cd_flchar}s\n" ${CD[$count]}
count =${count }- 1
done
}
cd_dohi storyS ()
{
cd_getrc
${ PRI NTF} "Specials:\n"

[ocal -i count=${cd_naxspeci al}

523

Contributed Scripts

whil e ${TEST} ${count} -ge O

do
${PRI NTF} "S${count} % ${cd_flchar}.${cd_flchar}s\n" ${CDS[$count]}
count =${count }- 1

done

}

cd_getrc ()

cd_flchar=$(stty -a | awk -F \;
"/rows/ { print $2 $3 }' | awk -F\ "{ print $4 }")
if ${TEST} ${cd_flchar} -ne O
t hen
cd_| char=${cd_flchar}/2-5
cd_rchar=${cd_flchar}/2-5
cd_flchar=${cd_flchar}-5
el se
cd_f | char =${ FLCHAR =75}
cd_flchar is used for the @ & @ history
cd_| char =${ LCHAR: =35}
cd_r char =${ RCHAR: =35}
f
}

cd_dosel ection ()
{
local -i nmeO
cd_dof | ag="TRUE"
i f ${TEST} "${CD MODE}" = "PREV"
t hen
if ${TEST} -z "$cd_npwd"
t hen
cd_npwd=0
f
f
tme$(echo "${cd_npwd}" | cut -b 1)
if ${TEST} "${tnm" = "-"
t hen
pne$(echo "${cd_npwd}" | cut -b 2)
nne$(echo "${cd_npwd}" | cut -d $pm -f2)
case "${pm" in
a) cd_npwd=${cd_sugg[$nni} ;;
s) cd_npwd="${CDS[$nm }" ;;
S) cd_npwd="${CDS[$nnj}" ; CDS[$nn] ="pwd ;;
r) cd_npwd="$2" ; cd_specDir=$nm ; cd_dosel ection "$1" "$2";
R cd_npwd="$2" ; CDS[$nnml="pwd" ; cd_dosel ection "$1" "$2";

esac
f
if ${TEST} "${cd_npwd}" !="." -a "${cd_npwd}" \
I=".." -a "${cd_npwd}" -le ${cd_maxhistory} >>/dev/null 2>&1
t hen
cd_npwd=%${ CD[$cd_npwd] }
el se

524

Contributed Scripts

}

f

case "$cd_npwd" in
@ cd_dohistory ; cd_dofl ag="FALSE"
@) cd_dohistoryH ; cd_dofl ag="FALSE"
@) cd_dohistoryS ; cd_dofl ag="FALSE"
-h) cd_hm; cd_dofl ag="FALSE"
-H cd_Hm; cd_dofl ag="FALSE"
-f) cd_fsave "SHOW $2 ; cd_dofl ag="FALSE"
-u) cd_upload "SHOW $2 ; cd_dofl ag="FALSE"
-F) cd_fsave "NOSHOW $2 ; cd_dofl ag="FALSE"
-U) cd_upl oad "NOSHOW $2 ; cd_dofl ag="FALSE"
-g) cd_npwd="$2"
-d) cd_chdefm 1; cd_dofl ag="FALSE"
-D) cd_chdefm 0; cd_dofl ag="FALSE"

-r) cd_npwd="$2" ; cd_specDir=0 ; cd_doselection "$1"
-R) cd_npwd="$2" ; CDS[0]= pwd ; cd_dosel ection "$1"

-s) cd_npwd="${CDS[0] } "

-S) cd_npwd="${CDS[0]}" ; CDS[0] =" pwd

-v) cd_version ; cd_dofl ag="FALSE";
esac

cd_chdefm ()

{

}

if ${TEST} "${CD MODE}" = "PREV"
t hen

CD_MODE=""

if ${TEST} $1 -eq 1

t hen

${PRINTF} "${cd_nset}"
f
el se
CD_MODE=" PREV"
if ${TEST} $1 -eq 1
t hen
${ PRI NTF} "${cd_mmset}"
f
f

cd_fsave ()

{

| ocal sfile=${CDPath}${2:-"$CDFile"}
if ${TEST} "$1" = " SHOW
t hen
${ PRI NTF} "Saved to %\n" $sfile
f
${RV} -f ${sfile}

|l ocal -i count=0
whil e ${TEST} ${count} -le ${cd_maxhistory}
do

echo "CD[$count] =\"${CDO[$count]}\"" >> ${sfil e}
count =${ count } +1
done

"$2"
"$2"

525

Contributed Scripts

count =0

whil e ${TEST} ${count} -le ${cd_maxspecial }

do
echo "CDS[$count] =\"${CDS[$count]}\"" >> ${sfil e}
count =${ count } +1

done

}
cd_upl oad ()
{

| ocal sfil e=${CDPath}${2:-"$CDFile"}
if ${TEST} "${1}" = "SHOW
t hen
${ PRI NTF} "Loading from %\ n" ${sfile}
f

${sfile}
}
cd_new ()
{
|l ocal -i count
|l ocal -i choose=0

cd_npwd="${1}"
cd_specDir=-1
cd_dosel ection "${1}" "${2}"

if ${TEST} ${cd_doflag} = "TRUE"
t hen
if ${TEST} "${CD{O]}" != " pwd "
t hen
count =$cd_naxhi st ory
whil e ${TEST} $count -gt O

do
CD[$count] =${ C $count - 1] }
count =${count }- 1

done

CD{ 0] =" pwd”

f
command cd "${cd_npwd}" 2>/ dev/ nul
if ${TEST} $? -eq 1

t hen
${ PRI NTF} "Unknown dir: %\n" "${cd_npwd}"
local -i ftflag=0
for i in "${cd_npwd}"*
do
if ${TEST} -d "${i}"
t hen
if ${TEST} ${ftflag} -eq O
t hen
${ PRI NTF} "Suggest:\n"
ftflag=1

f
${ PRI NTF} "\t-a${choose} %\n" "$i"

526

Contributed Scripts

cd_sugg[$choose] =" ${i }"
choose=${ choose} +1
fi
done
fi
fi

if ${TEST} ${cd_specDir} -ne -1
t hen

CDS[${ cd_specDir}] =" pwd’
fi

if ${TEST} ! -z "${CDL_PROVPTLEN}"

t hen

cd_right_trunc "${PWD}" ${CDL_PROVPTLEN}

cd_r p=${ CDL_PROVPT_PRE} ${ t cd} ${ CDL_PROVPT_PCST}
export PS1="$(echo -ne ${cd_rp})"

fi
}
HHHHBH BB H AR R B AR AR AR R A A A AR AR R R R R A AR AR

#
Initialisation here
#
HUBHBHSEH SRR R RS R R R R R R R R R R
#

VERSI ON_MVAJOR="1"

VERSI ON_M NOR="2. 1"

VERSI ON_DATE=" 24- MAY- 2003"

#

alias cd=cd_new

#

Set up conmands

RME/ bi n/ rm

TEST=t est

PRI NTF=pri nt f # Use builtin printf

HERHHHHH T H T H R H R R
#
Change this to nodify the default pre- and post pronpt strings.
These only come into effect if CDL_PROVPTLEN is set.
#
HERHHHHH T H T H R H R R
if ${TEST} ${EUD} -eq O
t hen
CDL_PROVPT_PRE=${ CDL_PROVPT_PRE: =" $HOSTNAVE@ }
CDL_PROVPT_PRE=${ CDL_PROWPT_PRE: ="\\[\\e[01; 31mM\]"} # Root is in red
CDL_PROVPT_POST=${ CDL_PROWPT_POST: ="\\[\\e[00m \] #"}
el se
CDL_PROVPT_PRE=${ CDL_PROWPT_PRE: ="\\[\\e[01; 34m\]"} # Users in blue
CDL_PROWPT_POST=${ CDL_PROWPT_POST: ="\\[\\e[00mM \] $"}
fi
HERHHHHH T H T H R R H R R H R
#
cd_maxhi story defines the max nunber of history entries all owed.

527

Contributed Scripts

typeset -i cd_naxhistory=50

HERHHHHH T H T H R H R H R H R R R
#

cd_maxspeci al defines the nunber of special entries.

typeset -i cd_naxspecial =9

#

#

HERHHHHH T H T H P H R R R
#

cd_hi stcount defines the nunmber of entries displayed in

#+ the history command.

typeset -i cd_histcount=9

#

HERHHHHH T H T H R R H R R
export CDPat h=${ HOVE} /

Change these to use a different

#+ default path and fil enane #

export CDFi | e=${ CDFI LE: =cdfi | e} # for the -u and -f commands #

#

HERHHHHH T H T H A H R R R
#

typeset -i cd_lchar cd_rchar cd_flchar

This is the nunber of chars to allow for the
cd_f | char =${ FLCHAR =75} #+ cd_flchar is used for the @ & @ history#

typeset -ax CD CDS

#

cd_nmset="\n\tDefault node is now set - entering cd with no paranmeters \
has the default action\n\tUse cd -d or -D for cd to go to \

previous directory with no paraneters\n”

cd_mset ="\ n\t Non-default node is now set - entering cd with no \
paranmeters is the sane as entering cd O\n\tUse cd -d or \

-D to change default cd action\n"

<<DOCUMENTATI ON

Witten by Phil Braham Realtinme Software Pty Ltd.
Rel eased under GNU |icense. Free to use. Please pass any nodifications
or comments to the author Phil Braham

real ti me@mpx. com au

cdll is a replacenent for cd and incorporates simlar functionality to
t he bash pushd and popd commands but is independent of them

This version of cdll has been tested on Linux using Bash. It will work
on nost Linux versions but will probably not work on other shells without
nodi fi cati on.

528

Contributed Scripts

I nt roducti on

cdll allows easy noving about between directories. Wen changing to a new
directory the current one is automatically put onto a stack. By default
50 entries are kept, but this is configurable. Special directories can be
kept for easy access - by default up to 10, but this is configurable. The
nost recent stack entries and the special entries can be easily viewed.

The directory stack and special entries can be saved to, and | oaded from
afile. This allows themto be set up on login, saved before | oggi ng out
or changed when noving project to project.

In addition, cdll provides a flexible command pronpt facility that all ows,
for example, a directory nane in colour that is truncated fromthe left
if it gets too |ong.

Setting up cdl

Copy cdll to either your local hone directory or a central directory
such as /usr/bin (this will require root access).

Copy the file cdfile to your home directory. It will require read and
wite access. This a default file that contains a directory stack and
speci al entries.

To replace the cd command you nust add commands to your login script.
The login script is one or nore of:

/etc/profile
~/ . bash_profile

~/ . bash_l ogin
~/ .profile
~/ . bashrc

/ et ¢/ bash. bashrc. | ocal

To setup your login, ~/.bashrc is recommended, for global (and root) setup
add the conmands to /etc/bash. bashrc. | oca

To set up on login, add the comrand:

<di r>/ cdl |
For exanple if cdll is in your local honme directory:
~/ cdl |

If in /usr/bin then:
/usr/ bi n/ cdl

If you want to use this instead of the buitin cd command then add:
alias cd='cd_new

W& woul d al so recomend the foll ow ng conmands:
alias @' cd_new @
cd -U

529

Contributed Scripts

cd -D
If you want to use cdll's pronpt facilty then add the foll ow ng:
CDL_PROVPTLEN=NnN
VWere nn is a nunber described below. Initially 99 would be suitable
numnber .
Thus the script |ooks sonething |ike this:

BHHABHBHABHHHHBH AR H BB B BB R R R R AR R R

CD Setup
HHHHBHHHBHHH B H B H B H A H R H R H R H R H R H R H R H R
CDL_PROVPTLEN=21 # Allow a pronpt length of up to 21 characters

[usr/ bin/cdl
alias cd='cd_new

Initialise cdl

Repl ace the built in cd comrand

alias @' cd_new @ Allow @at the pronpt to display history

cd -U Upl oad directories

cd -D # Set default action to non-posix

HERHHHHH T H T H T H R H R H R

#
#
#
#

The full neaning of these commands will beconme clear |ater.

There are a couple of caveats. |If another program changes the directory
wi thout calling cdll, then the directory won't be put on the stack and

also if the pronpt facility is used then this will not be updated. Two

programs that can do this are pushd and popd. To update the pronpt and

stack sinmply enter:

cd .

Note that if the previous entry on the stack is the current directory
then the stack is not updated.

cd [dir] [0-9] [@s|h] [-g <dir>] [-d] [-D [-r<n>]
[dir]|0-9] [-R<n>] [<dir>]0-9] [-s<n>] [-S<n>]
[-u] [-U [-f] [-F] [-h] [-H [-V]

<di r> Go to directory
0-n Coto previous directory (0 is previous,
1is last but 1, etc.)
nis up to max history (default is 50)
@ Li st history and special entries (Usually available as $ @
@ List history entries
(@ Li st special entries
-g [<dir>] Go to literal name (bypass special nanes)

This is to allow access to dirs called "0',"1",'-h" etc
-d Change default action - verbose. (See note)
-D Change default action - silent. (See note)
-s<n> Go to the special entry <n>
- S<n> Go to the special entry <n>

and replace it with the current dir
-r<n> [<dir>] Go to directory <dir>

530

Contributed Scripts

and then put it on special entry <n>
-R<n> [<dir>] Go to directory <dir>
and put current dir on special entry <n>
- a<n> Al ternative suggested directory. See note bel ow.
-f [<file>] File entries to <file>.
-u [<file>] Update entries from<file>.
If no filename supplied then default file (~/cdfile) is used
-F and -U are silent versions

-V Print version nunber

-h Hel p

-H Detail ed help
Exampl es

These exanpl es assune non-default nmode is set (that is, cd with no
paranmeters will go to the nbst recent stack directory), that aliases
have been set up for cd and @as descri bed above and that cd's pronpt
facility is active and the pronpt length is 21 characters.

/home/ phil $ @
List the entries with the @
Hi story:

Qut put of the @ command

Ski pped these entries for brevity

1 /hone/ phil/umdev S1 / hore/ phil / perl

Most recent two history entries

0 /home/ phil/perl/eg SO / hore/ phi | / unm urmdev
and two special entries are shown

/ hone/ phil$ cd /hone/phil/utils/Cdll
Now change directories

[home/ phil/utils/CdlI1$ @

Pronpt reflects the directory.

Hi story:

New history

1 /hone/phil/perl/eg S1 / hore/ phil / perl
History entry 0 has nmoved to 1
0 /home/ phi | SO / hore/ phi | / unm urmmdev

and the nost recent has entered
To go to a history entry:
/home/ phil/utils/CdlI1$ cd 1
Go to history entry 1.
/ hore/ phi | / perl/eg$
Current directory is now what was 1

To go to a special entry:

531

Contributed Scripts

/ horre/ phil / perl/eg$ cd -s1
Go to special entry 1

/ hone/ phi | / unmi unmdev$

Current directory is Sl

To go to a directory called, for exanple, 1
/home/phil$ cd -g 1

-g ignores the special nmeaning of 1
/ hone/ phi |l / 1$

To put current directory on the special list as S1
cd -r1 . # OR
cd -RL . # These have the sane effect if the directory is

#+ . (the current directory)

To go to a directory and add it as a speci al
The directory for -r<n> or -R<n> may be a nunber.
For exanpl e:
$cd-r34 CGotohistory entry 4 and put it on special entry 3
$cd -R34 Put current dir on the special entry 3 and go to
history entry 4
$ cd -s3 Go to special entry 3

Note that commands R r,S and s nay be used w thout a nunber and
refer to O:
$cd-s Go to special entry O
$cd-S Go to special entry 0 and nake special entry O
current dir
$cd-r1 Go to history entry 1 and put it on special entry O
$cd -r Go to history entry O and put it on special entry O

Al ternative suggested directories:

If a directory is not found, then CD will suggest any
possibilities. These are directories starting with the sane letters
and if any are found they are listed prefixed with -a<n>

where <n> is a nunber. It's possible to go to the directory

by entering cd -a<n> on the command | i ne.

Use cd -d or -Dto change default cd action. cd -H w Il show
current action.

The history entries (0-n) are stored in the environnent vari abl es
CO0] - COin]

Simlarly the special directories SO - 9 are in the environnent
variable CDS[0] - CDS[9]

and may be accessed fromthe command |ine, for exanple:

s -1 ${CDS[3]}
cat ${CD[8]}/file.txt

The default pathname for the -f and -u commands is ~

532

Contributed Scripts

The default filename for the -f and -u commands is cdfile

Confi guration

The foll owi ng environment variables can be set:

CDL_PROWPTLEN - Set to the length of pronpt you require.
Prompt string is set to the right characters of the current
directory. If not set, then prompt is |left unchanged. Note
that this is the nunber of characters that the directory is
shortened to, not the total characters in the pronmpt.

CDL_PROWPT_PRE - Set to the string to prefix the prompt.

Defaul t is:
non-root: "\\[\\e[O01;34mM\]" (sets colour to blue).
root: "\\[\\e[01;31mM\]" (sets colour to red).
CDL_PROWPT_PCST - Set to the string to suffix the pronpt.
Defaul t is:

non-root: "\\[\\e[OOm\]$"

(resets col our and displays $).
root: "\\[\\e[OOM\]#"

(resets colour and displays #).

Not e:
CDL_PROWPT_PRE & _POST only t

CDPath - Set the default path for the -f & -u options.
Default is hone directory

CDFile - Set the default filename for the -f & -u options.
Default is cdfile

There are three variables defined in the file cdll which control the
nunber of entries stored or displayed. They are in the section | abel ed
"Initialisation here' towards the end of the file.

cd_maxhi story - The nunber of history entries stored.
Default is 50.

cd_maxspeci al - The nunber of special entries allowed.
Default is 9.

cd_hi st count - The number of history and special entries

di spl ayed. Default is 9.
Note that cd_maxspecial should be >= cd_histcount to avoid displaying
special entries that can't be set.
Version: 1.2.1 Date: 24-NAY-2003

DOCUMENTATI ON

533

Contributed Scripts

Example A.34. A soundcard setup script

#!/ bi n/ bash
soundcar d-on. sh

Script author: Marcher
http://ww. t hi nkwi ki . or g/ wi ki
/Script_for_configuring_the_CS4239_sound_chi p_i n_PnP_node
ABS Cui de aut hor made m nor changes and added comments.
Couldn't contact script author to ask for perm ssion to use, but
+ the script was rel eased under the FDL
+ so its use here should be both | egal and et hical

HHFHHHHH

Sound-vi a-pnp-script for Thi nkpad 600E

#+ and possibly other conputers with onboard CS4239/ CS4610
#+ that do not work with the PCl driver

#+ and are not recogni zed by the PnP code of snd-cs4236.

Also for some 770-series Thinkpads, such as the 770x.

Run as root user, of course.

These are old and very obsol ete | aptop conputers,
#+ but this particular script is very instructive,
#+ as it shows how to set up and hack device files.

Search for sound card pnp device:

for dev in /sys/bus/pnp/devices/*

do
grep CSC0100 $dev/id > /dev/null && WBSDEV=$dev
grep CSC0110 $dev/id > /dev/null && CTLDEV=$dev

done

On 770x:

WSSDEV = /sys/ bus/ pnp/ devi ces/ 00: 07

CTLDEV = /sys/ bus/pnp/devi ces/ 00: 06

These are synbolic |inks to /sys/devices/pnp0O/

Activate devices:
Thi nkpad boots with devices disabled unless "fast boot" is turned off
#+ (in BIOS).

echo activate > $WSSDEV/ r esour ces
echo activate > $CTLDEV/ resources

Parse resource settings.

{ read # Discard "state = active" (see bel ow).
read bla portl
read bla port2
read bla port3
read bla irg

534

Contributed Scripts

read bla dnal

read bla dna2
The "bla's" are labels in the first field: "io," "state," etc.
These are di scarded

Hack: with PnPBIOS: ports are: portl: WSS, port2:
#+ OPL, port3: sb (unneeded)
with ACPI-PnP:ports are: portl: OPL, port2: sb, port3: WSS
(ACPlI bios seems to be wong here, the PnP-card-code in snd-cs4236.c
#+ uses the PnPBI OS port order)
Detect port order using the fixed OPL port as reference.
if [${port2%e*} = 0x388]

ANAN - Strip out everything foll ow ng hyphen in port address.
So, if portl is 0x530-0x537

#+ we're left with Ox530 -- the start address of the port.
t hen

PnPBI OS: usual order
por t =${ por t 1986 *}
opl port =${ port 2986 *}

el se
ACPlI: m xed-up order
por t =${ por t 3986 *}
opl port =${ port 1986 *}

f

} < $WBSDEV/ r esour ces

To see what's going on here:

e

cat /sys/devices/pnp0/00: 07/ resources
#

state = active

10 0x530-0x537

10 0x388-0x38b

10 0x220-0x233

irg 5

dma 1

dma O

AN "bla" labels in first field (discarded).

{ read # Discard first |line, as above.
read bla portl
cport=${port 1986 *}
NNANNN
Just want _start_ address of port.
} < $CTLDEV/ r esour ces

Load the nodul e:

nodprobe --ignore-install snd-cs4236 port=$port cport=$cport\

fm port=%opl port irg=%irgq dmal=$dmal dma2=%$dma2 i sapnp=0 i ndex=0
See the nodprobe manpage.

exit $?

535

Contributed Scripts

Example A.35. Locating split paragraphsin atext file

#1/ bi n/ bash

find-splitpara.sh

Finds split paragraphs in a text file,
#+ and tags the |ine nunbers.

ARGCOUNT=1 # Expect one arg.

OFF=0 # Flag states.

ON=1

E_WVRONGARGS=85

file="%1" # Target fil enane.

i neno=1 # Line nunber. Start at 1.
FI ag=$COFF # Blank line flag.

if [$# -ne "$ARGCOUNT" |

t hen
echo "Usage: " basenane $0° FI LENAMVE"
exit $E_WRONGARGS

f
file_read () # Scan file for pattern, then print line
{
while read |ine
do
if [["$line" =~ "a-z] && $Flag -eq $ON 1]
then # Line begins with | owercase character, follow ng blank |ine.
echo -n "$lineno:: "
echo "$line"
f
if [["$line" =~ 23]]
t hen # |f blank |ine,
Fl ag=$ON #+ set fl ag.
el se
FI ag=$COFF

f
((l'i neno++))

done
} < $file # Redirect file into function's stdin

file_ read

exit $?

536

Contributed Scripts

This is line one of an exanpl e paragraph, bla, bla, bla.
This is line two, and line three should follow on next l|ine, but

there is a blank Iine separating the two parts of the paragraph
Running this script on a file containing the above paragraph
yi el ds:

4:: there is a blank Iine separating the two parts of the paragraph

There will be additional output for all the other split paragraphs
in the target file.

Example A.36. Insertion sort

#1/ bi n/ bash

insertion-sort.bash: Insertion sort inplementation in Bash
Heavy use of Bash array features:

#+ (string) slicing, nerging, etc

URL: http://ww. | ugnen.org.ar/~jjo/jjotip/insertion-sort.bash.d
#+ /insertion-sort. bash. sh

#

Author: JuanJo Ciarlante <jjo@rrigaci on.gov. ar >

Lightly reformatted by ABS CGui de aut hor

License: GPLv2

Used in ABS Guide with author's perm ssion (thanks!).

#

Test with: ./linsertion-sort.bash -t

O: bash insertion-sort.bash -t

The foll owi ng *doesn't* work:

sh insertion-sort.bash -t

Wiy not? Hint: which Bash-specific features are disabl ed
#+ when running a script by 'sh script.sh'?

#

. ${DEBUG =0} # Debug, override with: DEBUG=1 ./scriptnane .
Paranmeter substitution -- set DEBUGto O if not previously set.
dobal array: "list”

typeset -a list
Load whi tespace-separated nunmbers fromstdin

if ["$1" = "-t"]; then
DEBUG=1
read -a list < <(od -Ad -w24 -t u2 /dev/urandom) # Random i st
N AN process substition
el se

read -a |ist
f
nurrel ene${#l ist[*]}

537

Contributed Scripts

Shows the list, marking the el ement whose index is $1
#+ by surrounding it with the two chars passed as $2.

Wiole line prefixed with $3.

showl i st ()

{
echo "$3"${list[@:0: 81} ${2:0: 1} ${list[$1]}${2:1:1} ${list[@: $1+1};
}

Loop _pivot_ -- fromsecond elenent to end of |ist.
for((i=1; i<numelem i++)) do
((DEBUG)) &&show ist i "[]1" " "
Fromcurrent _pivot_, back to first el enment.
for((j=i; j; j--)) do
Search for the 1st elem |ess than current "pivot"
[["${list[j-211}" -le "${list[i]}" 1] && break

done

((i==])) && continue ## No insertion was needed for this el enent.

. Move list[i] (pivot) to the left of list[j]:
list=(${list[@:0:j} S{list[i]} ${list[j]}\

{0,j-1} {i} {i}

S{list[@:j+L:i-(j+1)} ${list[@:i+1})

{j+1,i-1} {i+1, 1 ast}

((DEBUG)) &&showl i st j "<>" "*"

done

echo

echo "------ "

echo $ Result:\n"${list[@}
exit $?
Example A.37. Standard Deviation

#!/ bi n/ bash
sd.sh: Standard Devi ation

The Standard Deviation indicates how consistent a set of data is.

1t shows to what extent the individual data points deviate fromthe
#+ arithnetic nmean, i.e., how much they "bounce around” (or cluster).
1t is essentially the average devi ati on-di stance of the

#+ data points fromthe nean

To cal cul ate the Standard Devi ati on:

1 Find the arithmetic nean (average) of all the data points.
Subtract each data point fromthe arithmetic mean,

and square that difference.

3 Add all of the individual difference-squares in # 2.

4 Divide the sumin # 3 by the nunber of data points.

This is known as the "variance."

The square root of # 4 gives the Standard Devi ation

HHHHHHHFHHH
N

(€]

538

Contributed Scripts

===
count =0 # Number of data points; gl obal
SC=9 # Scale to be used by bc. N ne decimal places.
E DATAFI LE=90 # Data file error
A R Set data file ---------------------
if [! -z "$1"] # Specify filename as cnd-1ine arg?
t hen
datafile="$1" # ASCI| text file,
el se #+ one (nunerical) data point per |ine!
dat af i | e=sanpl e. dat
fi # See exanple data file, bel ow.

if [! -e "$datafile"]

t hen
echo "\""$datafile"\" does not exist!"
exit $E _DATAFI LE

f

arith_nmean ()

{
| ocal rt=0 # Runni ng total
| ocal an¥0 # Arithmetic nean.
| ocal ct=0 # Nunber of data points.

while read value # Read one data point at a tine.
do
rt=%$(echo "scal e=$SC;, $rt + $value" | bc)

((ct++))
done
anc$(echo "scal e=$SC, $rt / $ct" | bc)

echo $am return $ct # This function "returns"” TWO val ues!
Caution: This little trick will not work if $ct > 255!
To handl e a | arger nunber of data points,
#+ sinply comment out the "return $ct" above.
} <"$datafile" # Feed in data file.

sd ()

{
neanl=$1 # Arithnetic mean (passed to function).
n=$2 # How many data points.
sum2=0 # Sum of squared di fferences ("variance").

avg2=0 # Average of $sunP.
sdev=0 # Standard Devi ati on

whil e read val ue # Read one line at a tine.

do
di ff=$(echo "scal e=$SC, $neanl - $val ue" | bc)
Difference between arith. mean and data point.

539

Contributed Scripts

di f 2=$(echo "scal e=$SC, $diff * $diff" | bc) # Squared.
sum2=$(echo "scal e=$SC;, $sun? + $dif2" | bc) # Sum of squares.
done

avg2=$(echo "scal e=$SC, $sun? / $n" | bc) # Avg. of sum of squares.
sdev=$(echo "scal e=$SC, sqrt($avg2)" | bc) # Sguare root =
echo $sdev # Standard Devi ati on

} <"$datafile" # Rewi nds data file.

mean=$(arith_nean); count=$? # Two returns from function
st d_dev=$(sd $nmean $count)

echo

echo "Nunber of data points in \""$datafile"\" = $count”
echo "Arithnetic mean (average) = $nmean”

echo "Standard Devi ation = $std_dev"

This script could stand sone drastic streaniining,
#+ but not at the cost of reduced legibility, please.

+++++++++ AR AR
A sanple data file (sanplel.dat):

18. 35

19.0

18.88

18.91

18.64

$ sh sd.sh sanpl el. dat

Number of data points in "sanplel.dat” =5
Arithmetic nean (average) = 18. 756000000

Standard Devi ation = .235338054

+++++++++ AR AR

Example A.38. A pad file generator for shareware authors

#!/ bi n/ bash
pad. sh

HERHHHHH T H T R
PAD (xm) file creator

#+ Witten by Mendel Cooper <thegrendel.abs@nmuail.conp.
#+ Rel eased to the Public Domain

Contributed Scripts

#

GCenerates a "PAD' descriptor file for shareware

#+ packages, according to the specifications

#+ of the ASP.

http://ww. asp-shareware. or g/ pad

HERHHHHH T H R R

Accepts (optional) save filenane as a conmand-|ine argunent.

if [-n"$1"]
t hen
savefil e=$1
el se
savefil e=save file.xmn # Default save file nane.
f
===== PAD fil e headers =====

HDR1="<?xm version=\"1.0\" encodi ng=\"W ndows- 1252\ " ?>"
HDR2="<XM__DI Z_| NFO>"

HDR3="<MASTER_PAD_VERSI ON_| NFO>"

HDR4="\t <MASTER_PAD_VERSI ON>1. 15</ MASTER_PAD_VERSI ON>"

HDR5="\ t <MASTER_PAD | NFG>Por t abl e Applicati on Description, or PAD

for short, is a data set that is used by shareware authors to

di ssem nate information to anyone interested in their software products.
To find out nore go to http://ww. asp- shar ewar e. or g/ pad</ MASTER_PAD | NFO>"
HDR6=" </ MASTER_PAD_VERSI ON_| NFO>"

s ———
fill _in ()
{
if [-z "$2"]
t hen
echo -n "$1? " # Get user input.
el se
echo -n "$1 $2? " # Additional query?
f
read var # May paste to fill in field.
This shows how fl exible "read" can be.
if [-z "$var"]
t hen
echo -e "\t\t<$l />" >>$savefile # Indent with 2 tabs.
return
el se
echo -e "\t\t<$1>$var</ $1>" >>$savefile
return ${#var} # Return length of input string.
f
}

check field_length () # Check |Iength of program description fields.
{

541

Contributed Scripts

$1 = maximum field |l ength
$2 = actual field length
if ["$2" -gt "$1"]
t hen
echo "Warning: Maximumfield length of $1 characters exceeded!"
f
}

cl ear # Cl ear screen
echo "PAD File Creator”

echo "--- ---- -------
echo

Wite File Headers to file.
echo $HDR1 >$savefil e

echo $HDR2 >>$savefil e

echo $HDR3 >>$%savefil e

echo -e $HDR4 >>%savefil e
echo -e $HDRS >>$savefil e
echo $HDR6 >>$%savefil e

Company_Info

echo " COVPANY | NFO'

CO_HDR=" Company_I nf o"

echo "<$CO HDR>" >>$savefile

fil
fil
fil

| _in Conpany_Nane

I _i

I _i
fill_i

I _i

I _i

I _i

n
n Address_1
n Address_2
n Gty _Town
fil n
fil n
fil n

State_Province
Zi p_Post al _Code
Country

I f applicable:

fill _in ASP_Menber "[Y/N"
fill_in ASP_Menber Nunber
fill _in ESC Menber "[Y/ N "
fill _in Conmpany_WebSite URL

cl ear # Cl ear screen between sections.

Contact _Info
echo " CONTACT | NFO'
CONTACT_HDR="Cont act _| nf 0"
echo "<$CONTACT HDR>" >>$savefil e

fill _in Author_First_Name
fill _in Author_Last_Name
fill _in Author_Enai

fill _in Contact First_Name
fill _in Contact Last_Name
fill _in Contact_ Emai

542

Contributed Scripts

echo -e "\t</ $CONTACT_HDR>" >>$savefile
END Contact _Info

cl ear

Support_Info

" SUPPORT | NFO'
SUPPORT_HDR=" Support _I nfo"

echo "<$SUPPORT_HDR>" >>$savefil e

echo

fill
fill
fill
fill
fill
fill
fill

n
n
n
n
n
n
n

echo -e
END Support_Info

Sal es_Enai

Support _Emai |

Ceneral _Emai

Sal es_Phone

Support _Phone

Cener al _Phone

Fax_Phone

"\t </ $SUPPORT_HDR>" >>$savefile

echo "</ $CO HDR>" >>$savefile
END Conpany_I nfo

cl ear

ProgramInfo

" PROGRAM | NFO!

PROGRAM _HDR="Pr ogr am | nf o"

echo "<$PROGRAM HDR>" >>$savefil e

echo

fill
fill
fill
fill
fill
fill
fill
fill
fill
fill
fill
fill

echo

5 3 33333333335

Program Nane

Pr ogr am Ver si on

Program Rel ease_Mont h

Pr ogr am Rel ease_Day

Program Rel ease_Year

Program Cost_Dol | ars

Pr ogram Cost _Qt her

Program Type "[Shar ewar e/ Freewar e/ GPL] "
Program Rel ease_Status "[Beta, Mjor Upgrade, etc.]"
Program I nstal | _Support

Program OS_Support "[W n9x/ W n2k/Li nux/etc.]"
Program Language "[English/ Spanish/etc.]"

echo

File_Info

"FI LE | NFO'

FI LEI NFO HDR="Fi | e_I nf 0"

echo "<$FI LEI NFO HDR>" >>$savefil e

echo

fill
fill
fill
fill
fill
fill
fill

5 3 3 33335

Fi | ename_Ver si oned
Fi | ename_Previ ous
Fi | ename_GCeneric
Fi | ename_Long
File_Size Bytes
File Size K

File Size MB

Contributed Scripts

echo -e "\t</$FI LEI NFO HDR>" >>$savefile
END File_Info

cl ear

Expire_Info

echo "EXPI RE | NFO'

EXPlI RE_HDR="Expi re_I nf 0"

echo "<$EXPI RE_ HDR>" >>$savefile

fill Has Expire_Info "Y/ N

fill Expi r e_Count

fill Expi re_Based_On

fill Expire_Q her_Info

fill Expi re_Mont h

fill Expi re_Day

fill _in Expire_Year

echo -e "\t</$EXPI RE_HDR>" >>$savefile
END Expire_Info

5 3 3 33335

cl ear

More ProgramInfo
echo "ADDI TI ONAL PROGRAM | NFO'

fill _in Program Change_Info

fill _in Program Specific_Category
fill _in Program Categories

fill_in Includes_JAVA VM "[Y/N"
fill_in Includes_VB Runtinme "[Y/N"
fill _in Includes_DirectX "[Y/N"

END More Program.Info

echo "</ $PROGRAM HDR>" >>$savefil e
END Program | nfo

cl ear

Program Description

echo " PROGRAM DESCRI PTI ONS"
PROGDESC _HDR="Pr ogr am Descri pti ons"
echo "<$PROGDESC HDR>" >>$savefil e

LANG="Engl i sh"
echo "<$LANG" >>$savefile

fill _in Keywords "[comm + space separated]”

echo

echo "45, 80, 250, 450, 2000 word program descriptions”

echo "(may cut and paste into field)"

1t would be highly appropriate to conpose the foll ow ng

#+ "Char_Desc" fields with a text editor

#+ then cut-and-paste the text into the answer fields.

echo

echo " [--------------- 45 characters---------------
fill _in Char_Desc_45

Contributed Scripts

check _field |l ength 45 "$?"
echo

fill _in Char_Desc_80
check field_ |l ength 80 "$?"

fill _in Char_Desc_250
check _field_ | ength 250 "$?"

fill _in Char_Desc_450
fill _in Char_Desc_2000

echo "</ $LANG" >>$savefile
echo "</ $PROGDESC HDR>" >>$savefil e
END Program Description

cl ear
echo "Done."; echo; echo
echo "Save file is: \""$savefil e"\

exit O

Example A.39. A man page editor

#1/ bi n/ bash
maned. sh
A rudi nentary man page editor

Version: 0.1 (Al pha, probably buggy)

Aut hor: Mendel Cooper <thegrendel.abs@nmail.conr
Rel date: 16 June 2008

License: GPL3

savefil e= # dobal, used in nultiple functions.

E NO NPUT=90 # User input mssing (error). May or may not be critical

=========== Mhr kup Tags ——=—=—=—=—=—=—====
TopHeader =". TH'

NaneHeader =". SH NAME"

Synt axHeader =". SH SYNTAX"

Synopsi sHeader =". SH SYNOPS| S*

I nstall ati onHeader =". SH | NSTALLATI ON'
DescHeader =". SH DESCRI PTI ON'

Opt Header =". SH OPTI ONS®

Fi | esHeader =". SH FI LES"
EnvHeader =". SH ENVI RONMENT"

Aut hHeader =". SH AUTHOR'
BugsHeader =". SH BUGS"

SeeAl soHeader =". SH SEE ALSCO'
BOLD=". B"

Add nore tags, as needed.

See groff docs for markup meani ngs.

Contributed Scripts

start ()

{

cl ear # Cl ear screen
echo "ManEd"

echo "-----

echo

echo "Sinple man page creator”

echo "Aut hor: Mendel Cooper™

echo "License: GPL3"

echo; echo; echo

}

prognane ()

{

echo -n "Program nanme? "
read nane

echo -n "Manpage section? [Ht RETURN for default (\"21\")] "
read section
if [-z "$section”]
t hen
section=1 # Most man pages are in section 1.
f

if [-n "$nane"]

t hen
savefil e=""$nanme"." $secti on"" # Filenanme suffix = section
echo -n "$1 " >>%$savefile
nanel=$(echo "$nane" | tr a-z A-Z) # Change to uppercase,

#+ per nman page convention
echo -n "$nanmel" >>$%savefile

el se
echo "Error! No input.” # Mandatory i nput.
exit $E_NO NPUT # Critical
Exercise: The script-abort if no filenane input is a bit clunsy.
Rewite this section so a default filename is used
#+ if no input.
f
echo -n " \"$section\"">>$savefile # Append, always append.

echo -n "Version? "

read ver

echo -n " \"Version $ver \"">>$savefile
echo >>$savefile

echo -n "Short description [0 - 5 words]? "
read sdesc

echo "$NaneHeader " >>$savefil e

echo ""$BOLD' "$nane"">>$savefile

echo "\- "$sdesc"">>$savefile

546

Contributed Scripts

fill_in ()
{ # This function nore or |ess copied from"pad.sh" script.
echo -n "$2? " # Get user input.
read var # May paste (a single line only!l) to fill in field

if [-n"$var"]

t hen
echo "$1 " >>$savefile
echo -n "$var" >>%savefile

el se # Don't append enpty field to file.
return $E_NONPUT # Not critical here

f

echo >>%$savefile

end ()

{

cl ear

echo -n "Wuld you like to view the saved man page (y/n)? "
read ans

if ["$ans" = "n" -0 "$ans" = "N']; then exit; f

exec less "$savefile" # Exit script and hand off control to "less"
#+ ... which formats for viewi ng nman page source.

}

A #

start

prognane "$TopHeader"

fill_in "$Synopsi sHeader" "Synopsis”

fill_in "$DescHeader" "Long description"

May paste in *single |line* of text.

fill_in "$Opt Header" "Options"

fill_in "$Fil esHeader" "Files"

fill _in "$Aut hHeader" "Author"

fill_in "$BugsHeader" "Bugs"

fill_in "$SeeAl soHeader" "See al so"

fill_in "$Q herHeader" ... as necessary.

end # ... exit not needed.

A #

Note that the generated man page will usually

#+ require manual fine-tuning with a text editor
However, it's a distinct inprovement upon

#+ writing man source from scratch

#+ or even editing a blank man page tenpl ate.

The main deficiency of the script is that it permts
#+ pasting only a single text line into the input fields.
This may be a |ong, cobbl ed-together |ine, which groff
wll automatically wap and hyphenate.

547

Contributed Scripts

However, if you want nultiple (new ine-separated) paragraphs,
#+ these must be inserted by manual text editing on the

#+ script-generated man page.

Exercise (difficult): Fix this!

This script is not nearly as el aborate as the
#+ full-featured "manedit" package

#+ http://freshmeat. net/projects/ manedit/

#+ but it's nuch easier to use.

Example A.40. Petals Around the Rose

#!/ bi n/ bash -
petal s.sh

BHABHBHHBHHHH B HHBH BB AR BB B R R R R R R R R

Petal s Around the Rose
#
Version 0.1 Created by Serghey Rodin
Version 0.2 Mdded by ABS Cui de Aut hor
#
License: GPL3
Used in ABS Guide with perm ssion.
BHHHHH TR H T H R H T H T R H R
hi ts=0 # Correct guesses.

W N=6 # Mastered the game.

ALMOST=5 # One short of mastery.
EXI T=exi t # Gve up early?

RANDOVES # Seeds the random nunber generator from PID of script.

Bones (ASCII graphics for dice)
bonel[1] ="| | ™
bonel[2] ="| |
bonel[3] ="| |
bonel[4]="] o |
bonel[5] ="| |
bonel[6]="| o |
bone2[1] ="| o]
bone2[2] ="| |
bone2[3] ="| o]
bone2[4] ="| | ™

|

|

|

|

|

|

|

o
O O O0OO0Oo

bone2[5] ="| o]
bone2[6]="| o o]
bone3[1] ="|
bone3[2]="|] o
bone3[3]="|] o
bone3[4]="] o o]
bone3[5]="|] o
bone3[6]="|] o
bone="+--------- +"

o

Contributed Scripts

Functi ons

instructions () {

cl ear
echo -n "Do you need instructions? (y/n) "; read ans
if ["$ans" = "y" -0 "$ans” = "Y"]; then

cl ear

echo -e "\E[34;47mM # Blue type.

"cat docunent”

cat <<| NSTRUCTI ONSzzZ
The nane of the gane is Petals Around the Rose,
and that name is significant.

Five dice will roll and you nust guess the "answer"” for each roll
It will be zero or an even nunber.
After your guess, you will be told the answer for the roll, but

that's ALL the information you will get.

Si x consecutive correct guesses admits you to the
Fel | owshi p of the Rose.
| NSTRUCTI ONSZzZ

echo -e "\ 033[Onf # Turn of f bl ue.
el se cl ear
f
}
fortune ()
{
RANGE=7
FLOOR=0
nunber =0
while ["$nunber" -le $FLOOR]
do
nunber =$RANDOM
| et "nunber % $RANGE" # 1 - 6.
done

return $nunber

throw () { # Calcul ate each individual die.
fortune; B1=$?
fortune; B2=%$?
fortune; B3=%$?
fortune; B4=%$?
fortune; B5=%$?

549

Contributed Scripts

calc () { # Function enbedded within a function

case "$1" in

3) rose=2;

5) rose=4;;

*) rose=0;;
esac # Simplified al gorithm

Doesn't really get to the heart of the matter

return $rose

}
answer =0
cal c "$B1"; answer=$(expr $answer + $(echo $?))
cal c "$B2"; answer=$(expr $answer + $(echo $?))
cal c "$B3"; answer=$(expr $answer + $(echo $?))
cal c "$B4"; answer=$(expr $answer + $(echo $?))
cal c "$B5"; answer=$(expr $answer + $(echo $?))
}
garme ()
{ # Cenerate graphic display of dice throw
t hr ow

echo -e "\033[1nf # Bol d.
echo -e "\n"
echo -e "$hone\t $bhone\t $bone\t $hone\t $hone"
echo -e \
"${bonel[$B1] }\t ${ bonel[$B2] }\t ${ bonel[$B3] }\t ${ bonel[$B4] }\t ${ bonel[$B5] }"
echo -e \
"${bone2[$B1] }\t ${ bone2[$B2] }\ t ${ bone2[$B3] }\ t ${ bone2[$B4] }\ t ${ bone2[$B5] } "
echo -e \
"${bone3[$B1] }\t ${ bone3[$B2] }\ t ${ bone3[$B3] }\ t ${ bone3[$B4] }\ t ${ bone3[$B5] } "
echo -e "$hone\t $bhone\t $bone\t $hone\t $hone"
echo -e "\n\n\t\t"
echo -e "\ 033[Onf # Turn of f bol d.
echo -n "There are how many petals around the rose? "

i nstructions

while ["$petal" = "SEXIT"] # Main | oop
do
gane
read pet al
echo "$petal” | grep [0-9] >/dev/null # Filter response for digit.

Otherwi se just roll dice again.
if ["$?" -eq 0] # If-1oop #1.
t hen
if ["$petal” == "$answer"]; then # 1f-1o0p #2.

550

Contributed Scripts

echo -e "\nCorrect. There are $petal petals around the rose.\n"
((hits++))

if ["$hits" -eq "$WN']; then # If-loop #3
echo -e "\E[31;47m # Red type
echo -e "\033[1nf # Bol d.
echo "You have unraveled the nystery of the Rose Petal s!"
echo "Wl conme to the Fell owship of the Rosel!!"”
echo "(You are herewith sworn to secrecy.)"; echo

echo -e "\ 033[Ont # Turn off red & bold.
br eak # Exit!
el se echo "You have $hits correct so far."; echo

if ["$hits" -eq "$ALMOST"]; then
echo "Just one nore gets you to the heart of the nystery!™; echo
f

fi # Close if-1oop #3.
el se

echo -e "\nWong. There are $answer petals around the rose.\n"
hits=0 # Reset nunber of correct guesses.

fi # Close if-loop #2.
echo -n "Hit ENTER for the next roll, or type \"exit\" to end. "
read
if ["$REPLY" = "S$EXIT"]; then exit
f
fi # Close if-1oop #1.
cl ear
done # End of main (while) |oop
#Hit#
exit $?

Resources:

1) http://en.w ki pedi a. org/ wi ki/Petal s_Around_t he_Rose

(Wkipedia entry.)

2) http://ww. borrett.id.au/conputing/petal s-bg. htm

(How Bill Gates coped with the Petals Around the Rose chall enge.)

Example A.41. Quacky: a Perquackey-type word game

#! / bi n/ bash
gky. sh

HERHHHHH T H T H R H R R H R
QUACKEY: a somewhat sinplified version of Perquackey [TM.
#
Aut hor: Mendel Cooper <thegrendel.abs@muail.conp

551

Contributed Scripts

version 0.1.02 03 May, 2008
License: GPL3
BB RS RS R R R R R R R R R R R R]

WLl ST=/ usr/ share/ di ct/word. | st

Annannnn - \Word list file found here.
ASCIl word list, one word per line, UNI X fornmat.
A suggested list is the script author's "yaw " word |ist package.
http://bash.deta.in/yaw-0.3.2.tar.gz
or
http://ibiblio.org/pub/Linux/libs/yaw -0.3.2.tar.gz
NONCONS=0 # Word not constructable fromletter set.
=1 # Constructabl e.
SUCCESS=0
NG=1
FAl LURE='
NULL=0 # Zero out value of letter (if found).
M NWLEN=3 # M ni mum word | engt h.
MAXCAT=5 # Maxi mum nunber of words in a given category.
PENALTY=200 # General - purpose penalty for unacceptabl e words.
total =
E DUP=70 # Duplicate word error

TI MEQUT=10 # Time for word input.

NVLET=10 # 10 letters for non-vul nerable.
VULET=13 # 13 letters for vulnerable (not yet inplenented!).

decl are -a Wrds
decl are -a Status
declare -a Scores(0000 0O0O00O0O0O0)

letters=(ansrtml kprbcidsi dzewuetf
eyerefegtghhitrscitidijataol a
mnanovnwosel nospageer abr saods
tgtitl ueuvneoxymr k)

Letter distribution table shanel essly borrowed from "Wrdy" gane,
#+ ca. 1992, witten by a certain fine fell ow named Mendel Cooper

declare -a LS

nurrel enent s=${#l etters[@}
randseed="$1"

i nstructions ()

{
cl ear
echo "Wl come to QUACKEY, the anagramm ng word construction game.";
echo -n "Do you need instructions? (y/n) "; read ans
if ["$ans" = "y" -0 "$ans” = "Y"]; then
cl ear

552

echo

Contributed Scripts

echo -e "\ E 31; 47n

cat <<| NSTRUCTI ON1

Red foreground.

QUACKEY is a variant of Perquackey [TM.
The rules are the same, but the scoring is sinplified
and plurals of previously played words are all owed.

"Vul ner abl e"
it

but

As the game begins,
The obj ect
| east 3-letter

of at
Each word-1| ength category

play is not yet

is otherw se feature-conplete.

3-letter, 4-letter,

5-letter,

fills up with the fifth word entered
and no further words in that category are accepted.

The penalty for too-short
and invalid (not

I NSTRUCTI ON1

echo -n

"Hit ENTER for

cat <<| NSTRUCTI ON2

scoring nostly

The

The first
The first
The first
The first
The first
The first
The first
The first
Cat egory
3-letter
4-letter
5-letter
6-letter
7-letter
8-letter

3-letter word
4-letter word
5-letter word
6-letter word
7-letter word
8-letter word
9-letter word

next

scores
scores
scores
scores
scores
scores
scores

(two-letter),

page of

60,
120,
200,
300,
500,
750,

1000,

10-letter word scores 2000,

conpl eti on bonuses are:

wor ds 100
wor ds 200
wor ds 400
wor ds 800
words 2000
wor ds 10000

i mpl enent ed,

"\E[34;47m for

the player gets 10 letters.
is to construct valid dictionary words
length fromthe letterset.

duplicate

i nstructions.

pl us
pl us
pl us
pl us
pl us
pl us
pl us
pl us

10
20
50
100
150
250
500
2000

for
for
for
for
for
for
for
for

corresponds to classic Perquackey:

each
each
each
each
each
each
each
each

; read azl

addi t
addi t
addi t
addi t
addi t
addi t
addi t
addi t

bl ue.

unconstruct abl e,
in dictionary) words is -200. The sane penalty applies
to attenpts to enter a word in a filled-up category.

onal
onal
onal
onal
onal
onal
onal
onal

This is a sinplification of the absurdly baroque Perquackey bonus
scoring system

I NSTRUCTI ON2

echo -n

cat <<| NSTRUCTI ON3

"Hit ENTER for

final

page of

i nstructions.

read azl

one.
one.
one.
one.
one.
one.
one.
one.

553

Contributed Scripts

Hitting just ENTER for a word entry ends the gane.

I ndi vidual word entry is tinmed to a maxi mum of 10 seconds.
*** Timng out on an entry ends the gane. ***
Aside fromthat, the gane is untimed.

For competitive ("duplicate") play, a previous |etterset
may be duplicated by repeating the script's random seed,
command- | i ne paraneter \$1.

For exanple, "gky 7633" specifies the letterset

cadi fr husKk..

| NSTRUCTI ON3
echo; echo -n "Hit ENTER to begin gane. "; read azl
echo -e "\ 033[Ont # Turn of f red.
el se cl ear
f
cl ear

seed_random ()

{ # Seed random nunber gener ator
if [-n "$randseed"] # Can specify random seed.
t hen #+ for play in conpetitive node.

RANDOVE" $r andseed"
echo "RANDOM seed set to "$randseed""
el se
randseed="3" # O get random seed from process |ID.
echo "RANDOM seed not specified, set to Process ID of script
f

RANDOME" $r andseed"

echo

get _letset ()
{

el enent =0
echo -n "Letterset:"

for Iset in $(seq $NVLET)
do # Pick randomletters to fill out letterset.
LS[el ement] ="${!| et t er s[$((RANDOWSunel ements))] }"

($9%)."

554

Contributed Scripts

((el enent ++))

done
echo
echo "${LS[@}"
}
add_word ()
{
wrd="$1"
[ocal idx=0
Status[0] =""
Status[3] =""
Status[4] =""
while ["${Words[idx]}" I=""]
do
if ["${Wwords[idx]}" = "$wd"]
t hen
St at us[3] =" Dupl i cat e- wor d- PENALTY"
let "Score[0]= 0 - $PENALTY"
l et "Score[1]-=$PENALTY"
return $E_DUP
f
((idx++))
done

Words[i dx] =" $wr d"
get _score

}

get _score()
{
| ocal W en=0
| ocal score=0
| ocal bonus=0
| ocal first_word=0
| ocal add_word=0
| ocal numnor ds=0

W en=${ #wr d}

numaor ds=${ Scor e[Wl en] }

Score[2] =0

Status[4]="" # Initialize "bonus" to O.

case "$wen" in
3) first_word=60
add_wor d=10;
4) first_word=120

555

Contributed Scripts

5)
6)
7)
8)
9)

10)

add_wor d=20; ;
first_word=200
add_wor d=50; ;
first_word=300
add_wor d=100; ;
first_word=500
add_wor d=150; ;
first_word=750
add_wor d=250; ;
first_word=1000
add_wor d=500; ;
first_word=2000

add_wor d=2000; ; # This category nodified from ori ginal

esac

((Score[w en] ++))

if [

t hen

${Score[w en]} -eq $MAXCAT]

Category conpl etion bonus scoring sinplified!

case $wen in

esac

bonus=100; ;
bonus=200; ;
bonus=400; ;
bonus=800; ;
bonus=2000; ;
bonus=10000; ;

O~NO Ol W
— N N N N

Scor e[2] =$bonus

el se

Status[4]="" # Erase it.
fi

| et

if ["$numwords" -eq O]
t hen

el

fi

Scor e[0] =$score
se
Scor e[0] =$add_word

Al this to distinguish [ast-word score

#+ fromtotal running score.

let "Score[1l] += ${Score[0]}"
let "Score[1l] += ${Score[2]}"
}
get _word ()
{
| ocal wd=""'
read -t $TI MEQUT wrd # Ti med read.
echo $wrd
}

Needn't worry about 9's and 10's.
St at us[4] =" Cat egor y- $w en- conpl et i on*** BONUS* * * "

"score = S$first_word + $add_word * $numnor ds”

rul es!

556

Contributed Scripts

i s_constructable ()

{ # This is the nost conplex and difficult-to-wite function
local -a local _LS=("${LS[@}") # Local copy of letter set.
| ocal is_found=0
[ocal idx=0
| ocal pos
| ocal strlen
| ocal local _word=("$1")
strl en=${#l ocal _wor d}

while ["$idx" -It "$strlen"]

do
i s_found=$(expr index "${local LS *]}" "${local word:idx:1}")
if ["$is_found" -eq "$NONCONS"] # Not constructable

t hen
echo "$FAI LURE"; return

el se
((pos = ($is_found - 1) / 2)) # Conpensate for spaces betw letters!
| ocal _LS[pos] =$NULL # Zero out used letters.
((idx++)) # Bunp i ndex.

f

done

echo " $SUCCESS"
return

}

is_valid ()

{ # Surprisingly easy to check if word in dictionary ..
fgrep -qw "$1" "$WI ST" # ... courtesy of 'grep
echo $?

}

check_word ()
{
if [-z "$1"]
t hen
return
f

Status[1] =""
Status[2] =""
Status[3] =""
Stat us[4] =""

i scons=$(i s_constructable "$1")
if ["$iscons"]
t hen

St at us[1] ="const ruct abl e"

v=$(is_valid "$1")

if ["$v" -eq "$SUCCESS"]

t hen

Status[2] ="valid"

557

Contributed Scripts

strlen=${#1}

if [${Score[strlen]} -eq "$MAXCAT"] # Category full
t hen

St at us[3] =" Cat egory- $strl en-overf| ow PENALTY"

return $NG
f

case "$strlen” in
1] 2)
St at us[3] =" Two- | ett er - wor d- PENALTY"
return $NG ;
*)
Status[3]=""
return $SUCCESS; ;
esac
el se
St at us[3] =" Not - val i d- PENALTY"
return $NG
f
el se
St at us[3] =" Not - const r uct abl e- PENALTY"
return $NG
f

FI XME: Streanli ne the above code bl ock

splay_words ()

| ocal idx=0
| ocal w enO

cl ear

echo "Letterset: S{LS@}"

echo "Threes: Fours: Fi ves: Si xes: Sevens: Ei ghts:"
= Tod 4T o I e e Lt "
while ["${Words[idx]}" I=""]

do

w enO=${#Wor ds[i dx] }

case "$w en0" in
3) &
4) echo -n " "
5) echo -n " "
6) echo -n " "
7) echo -n " "
8) echo -n " "

esac

echo "${Words[idx]}"

558

Contributed Scripts

((idx++))
done

FI XME: The word display is pretty crude.
}

play ()

{
word="Start gane" # Dumy word, to start

while ["$word"] # |If player just hits return (null word),

do #+ then gane ends.
echo "$word: "${Status[@}""
echo -n "Last score: [${Score[0]}] TOTAL score: [${Score[1]}]: Next word

t ot al =${ Scor e[1] }
wor d=$(get _wor d)
check_word " $word"

if ["$?" -eq "$SUCCESS']

t hen
add_word " $word"

el se
let "Score[0]= 0 - $PENALTY"
l et "Score[1]-=$PENALTY"

fi

di spl ay_wor ds
done # Exit game.

FI XME: The play () function calls too nany ot her functions.
This verges on "spaghetti code" !!!

}

end_of _gane ()
{ # Save and display stats.

BUHHHRHHAH R A AUL 0S aV e BB HHHH R HAH IR H R
savefil e=gky. save. $$

AN PID of script

echo “date’ >> $savefile

echo "Letterset # $randseed (random seed) ">> $savefile
echo -n "Letterset: " >> $savefile

echo "${LS[@}" >> $savefile

echo "--------- " >> $savefile

echo "Words constructed:" >> $savefile

echo "${Words[@}" >> $savefile

echo >> $savefile

echo "Score: $total" >> $savefile

echo "Statistics for this round saved in \""$savefile"\""
BHBHBHBHH R B BB BB H B R R R R R

echo "Score for this round: $total"

559

Contributed Scripts

echo "Words: ${Words[@}"

i nstructions
seed_random

get | et set

pl ay

end_of _gane
#oommmem - #
exit $?

TODO

#

1) dean up code!

2) Prettify the display_words () function (maybe with w dgets?).

3) Inprove the tinme-out ... maybe change to untined entry,

#+ but with a time Iimt for the overall round.

4) An on-screen countdown timer would be nice.

5) Inplenment "vul nerable” nmode of play for conpatibility with classic
#+ version of the gamne.

6) Inprove save-to-file capability (and naybe make it optional).

7) Fix bugs!!!

For nore info, reference:
http://bash. deta.in/gky. READMVE. ht m

Example A.42. Nim

#!/ bi n/ bash
nimsh: Gane of N'm

Aut hor: Mendel Cooper
Rel date: 15 July 2008
License: GPL3

ROWG=5 # Five rows of pegs (or matchsticks).
VWON=91 # Exit codes to keep track of w ns/l| osses.
LOST=92 # Possibly useful if running in batch node.
QUI T=99

peg _nmsg= # Peg/ Pegs?

Rows=(0 54321) # Array hol ding play info.

${Rows[0]} holds total nunber of pegs, updated after each turn
Qther array elements hold nunber of pegs in correspondi ng row.

i nstructions ()

{
cl ear
t put bol d
echo "Wl conme to the gane of Nm"; echo
echo -n "Do you need instructions? (y/n) "; read ans

if ["$ans" = "y" -0 "$ans" = "Y']; then

560

Contributed Scripts

cl ear
echo -e "\E[33;41m # Yellow fg., over red bg.; bold.
cat <<I| NSTRUCTI ONS

Nimis a game with roots in the distant past.
This particular variant starts with five rows of pegs.

agRwNE

The nunber at the left identifies the row

The human pl ayer noves first, and alternates turns with the bot.

A turn consists of renoving at |east one peg froma single row

It is perm ssable to remove ALL the pegs froma row

For exanple, in row 2, above, the player can renove 1, 2, 3, or 4 pegs.
The pl ayer who renmpves the | ast peg | oses.

The strategy consists of trying to be the one who renoves
the next-to-last peg(s), leaving the loser with the final peg.

To exit the gane early, hit ENTER during your turn.

| NSTRUCTI ONS
echo; echo -n "Hit ENTER to begin gane. "; read azx
echo -e "\ 033[Onf # Restore display.

el se tput sgrO; clear
fi

cl ear
}
tally_up ()
{
et "Rows[0] = ${Rows[1]} + ${Rows[2]} + ${Rows[3]} + ${Rows[4]} + \
${ Rows[5] } " # Add up how many pegs renaining.
}
di splay ()
{
i ndex=1 # Start with top row
echo

while ["$index" -le "$SROWS"]
do
p=${ Rows[i ndex] }
echo -n "$i ndex:

Show r ow nunber.

561

Contributed Scripts

Two concurrent inner | oops.

i ndent =$i ndex
while ["$indent" -gt 0]

do
echo -n " ™ # Staggered rows.
((indent--)) # Spaci ng between pegs.
done

while ["$p" -gt 0]
do
echo -n "|

((p--))

done

echo
((i ndex++))
done

tally_up
r p=${ Rows[0] }

if ["$rp" -eq 1]
t hen
peg_nsg=peg
final _nsg="CGane over."
el se # Game not yet over
peg_nsg=pegs
final _nsg="" # . . . So "final nmessage" is blank
f

echo " $rp $peg_nsg remaini ng. "
echo " "$final _nmsg""
echo

ayer _move ()

echo "Your nove:"

echo -n "Which row? "
while read idx
do # Validity check, etc.

if [-z "$idx"] # Htting return quits.
t hen
echo "Prenmture exit."; echo

562

Contributed Scripts

tput sgrO # Restore display.
exit $QU T
f

if ["$idx" -gt "$RONB" -0 "$idx" -1t 1] # Bounds check

t hen
echo "lInvalid row nunber!"
echo -n "Which row? "
el se
br eak
f
TODO,
Add check for non-numeric input.

Al'so, script crashes on input outside of range of |ong double.

Fix this.
done

echo -n "Renove how nmany? "
while read num

do # Validity check
if [-z "$nunt]
t hen
echo "Premature exit."; echo
tput sgr0 # Restore display.
exit $QU T

f

if ["$nunt -gt ${Rows[idx]} -0 "$nunt -1t 1]
t hen
echo "Cannot renove $num "
echo -n "Renove how nmany? ™"
el se
br eak
f
done
TODO
Add check for non-numeric input.
Al'so, script crashes on input outside of range of
Fix this.

let "Rows[idx] -= $nunt

di spl ay

tally_up

if [${Rows[O0]} -eq 1]

t hen

echo " Human w ns!"

echo " Congratul ations!"
tput sgrO # Restore display.
echo
exit $VON

| ong doubl e.

563

Contributed Scripts

f

if [${Rows[0]} -eq O]

t hen # Snatching defeat fromthe jaws of victory
echo " Fool !'"
echo " You just renoved the |ast peg!"
echo " Bot wi ns!"
tput sgrO # Restore display.
echo
exit $LOST

f

bot _nmove ()

{

row_b=0
while [[$row b -eq O || ${Rows[row b]} -eq O]]
do
r ow_b=$RANDOM # Choose random r ow.
let "row b % $RONG"
done

num b=0
r 0=${ Rows[r ow_b]}

if ["$r0" -eq 1]
t hen
num b=1
el se
let "numb = $r0 - 1"
Leave only a single peg in the row
fi # Not a very strong strategy,
#+ but probably a bit better than totally random

let "Rows[row b] -= $num b"
echo -n "Bot:
echo "Renoving fromrow $row b ..

if ["$numb" -eq 1]

t hen
peg_neg=peg
el se
peg_neg=pegs
f
echo " $num b $peg_nsg. "
di spl ay
tally_up

if [${Rows[0]} -eq 1]

564

Contributed Scripts

t hen
echo " Bot wi ns!"
tput sgrO # Restore display.
exit $VON
fi
}
=T
i nstructions # |f human pl ayer needs them.
t put bol d # Bold characters for easier view ng.
di spl ay # Show game board.
while [true] # Main | oop.
do # Al ternate human and bot turns.
pl ayer _nove
bot _nove
done
=T
Exerci se:
Ho-m e e e oo -
Inprove the bot's strategy.
There is, in fact, a Nmstrategy that can force a w n.
See the Wkipedia article on Nm http://en.w ki pedia.org/w ki/Nm
Recode the bot to use this strategy (rather difficult).

Curiosities:

H o om e e e e e oo -

N mplayed a promnent role in Alain Resnais' 1961 New Wave film
#+ Last Year at Marienbad.

#

1n 1978, Leo Christopherson wote an animated version of Nm

#+ Android NNm for the TRS-80 Model 1.

Example A.43. A command-line stopwatch

#1/bin/sh
sw. sh
A command-1ine Stopwatch

Aut hor: PAdrai g Brady
htt p: // ww. pi xel beat . org/scripts/sw
(Mnor reformatting by ABS Cui de author.)
Used in ABS CGuide with script author's pernission.

Not es:
This script starts a few processes per lap, in addition to
the shell | oop processing, so the assunption is nade that
this takes an insignificant amunt of tine conpared to
the response time of humans (~.1s) (or the keyboard
interrupt rate (~.05s)).
'"?" for splits nust be entered twice if characters
(erroneously) entered before it (on the sane |line).

HHHHHHHHHHHH

565

Contributed Scripts

I gnore other input as it causes problens.
V1.3, 01 Aug 2007, Testing rel ease.
V1.4, 02 Aug 2007, Various tweaks to get working under ubuntu
and Mac OGS X
V1.5, 27 Jun 2008, set LANG=C as got vague bug report about it.

'?" since not generating a signal may be slightly del ayed

on heavily | oaded systens.

Lap timngs on ubuntu may be slightly del ayed due to:

htt ps://bugs. | aunchpad. net/ bugs/ 62511

Changes:

V1.0, 23 Aug 2005, Initial release

V1.1, 26 Jul 2007, Allow both splits and |laps from single invocation
Only start timer after a key is pressed.

I ndi cate | ap nunber

Cache prograns at startup so there is less error
due to startup del ays.

V1.2, 01 Aug 2007, Work around “date’ commands that don't have

nanoseconds.

Use stty to change interrupt keys to space for

| aps etc.

#

#

#

#

#

export LANG=C

ulimt -¢c O # No coredunps from SI GQUI T.

trap '' TSTP # Ignore Cirl-Z just in case.

save_tty="stty -g° && trap "stty $save_tty" EXIT # Restore tty on exit.
stty quit ' ' # Space for laps rather than Crl-\.

stty eof '?" # ? for splits rather than Ctrl-D

stty -echo # Don't echo input.

cache_progs() {
stty > /dev/nul
date > /dev/nul
grep . < /dev/nul
(echo "inmport time" | python) 2> /dev/nul
bc < /dev/null
sed "' < /dev/nul
printf '1' > /dev/nul
fusr/bin/time false 2> /dev/nul
cat < /dev/nul

}

cache_progs # To mnimse startup del ay.

date +9%. %N | grep -gF 'N && use_python=1 # If “date’ |acks nanoseconds.

now() {
if ["$use_python"]; then
echo "inport tinme;, print tine.time()" 2>/dev/null | python
el se
printf "%2f" “date +%. %N
f
}

fnt_seconds() {
seconds=%$1

566

Contributed Scripts

m ns="echo $seconds/60 | bc’

if ["$mins" '="0"]; then
seconds="echo "$seconds - ($nins*60)" | bc’
echo "$m ns: $seconds”

el se

echo "$seconds"
f

}
total () {
end="now
total = echo "$end - $start" | bc’
fm _seconds $tota
}
stop() {
["$lapped”] && lap "$l aptinme" "display"
t ot al
exit
}
lap() {
| aptime="echo "$1" | sed -n "s/.*real [*0-9.]*\(.*\)/\1/p'"
[! "$laptine"” -o "$laptine" = "0.00"] & return
Signals too frequent.
| apt ot al =" echo $l apti ne+0$l aptotal | bc’
if ["$2" = "display"]; then
| apcount =~ echo 0$l apcount+1 | bc’
| aptime="fm _seconds $laptotal"
echo $l aptinme "($l apcount)”
| apped="true"
| apt ot al =" 0"
f
}
echo -n "Space for lap | ? for split | Crl-Cto stop | Space to start...">&

while true; do

trap true INT QUT # Set signal handl ers.

laptime="/usr/bin/tine -p 2>&1 cat >/dev/null”

ret=%?

trap "' INT QUT # lgnore signals within this script.

if [$ret -eq 1 -0 $ret -eq 2 -0 $ret -eq 130]; then # SIANT = stop
[! "S$start"] && { echo >&2; exit; }

st op
elif [$ret -eq 3 -0 $ret -eq 131]; then # SIGUIT = lap
if [! "$start"]; then
start=now || exit 1
echo >&2
conti nue

f
lap "$l aptine" "display"

el se # eof = split
[! "$start"] && continue

567

Contributed Scripts

t ot al
lap "$laptine" # Update | aptotal
f
done

exit $?
Example A.44. An all-pur pose shell scripting homewor k assignment solution

#1/ bi n/ bash

honmewor k. sh: All-purpose homework assignment sol ution

Author: M Leo Cooper

|If you substitute your own nanme as author, then it is plagiarism
#+ possibly a | esser sin than cheating on your homewor k!

License: Public Domain

This script may be turned in to your instructor

#+ in fulfillnment of ALL shell scripting homework assignments.

1t's sparsely commented, but you, the student, can easily renedy that.
The script author repudiates all responsibility!

DLA=1
P1=2
P2=4
P3=7
PP1=0
PP2=8
MAXL =9
E_LZY=99

declare -a L

L[0]="3 4 0 17 29 8 13 18 19 17 20 2 19 14 17 28"

L[1]="8 29 12 14 18 19 29 4 12 157 0 19 8 2 0 11 11 24 29 17 4 6 17 4 19"
L[2]="29 19 7 0 19 29 829 7021429 1346 11 42 19 4 3"
L[3]="19 14 29 2 14 12 15 11 4 19 4 29 19 7 8 18 29"

L[4]="18 2 7 14 14 11 22 14 17 10 29 0 18 18 8 6 13 12 4 13 19 26"
L[5]="15 11 4 0 18 4 29 0 2 2 4 15 19 29 12 24 29 7 20 12 1 11 4 29"
L[6]="4 23 2 20 18 4 29 14 5 29 4 6 17 4 6 8 14 20 18 29"

L[7]="11 0 25 8 13 4 18 18 27"

L[8]="0 13 3296 17 0 3 429 12 429022 14 17 3 8 13 6 11 24 26"
L[9]="19 7 0 13 10 29 24 14 20 26"

declare -a \
alph=(ABCDEFGHI JKLMNOPQRSTUVWXYZ. ,:"'"")

pt_It ()

{
echo -n "${al ph[$1]}"
echo -n -e "\a"
sl eep $DLA

}

b_r ()

568

Contributed Scripts

{
echo -e '\ E 31;48m 033[1
}
cr ()
{
echo -e "\a"
sl eep $DLA
}
restore ()
{
echo -e "\ 033[0m # Bold off.
tput sgr0 # Nor nal
}
p_I ()
{
for Itr in $1
do
pt_It "$ltr"”
done
}
H oo e eeeo-
b r
for i in $(seq 0 $MAXL)
do
p_I "${L[i]}"
if [["$i" -eq "$P1" || "S$i" -eq "$P2" || "$i" -eq "$P3"]]
t hen
cr
elif [["$i" -eq "$PP1" || "$i" -eq "$PP2" 1]
t hen
cr; cr
fi
done
restore
H oo e eeeo-
echo
exit $E_LZY

A typical exanple of an obfuscated script that is difficult
#+ to understand, and frustrating to maintain.

In your career as a sysadmin, you'll run into these critters
#+ all too often.

569

Contributed Scripts

Example A.45. The Knight's Tour

#!/ bi n/ bash
ktour.sh

aut hor: mendel cooper

rel date: 12 Jan 2009

license: public domain

(Not much sense GPLing sonmething that's pretty much in the conmon
#+ domai n anyhow.)

HERHHHHH T H T H R H R H R
The Knight's Tour, a classic problem

The kni ght nust nove onto every square of the chess board
but cannot revisit any square he has already visited.

And just why is Sir Knight unwel cone for a return visit?

Could it be that he has a habit of partying into the wee hours
#+ of the norning?

Possibly he | eaves pizza crusts in the bed, enpty beer bottles
#+ all over the floor, and clogs the plunbing.

HHHHHHH

#* H*

#
Usage: ktour.sh [start-square] [stupid]

#

Note that start-square can be a square nunber

#+ in the range 0 - 63 ... or

a square designator in conventional chess notation

such as al, f5, h3, etc

#

|f start-square-nunber not supplied,

#+ then starts on a random square sonewhere on the board
#

HFHR I HFHFHEHEHFHFEHFHFEHFHEHFHHEHFHHEH TR

kt our.sh g6 stupid starts on square #46
usi ng "stupid* (non-Warnsdorff) strategy. #
HERHHHHH T H T H R H R H R R

"stupid" as second paranmeter sets the stupid strategy.
#

Exanpl es:

ktour.sh 23 starts on square #23 (h3)

#

#

DEBUG= # Set this to echo debugging info to stdout.
SUCCESS=0

FAl L=99

BADMOVE=- 999

FAlI LURE=1

LI NELEN=21 # How nmany noves to display per |ine.

Board array parans

ROWS=8 # 8 x 8 board.
COLS=8

et "SQUARES = $RONE * $COLS"

570

Contributed Scripts

et "MAX = $SQUARES - 1"
M N=0
64 squares on board, indexed fromO to 63.

VI SI TED=1

UNVI SI TED=- 1

UNVSYM=" ##"
A #

G obal vari abl es.

start pos= # Starting position (square #, 0 - 63).
currpos= # Current position

novenunr # Move nunber.

CRI TPOS=37 # Have to patch for f5 starting position

declare -i board

Use a one-dinmensional array to simulate a two-di nensional one.

This can make life difficult and result in ugly kludges; see bel ow.
declare -i nmoves # O fsets fromcurrent knight position

initialize_board ()

{
| ocal idx
for idx in {0..63}
do
boar d[$i dx] =$UNVI SI TED
done
}

print_board ()

{

[ocal idx

echo " "

for rowin {7..0} # Reverse order of rows ..

do #+ so it prints in chessboard order
et "rownum = $row + 1" # Start nunbering rows at 1.
echo -n "$rownum |" # Mark board edge with border and
for colum in {0..7} #+ "al gebraic notation.”

do
et "idx = $RONG*$row + $col um”
if [${board[idx]} -eq $UNVISI TED]

t hen
echo -n "$UNVSYM " #
el se # Mark square with nmove nunber.

printf "9©2d " "${board[idx]}"; echo -n " "
f

done

echo -e -n "\b\b\b|" # \b is a backspace.

echo # -e enabl es echoi ng escaped chars.
done

571

Contributed Scripts

echo " ----iee e "
echo " a b c d e f g h"
}
failure()
{ # Whine, then bail out.
echo
print_board
echo
echo " Waah!!! Ran out of squares to nove to!"
echo -n " Kni ght's Tour attenpt ended"
echo " on $(to_al gebraic $currpos) [square #3$currpos]"”
echo " after just $nmovenum noves!"
echo
exit $FAIL
}

x

at _coords () # Translate x/y coordinates to board position

#+ (board-array el enent #).

For user input of starting board position as x/y coords.

This function not used in initial release of ktour.sh.

May be used in an updated version, for conpatibility with

#+ standard inplementation of the Knight's Tour in C, Python, etc
if [-z "$1" -0 -z "$2"]

t hen

return $FAIL

f

| ocal xc=$1
| ocal yc=$2

l et "board_index = $xc * $RONS + yc"

if [$board_index -1t $M N -0 $board_i ndex -gt $MAX]

t hen

return $FAIL # Strayed off the board!

el se

return $board_i ndex

f

to_al gebraic () # Transl ate board position (board-array el ement #)

{

#+ to standard al gebraic notation used by chess players.

if [-z "$1"]

t hen

return $FAIL

f

572

Contributed Scripts

| ocal el ement _no=$1 # Nunerical board position
local col_arr=(abcdef gh)
local rowarr=(1234567 8)

let "row no = $elenent_no / $RONG"

let "col _no = $el enent_no % $RONG"

t1=%{col _arr[col _nol}; t2=${row arr[row_no]}
| ocal apos=$t1$t2 # Concatenate.

echo $apos

from al gebraic () # Transl ate standard al gebraic chess notation
{ #+ to nunerical board position (board-array el enent #).
O recognize nunerical input & return it unchanged.

if [-z "$1"]
t hen
return $FAIL
fi # If no command-line arg, then will default to random start pos.
[ocal ix
| ocal ix_count=0
| ocal b_index # Board index [0-63]

| ocal al pos="$1"

arow=${ al pos: 0: 1} # position = 0, length = 1
acol =${ al pos: 1: 1}

if [[$arow =~ [[:digit:]] 1] # Nunerical input?
t hen # POSI X char cl ass
if [[$acol =~ [[:alpha:]]]] # Nunber followed by a letter? |11l egal
then return $FAIL
else if [$al pos -gt $MAX] # Of board?
then return $FAIL
el se return $al pos # Return digit(s) unchanged
fi #+ if within range.
f
f

if [[$acol -eq SM N || $acol -gt $ROAB]]

t hen # Qutside of range 1 - 8?
return $FAIL

f

for ixinabcdef gh
do # Convert colum letter to colum nunber.

if ["$Sarow' = "S$ix"]
t hen
br eak
f
((ix_count ++)) # Find index count.
done

573

Contributed Scripts

((acol --)) # Decrenenting converts to zero-based array.
let "b_index = $ix_count + $acol * $RONE"

if [$b_index -gt $NAX] # Of board?
t hen

return $FAIL
f

return $b_i ndex

}
gener ate_noves () # Calculate all valid knight noves,
{ #+ relative to current position ($1),
#+ and store in ${noves} array.
| ocal kt_hop=1 # One square :: short leg of knight nove.
| ocal kt_skip=2 # Two squares :: long leg of knight nove.
| ocal val nov=0 # Valid noves.

local row pos; let "row pos = $1 % $COLS"

let "novel = -$kt_skip + $RONS" # 2 sideways to-the-left, 1 up
if [[“expr $row pos - $kt_skip -It $SMN]] # An ugly, ugly kludge!
t hen # Can't nove off board.
nmovel=$BADMOVE # Not even tenporarily.
el se

((val nov++))
f
let "nove2 = -$kt_hop + $kt_skip * $ROMS" # 1 sideways to-the-left, 2 up
if [[“expr $row pos - $kt_hop™ -It $MN]] # Kl udge continued ..
t hen
nove2=$BADMOVE
el se
((val nov++))
f
let "nove3 = $kt_hop + $kt_skip * $RONS" # 1 sideways to-the-right,
if [[“expr $row _pos + $kt_hop™ -ge $COLS]]
t hen
nmove3=$BADMOVE
el se
((val nov++))

N

up

f
let "noved4 = $kt_skip + $RONE" # 2 sideways to-the-right, 1 up
if [[“expr $row pos + $kt_skip -ge $COLS]]
t hen
nove4=$BADMOVE
el se
((val nov++))
f
let "nove5 = $kt_skip - $RONS" # 2 sideways to-the-right,
if [[“expr $row pos + $kt_skip -ge $COLS]]
t hen

[

dn

574

Contributed Scripts

nmove5=$BADMOVE
el se
((val nov++))
f
let "nove6 = $kt_hop - $kt_skip * $ROMS" # 1 sideways to-the-right, 2 dn
if [[“expr $row pos + $kt_hop™ -ge $COLS]]
t hen
nove6=$BADMOVE
el se
((val nov++))
f
let "nove7 = -$kt_hop - $kt_skip * $ROM" # 1 sideways to-the-left, 2 dn
if [[“expr $row pos - $kt_hop™ -It $MN]]
t hen
nove7=$BADMOVE
el se
((val nov++))
f

let "nove8 = -$kt_skip - $RONS" # 2 sideways to-the-left, 1 dn
if [[“expr $row pos - $kt_skip -It $SMN]]
t hen
nove8=$BADMOVE
el se
((val nov++))
fi # There nust be a better way to do this.

| ocal ne($val nov $novel $nove2 $novel3 $noved $nove5 $noveb $nove7 $nove8)
${moves[0]} = nunmber of valid noves.

${moves[1]} ... ${nmoves[8]} = possible noves.

echo "${n{*]}" # Elements of array to stdout for capture in a var

is_on_board () # Is position actually on the board?

{
if [["$1" -1t "$MN" || "$1" -gt "$MAX"]]
t hen
return $FAI LURE
el se
return $SUCCESS
f
}
do_nove () # Move the knight!
{

| ocal valid_noves=0
| ocal aapos
currposl ="$1"

I m n=$RO\S

i ex=0

575

Contributed Scripts

squarel =

npm=

nov=

decl are -a p_noves

HERHHHHH TR DEC| DE- MOVE #######HH#H T HHH T
if [$startpos -ne $CRI TPOS |
t hen # CRI TPOS = square #37
deci de_nove
el se # Needs a special patch for startpos=37 !!
deci de_nove_pat ched # Why this particular move and no other ???
fi
HERHHHHH T H T H T H R R

((++novenum)) # I ncrement nove count.
l et "square = $currposl + ${noves[iex]}"

HERHHHHH TR DEBUG HERHHHH TR
if ["$DEBUG']
t hen debug # Echo debuggi ng i nformati on
fi
HERHHHHH PR H R H TR

if [["$square" -gt $MAX || "$square"” -1t $MN ||
${board[square]} -ne $UNVI SI TED]]
t hen
((--novenum)) # Decrenent nove count,
echo "RAN QUT OF SQUARES!!'!" #+ since previous one was invalid.

return $FAIL
fi

boar d[squar e] =$nmovenum

currpos=$squar e # Update current position

((valid_noves++)); # nmoves[0] =$val i d_noves

aapos=$(to_al gebraic $square)

echo -n "$aapos "

test $(($Moves % $LINELEN)) -eq O && echo

Print LI NELEN=21 noves per line. A valid tour shows 3 conplete |ines.
return $val i d_noves # Found a square to nove to

do_nove_stupi d() # Dingbat algorithm
{ #+ courtesy of script author, *not* Warnsdorff.
| ocal valid_noves=0
| ocal novl oc
| ocal squarel oc
| ocal aapos
| ocal cposl oc="$1"

for movlioc in {1..8}
do # Move to first-found unvisited square.
| et "squareloc = $cposloc + ${noves[novloc]}"

576

Contributed Scripts

i s_on_board $squarel oc

if [$? -eq $SUCCESS | && [${board[squareloc]} -eq $UNVI SI TED]

t hen # Add conditions to above if-test to inprove algorithm
((++novenum))
boar d[squar el oc] =$nmovenum
currpos=$squar el oc # Update current position
((valid_nobves++)); # nmoves[0] =$val i d_noves
aapos=$(to_al gebrai c $squarel oc)
echo -n "$aapos "
test $(($Moves % SLINELEN)) -eq 0 & & echo # Print 21 noves/line.
return $val i d_noves # Found a square to nove to

f

done

return $FAIL
1f no square found in all 8 loop iterations,
#+ then Knight's Tour attenpt ends in failure.

Dingbat algorithmw |l typically fail after about 30 - 40 npves,
#+ but executes _much_ faster than Warnsdorff's in do_nove() function

deci de_nove () # \Wich nmove will we make?

But, fails on startpos=37 !!
for mov in {1..8}
do
l et "squarel = $currposl + ${noves[nov]}"
i s_on_board $squarel
if [[$? -eq $SUCCESS && ${board[squarel]} -eq $UNVI SITED]]
t hen # Find accessible square with | east possible future noves.
This is Warnsdorff's algorithm
\What happens is that the knight wanders toward the outer edge
#+ of the board, then pretty nuch spirals inward.
Gven two or nore possible nmoves with same val ue of
#+ | east - possi bl e-future-noves, this inplenentation chooses
#+ the first_ of those noves.
This neans that there is not necessarily a unique solution
#+ for any given starting position.

possi bl e_noves $square
npm=$?
p_noves[nov] =$npm

if [$npm-It $Imn] # If less than previous mnimm..

then # AN
[m n=$npm # Update m ni mum
i ex=$nov # Save i ndex.
f
f
done

577

Contributed Scripts

deci de_nove_patched () # Decide which nove to nake,
{ # NNNNNNN #+ but only if startpos=37 !!
for mov in {1..8}
do
l et "squarel = $currposl + ${noves[nov]}"

i s_on_board $squarel
if [[$? -eq $SUCCESS && ${board[squarel]} -eq $UNVI SITED]]
t hen

possi bl e_noves $square

npm=$?

p_noves[nov] =$npm

if [$npm-le $Inmn] # If less-than-or equal to prev. m ninumn

then # nn
[m n=$nmpm
i ex=$nov
f
f
done # There has to be a better way to do this.
}
possi bl e_nmoves () # Cal cul ate nunmber of possible noves,
{ #+ given the current position
if [-z "$1"]
t hen

return $FAIL
f

| ocal curr_pos=$1

| ocal valid_rnovl =0
| ocal icx=0

| ocal novl

| ocal sq

decl are -a novesl oc

novesl oc=($(generate_noves $curr_pos))

for movl in {1..8}
do
let "sq = $curr_pos + ${novesl oc[novl]}"
is_on_board $sq
if [$? -eq $SUCCESS | && [${board[sq]} -eq $UNVI SI TED]
t hen
((valid_novl ++));
f
done

578

Contributed Scripts

return $val i d_novl # Found a square to nove to

}

strategy ()
{

echo

if [-n "$STUPID"]
t hen
for Moves in {1..63}
do
cposl =$1
nmoves=($(generate_noves $currpos))
do_nove_stupid "$currpos”
if [$? -eq $FAIL]
t hen
failure
f
done
f

Don't need an "else" clause here,
#+ because Stupid Strategy will always fail and exit!
for Moves in {1..63}
do

cposl =$1

nmoves=($(generate_noves $currpos))

do_nove "$currpos”

if [$? -eq $FAIL]

t hen

failure
f

done
Coul d have condensed above two do-loops into a single one,
echo #+ but this would have sl owed execution

print_board

echo

echo "Knight's Tour ends on $(to_al gebraic $currpos) [square #3$currpos]."
return $SUCCESS

}
debug ()
{ # Enable this by setting DEBUG=1 near begi nning of script.
|l ocal n
echo "==================—=—========—=—====="
echo " At nove nunmber $novenum"
echo " *** possible moves = $npm ***"

echo "### square = $square ###"
echo "Imn = $lmn"
echo "${noves[@}"

579

Contributed Scripts

for nin {1..8}
do

echo -n "(%$n):${p_noves[n]} "
done

echo
echo "iex = $iex :: noves[iex] = ${noves[iex]}"
echo "square = $square"”
echo oo ——-————————————————=="
echo
} # Gves pretty conplete status after ea. nove.

#int main () {
from al gebraic "$1"
start pos=%$?

if ["$startpos" -eq "$FAIL"] # Ckay even if no $1
t hen # NNANNNNNNNN Ckay even if input -1t O.
echo "No starting square specified (or illegal input)."

let "startpos = $RANDOM % $SQUARES" # 0 - 63 perm ssabl e range
f

if ["$2" = "stupid"]
t hen
STUPI D=1
echo -n " ### Stupid Strategy ###"
el se
STUPI D=""
echo -n " *** Warnsdorff's Algorithm***"

f

initialize_ board
nmovenum=0
boar d[st art pos] =$novenum # Mark each board square with nove nunber.

currpos=$startpos
al gpos=$(to_al gebrai c $start pos)

echo; echo "Starting from $al gpos [square #$startpos] ..."; echo
echo -n "Moves:"

strategy "S$currpos”
echo
exit O # return O;

#} # End of main() pseudo-function

580

Contributed Scripts

Exerci ses:

1) Extend this exanple to a 10 x 10 board or | arger
2) Inprove the "stupid strategy"” by nodifying the
do_nove_stupid function
Hint: Prevent straying into corner squares in early noves
(the exact opposite of Warnsdorff's algorithm).
This script could stand consi derabl e i nprovenment and
stream ining, especially in the poorly-witten
generate_noves() function
and in the DECI DE- MOVE patch in the do_nove() function.
Must figure out why standard algorithmfails for startpos=37 ..
but _not_ on any other, including symmetrical startpos=26.
Possi bl y, when cal cul ati ng possi bl e noves, counts the nove back
to the originating square. If so, it mght be a relatively easy fix.

##ﬁt############
w

+

Example A.46. M agic Squares

#1/ bi n/ bash
msquare. sh
Magi ¢ Square generator (odd-order squares only!)

Aut hor: nendel cooper

rel date: 19 Jan. 2009

Li cense: Public Domain

A Cprogram by the very tal ented Kwon Young Shin inspired this script.
http://user.chol lian. net/~brainstm Magi cSquar e. ht m

H HHHH

Definition: A "magic square"” is a two-dinmensional array
of integers in which all the rows, colums,
and *l ong* diagonals add up to the same nunber.
Bei ng "square,"” the array has the sane nunber
of rows and colums. That nunber is the "order."
An exanmpl e of a magic square of order 3 is:
8 1 6
3 5 7
4 9 2
Al the rows, colums, and the two | ong diagonals add up to 15.

HHHHHHHFHHH

d obal s

EVEN=2

MAXSI ZE=31 # 31 rows x 31 cols.
E usage=90 # I nvocation error
di nensi on=

declare -i square

usage_nessage ()
{
echo "Usage: $0 order"
echo " ... Where \"order\" (square size) is an ODD integer"

581

Contributed Scripts

echo " in the range 3 - 31."
Actually works for squares up to order 159,
#+ but large squares will not display pretty-printed in a termw ndow.

Try increasi ng MAXSI ZE, above.
exit $E_usage

}
calculate () # Here's where the actual work gets done
{
[ocal row col index dimadj j k cell _val=1
di mensi on=$1
let "dimadj = $dinension * 3"; let "dimad] /= 2" # x 1.5, then truncate.
for ((j=0; j < dinension; j++))
do
for ((k=0; k < dinension; k++))
do # Calculate indices, then convert to 1-dim array index.
Bash doesn't support multidi mensional arrays. Pity.
let "col = $k - $j + $dinedj"; let "col % $dinension"
let "row=$ * 2 - $k + $dinension"; let "row % $di nension"
et "index = $row($di nension) + $col"
squar e[$i ndex] =cel | _val ; ((cell _val ++))
done
done
} # Plain math, visualization not required
print_square () # Qut put square, one row at a tine.
{
local row col idx dl
let "dl = $di mrension - 1" # Adj ust for zero-indexed array.
for rowin $(seq 0 $d1)
do
for col in $(seq 0 $d1)
do
let "idx = $row * $di mension + $col "
printf "98d " "${square[idx]}"; echo -n " "
done # Displays up to 13th order neatly in 80-colum term w ndow.
echo # Newl i ne after each row.
done
}
HERHHHHH TR H T H R R
if [[-z "$1" 1] || [["$1" -gt $NMAXSIZE]]
t hen

usage_nessage
f

582

Contributed Scripts

let "test_even = $1 % $SEVEN'

if [$test_even -eq 0]

t hen # Can't handl e even-order squares.
usage_nessage

f

calculate $1
print_square # echo "${square[@}" # DEBUG

exit $?
HUHHAHHHHHH AR HHHHH AR PR AR PR AR R AR R AR

Exerci ses:

1) Add a function to calculate the sum of each row, colum,

and *| ong* diagonal. The suns nust match.

This is the "magi c constant” of that particular order square.
Have the print_square function auto-cal cul ate how much space
to allot between square elenents for optimzed display.

This mght require parameterizing the "printf" line.

Add appropriate functions for generating magi c squares

with an *even* nunber of rows/colums.

This is non-trivial(!).

See the URL for Kwon Young Shin, above, for help.

N
~

HHHHHHHFHHH R
w

Example A.47. Fifteen Puzzle

#!/ bi n/ bash
fifteen. sh

Classic "Fifteen Puzzle"

Aut hor: Antoni o Macch

Lightly edited and commented by ABS CGui de aut hor

Used in ABS Guide with perm ssion. (Thanks!)

The invention of the Fifteen Puzzle is attributed to either
#+ Sam Loyd or Noyes Pal ner Chapnman

The puzzle was wildly popular in the late 19th-century.

(bject: Rearrange the nunmbers so they read in order
#+ from1l - 15:

| 1 2 3 4|
| 5 6 7 8|
| 9 10 11 12 |
| 13 14 15 |
i cdcacacao--

BHABHBHHBHBHHBH AR HBHHRH

Constants
SQUARES=16 #
FAI L=70 #

E_PREVMATURE_EXI T=80 #

583

Contributed Scripts

RHABHBHHBHBHHBH AR HBHHRH

BHHBHBHH
Data
BHHBHBHH

Puzzle=(123 456 7 89 10 11 12 13 14 15 " ")

HHHH R RS R
Functions
HHHH R RS R

function swap

{
[ocal tnp

t mp=${ Puzzl e[$1] }
Puzzl e[$1] =${ Puzzl e[$2] }
Puzzl e[$2] =$t np

function Junble
{ # Scranble the pieces at begi nning of round.
| ocal i posl pos2

for i in {1..100}

do
pos1=$(($RANDOM % $SQUARES))
pos2=$(($RANDOM % $SQUARES))
swap $posl $pos2

done

function PrintPuzzle

{
local i1 i2 puzpos
puzpos=0
cl ear
echo "Enter quit to exit."; echo # Better that than Cl-C
echo ", ----.------------." # Top border
for il in {1..4}
do
for i2 in {1..4}
do

printf "| 9%s " "${Puzzl e[$puzpos]}”
((puzpos++))
done
echo "|" # Ri ght -si de border

584

Contributed Scripts

test $il =4 || echo "+----4---- -t - "
done
echo "' ----"----""----‘'to.-.-t" # Bottom border

function Get Num
{ # Test for valid input.
| ocal puznum gar bage

while true
do
echo "Mves: $npoves" # Al so counts invalid noves.
read -p "Number to nove: " puznum gar bage
if ["$puznuni = "quit"]; then echo; exit $E_PREMATURE EXIT; f

test -z "$puznunt -0 -n "${puznum /[0-9]/}" && continue
test $puznum-gt 0 -a $puznum -1t $SQUARES && break
done
return $puznum

function Get PosFromum
{ # $1 = puzzl e- nunber
| ocal puzpos

for puzpos in {0..15}

do

test "${Puzzl e[$puzpos]}" = "$1" && break
done
return $puzpos

functi on Mve
{ # $1=Puzzl e- pos
test $1 -gt 3 && test "${Puzzle[$(($1 - 4))]}" =" "\
&% swap $1 $(($1 - 4)) && return O
test $(($1%)) -ne 3 && test "${Puzzle[$(($1 + 1))]}"
&% swap $1 $(($1 + 1)) & return O
test $1 -1t 12 && test "${Puzzle[$(($1 + 4))]}"
&% swap $1 $(($1 + 4)) && return O
test $(($1%)) -ne 0 & & test "${Puzzle[$(($1 - 1))]}"
swap $1 $(($1 - 1)) && return O
return 1

1
—

"\

"&&\

functi on Sol ved

{

| ocal pos

for pos in {0..14}
do

585

Contributed Scripts

test "${Puzzle[$pos]}" = $(($pos + 1)) || return $FAIL
Check whet her nunber in each square = square number.
done
return O # Successful solution

RH#HH TR AT RHE VAN () #EHSH R R R
moves=0
Jumbl e

while true # Loop continuously until puzzle sol ved.
do
echo; echo
PrintPuzzle
echo
while true
do
Get Num
puznune$?
Get PosFr onNum $puznum
puzpos=$?
((noves++))
Move $puzpos && break
done
Sol ved && break
done

echo; echo
Print Puzzl e
echo; echo "BRAVO "; echo

exit O
HURHHHHH)

[Exercise

H o o-- e e e - -

Rewite the script to display the letters A- O
#+ rather than the nunbers 1 - 15.

Example A.48. The Towers of Hanoi, graphic version

#! [bi n/ bash

The Towers O Hanoi

Original script (hanoi.bash) copyright (C) 2000 Amt Singh
Al Rights Reserved

http://hanoi.kernelthread. com

hanoi 2. bash

Version 2.00: nodded for ASCII-graphic display.
Version 2.01: fixed no commmand-|ine param bug.
Uses code contributed by Antoni o Macchi

H H B H

586

Contributed Scripts

#+ with heavy editing by ABS CGui de aut hor
This variant falls under the original copyright, see above.
Used in ABS Guide with AmMt Singh's perm ssion (thanks!).

Variabl es & & sanity check #H#

E_NOPARAM=86
E_BADPARAM=87 # Illegal no. of disks passed to script.
E_NOEXI T=88

DI SKS=${ 1: - $E_NOPARAM # Must specify how many di sks.
Moves=0

MA DTH=7

MARG N=2

Arbitrary "magic" constants; work okay for relatively small # of disks.
BASEW DTH=51 # Original code.

l et "basewidth = $MAIDTH * $DI SKS + $MARG N # "Base" beneath rods.
Above "algorithm' could |likely stand inprovenent.

#H# Di spl ay vari abl es #H#
let "disksl = $DI SKS - 1"

| et "spacesl = $DI SKS"
l et "spaces2 = 2 * $DI SKS"
let "lastnmove_t = $DI SKS - 1" # Final nove?

decl are -a Rodl Rod2 Rod3

BHHE HHBHHHHBHABHBHHBH AR AR B

function repeat { # $1=char $2=nunber of repetitions
[ocal n # Repeat-print a character

for ((n=0; n<$2; n++)); do
echo -n "$1"
done

}

function FromRod {
local rod summt weight sequence

while true; do
rod=$1
test ${rod/[~123]/} || continue

sequence=$(echo $(seq 0 $disksl | tac))
for summt in $sequence; do
eval wei ght =\ ${ Rod${rod}[$sumit]}
test $weight -ne 0 &&
{ echo "$rod $summit $weight"; return; }

587

Contributed Scripts

done
done

function ToRod { # $l=previous (FromRod) wei ght
local rod firstfree weight sequence

while true; do
rod=$2
test ${rod/[~123]} || continue

sequence=$(echo $(seq 0 $disksl | tac))
for firstfree in $sequence; do

eval wei ght=\${Rod${rod}[$firstfree]}

test $weight -gt 0 && { ((firstfree++)); break; }
done
test $weight -gt $1 -0 $firstfree = 0 &&

{ echo "$rod $firstfree"; return; }
done

function PrintRods ({

| ocal disk rod empty fill sp sequence
repeat " " $spacesl

echo -n "|™

repeat " " $spaces2

echo -n "|™

repeat " " $spaces2

echo "|"

sequence=$(echo $(seq 0 $disksl | tac))
for disk in $sequence; do
for rod in {1..3}; do
eval enpty=$(($DI SKS - (Rod${rod}[$disk] / 2)))
eval fill=\${Rod${rod}[$di sk]}

repeat " " $enpty
test $fill -gt O & repeat "*" $fill || echo -n "|"
repeat " " $enpty
done
echo
done
repeat "=" $basewi dth # Print "base" beneath rods.
echo
}
di splay ()
{
echo
Pri nt Rods

588

Contributed Scripts

CGet rod-nunber, summit and wei ght
first=("FronRod $1°)
eval Rod${first[0]}[${first[1]}]=0

CGet rod-nunber and first-free position
second=("~ ToRod ${first[2]} $2°)
eval Rod${second[0]}[${second[1]}]=${first[2]}

echo; echo; echo

[
t

f ["${Rod3[lastmove_t]}" = 1]

hen # Last nove? If yes, then display final position

echo "+ Final Position: $Moves nobves"; echo
Pri nt Rods
f

From here down, al nost the sane as original (hano

dohanoi () { # Recursive function

case $1 in
0)

*)
dohanoi "$(($1-1))" $2 $4 3$3
if ["$Moves" -ne 0]
t hen
echo "+ Position after nove $Moves”
f
((Moves++))
echo -n " Next move will be:
echo $2 "-->" $3
di splay $2 $3
dohanoi "$(($1-1))" $4 $3 $2

esac

setup_arrays ()

{

local dimn el em
let "dinl = $1 - 1"
el enr$di ml

for nin $(seq 0 $di ml)
do
let "Rodl[$elenmi =2 * $n + 1"
Rod2[$n] =0
Rod3[$n] =0
((elem-))

. bash) script.

589

Contributed Scripts

done

HH# Mai n HH#

setup_arrays $DI SKS
echo; echo "+ Start Position"

case $# in

1) case $(($1>0)) in # Must have at |east one disk.
1)
di sks=%$1
dohanoi $1 1 3 2
Total noves = 2°n - 1, where n = nunber of disks.
echo
exit O;
*) v
echo "$0: I|llegal value for nunber of disks";

exit $E_BADPARAM

esac
8
cl ear
echo "usage: $0 N'
echo " VWere \"N\" is the nunber of disks."
exit $E_NOPARAM
esac

exit $E_ NOEXIT # Shouldn't exit here.

Not e:
Redirect script output to a file, otherwise it scrolls off display.

Example A.49. The Towers of Hanoi, alternate graphic version

#! [bi n/ bash

The Towers O Hanoi

Original script (hanoi.bash) copyright (C) 2000 Amt Singh
Al Rights Reserved

http://hanoi.kernelthread. com

hanoi 2. bash

Version 2: nodded for ASCII-graphic display.

Uses code contributed by Antoni o Macchi

#+ with heavy editing by ABS CGui de author

This variant also falls under the original copyright, see above.
Used in ABS Guide with AmMt Singh's perm ssion (thanks!).

590

Contributed Scripts

Variabl es

E_NOPARAM=86

E_BADPARAM=87 # Illegal no. of disks passed to script.
E_NOEXI T=88

DELAY=2 # Interval, in seconds, between noves. Change,

DI SKS=$1
Moves=0

MN DTH=7
MARG N=2

Arbitrary "magic" constants, work okay for relatively smal

BASEW DTH=51 # Original code.

i f desired.

of disks.

| et "basewidth = $MNDTH * $DI SKS + $MARG N' # "Base" beneath rods.

Above "algorithm' could |likely stand inprovenent.

Di splay vari abl es.
let "disksl = $DI SKS - 1"

| et "spacesl = $DI SKS"
l et "spaces2 = 2 * $DI SKS"
let "lastnmove_t = $DI SKS - 1" # Final nove?

decl are -a Rodl Rod2 Rod3

BHABHBHHBH AR HBHHHR

function repeat { # $1=char $2=nunber of repetitions
[ocal n # Repeat-print a character

for ((n=0; n<$2; n++)); do
echo -n "$1"
done

}

function FromRod {
local rod summt weight sequence

while true; do
rod=$1
test ${rod/[~123]/} || continue

sequence=$(echo $(seq 0 $disksl | tac))
for summt in $sequence; do
eval wei ght =\ ${ Rod${rod}[$sumit]}
test $weight -ne 0 &&
{ echo "$rod $summit $weight"; return; }
done
done

591

Contributed Scripts

function ToRod { # $l=previous (FronmRod) wei ght
local rod firstfree weight sequence

while true; do
rod=$2
test ${rod/[~123]} || continue

sequence=$(echo $(seq 0 $disksl | tac))
for firstfree in $sequence; do

eval wei ght=\${Rod${rod}[$firstfree]}

test $weight -gt 0 && { ((firstfree++)); break; }
done
test $weight -gt $1 -0 $firstfree = 0 &&

{ echo "$rod $firstfree"; return; }
done

function PrintRods ({
| ocal disk rod empty fill sp sequence

tput cup 50

repeat " " $spacesl
echo -n "|™

repeat " " $spaces2
echo -n "|™

repeat " " $spaces2
echo "|"

sequence=$(echo $(seq 0 $disksl | tac))
for disk in $sequence; do
for rod in {1..3}; do
eval enpty=$(($DI SKS - (Rod${rod}[$disk] / 2)))
eval fill=\${Rod${rod}[$di sk]}

repeat " " $enpty
test $fill -gt O & repeat "*" $fill || echo -n "|"
repeat " " $enpty
done
echo
done
repeat "=" $basewi dth # Print "base" beneath rods.
echo
}
di splay ()
{
echo
Pri nt Rods

CGet rod-nunber, summit and wei ght
first=("FronRod $1°)
eval Rod${first[0]}[${first[1]}]=0

592

Contributed Scripts

CGet rod-nunber and first-free position
second=("~ ToRod ${first[2]} $2°)
eval Rod${second[0]}[${second[1]}]=${first[2]}

if ["${Rod3[lastnove_t]}" = 1]

t hen # Last nove? If yes, then display final position
tput cup 0 O
echo; echo "+ Final Position: $Moves noves"
Pri nt Rods

f

sl eep $DELAY
}

From here down, al nost the sane as original (hanoi.bash) script.

dohanoi () { # Recursive function
case $1 in
0)

*
)
dohanoi "$(($1-1))" $2 $4 3$3
if ["$Moves" -ne 0]
t hen
tput cup 0 O
echo; echo "+ Position after npbve $Moves”
f
((Moves++))
echo -n " Next move will be:
echo $2 "-->" $3
di splay $2 $3
dohanoi "$(($1-1))" $4 $3 $2

esac

}

setup_arrays ()

{ local dimn elem
let "dinl = $1 - 1"
el env$di nl

for nin $(seq 0 $di ml)
do
let "Rodl[$elenmi =2 * $n + 1"
Rod2[$n] =0
Rod3[$n] =0
((elem-))
done

593

Contributed Scripts

#H# Main ###
trap "tput cnornmt O
tput civis

cl ear

setup_arrays $DI SKS

tput cup 0 O
echo; echo "+ Start Position"

case $# in

1) case $(($1>0)) in # Must have at |east one disk.
1)
di sks=%$1
dohanoi $1 1 3 2
Total noves = 2"n - 1, where n = # of disks.
echo
exit O;
*) v
echo "$0: I|llegal value for nunber of disks";

exit $E_BADPARAM

esac
8
echo "usage: $0 N'
echo " VWere \"N\" is the nunber of disks."
exit $E_NOPARAM
esac

exit $E_NOEXIT # Shouldn't exit here.

Exercise

H o o-- e e e - -

There is a minor bug in the script that causes the display of
#+ the next-to-last nove to be skipped.

#+ Fix this.

Example A.50. An alternate version of the getopt-simple.sh script

#! / bi n/ bash
UseCet Opt . sh

Aut hor: Peggy Russell <prusselltechgroup@nmuail.conp

UseGet Opt () {
decl are i nput Opti ons
declare -r E_OPTERR=85
declare -r Scri pt Name=${ 0##*/}
declare -r ShortOpts="adf:hlt"

594

Contributed Scripts

declare -r LongOpts="aoption, debug,file:, help,log,test"”

DoSoret hing () {
echo "The function nanme is '${ FUNCNAVE}' "
Recall that $FUNCNAME is an internal variable
#+ hol ding the name of the function it is in

}

i nput Opt i ons=$(getopt -0 "${Short Opts}" --long \
"${LongOpts}" --nane "${ScriptName}" -- "${@")

if [[($? -ne 0) || ($# -eq 0)]]; then
echo "Usage: ${ScriptNane} [-dhlt] {OPTION...}"
exit $E_OPTERR

f

eval set -- "${inputOptions}"”
Only for educational purposes. Can be renoved.

echo "++ Test: Nunber of argunments: [$#]"
echo ' ++ Test: Looping through "$@"
for ain"$@; do
echo " ++ [$a]"
done

while true; do
case "${1}" in
--aoption | -a) # Argument found
echo "Option [$1]"

--debug | -d) # Enabl e i nformati onal nessages.
echo "Option [$1] Debuggi ng enabl ed"

--file | -f) # Check for optional argunent.
case "$2" in #+ Doubl e colon is optional argunent.
") # Not there.
echo "Option [$1] Use default”
shift
*) # CGot it
echo "Option [$1] Using input [$2]"
shift
esac
DoSoret hi ng
--log | -1) # Enable Logging.

595

Contributed Scripts

echo

HERHHHHH PR HH AT H T M A |
If you remove "function UseGet Opt
#+ you can uncoment the "exit 0" |ine below, and invoke this script
#+ with the various options fromthe command-Iine

echo "Option [$1] Loggi ng enabl ed"

--test | -t) # Enable testing.
echo "Option [$1] Testing enabl ed"

--help | -h)
echo "Option [$1] Display help"
br eak
--) # Done! $# is argunment nunmber for "--", $@is "--
echo "Option [$1] Dash Dash"
br eak
*)
echo "Major internal error!"”
exit 8
esac
echo "Nunber of argunents: [$#]"
shift

done

shift
Only for educational purposes. Can be renoved.

"++ Test: Nunber of argunents after \"--\" is [$#] They are: [$@"
'++ Test: Looping through "$@'
ain"$@; do
echo " ++ [$a]"

done

"Test 1"

UseGet Opt -f nyfile one "two three" four

echo; echo "Test 2"
UseGet Opt -h

echo; echo "Test 3 - Short Options”
UseGet Opt -adltf nyfile anotherfile

N ###HH#H BB HH PR
() {" and corresponding "}",

596

Contributed Scripts

echo; echo "Test 4 - Long Options"
UseGet Opt --aoption --debug --log --test --file nyfile anotherfile

exit

Example A.51. Theversion of the UseGetOpt.sh exampleused in the Tab Expansion
appendix

#!/ bi n/ bash

UseGet Opt-2.sh

Modified version of the script for illustrating tab-expansion
#+ of conmand-I|ine options.

See the "Introduction to Tab Expansi on" appendi Xx.

Possible options: -a -d -f -1 -t -h
#+ --aoption, --debug --file --log --test -- help --

Author of original script: Peggy Russell <prusselltechgroup@nail.con

UseGet Opt () {
decl are i nput Opti ons
declare -r E_OPTERR=85
declare -r Scri pt Name=${ 0##*/}
declare -r ShortOpts="adf:hlt"
declare -r LongOpts="aoption, debug,file:, help,log,test"

DoSoret hing () {
echo "The function nane is '${ FUNCNAVE}' "

}

i nput Opt i ons=$(getopt -0 "${Short Opts}" --long \
"${LongOpts}" --nane "${ScriptName}" -- "${@")

if [[($? -ne 0) || ($# -eq 0)]]; then
echo "Usage: ${ScriptNane} [-dhlt] {OPTION...}"
exit $E_OPTERR

f

eval set -- "${inputOptions}"”

while true; do
case "${1}" in
--aoption | -a) # Argument found
echo "Option [$1]"

--debug | -d) # Enabl e i nformati onal nessages.
echo "Option [$1] Debuggi ng enabl ed"

597

Contributed Scripts

--file | -f) # Check for optional argunent.
case "$2" in #+ Doubl e colon is optional argunent.
") # Not there.
echo "Option [$1] Use default”
shift
*) # CGot it
echo "Option [$1] Using input [$2]"
shift
esac
DoSoret hi ng
--log | -1) # Enable Logging.

echo "Option [$1] Loggi ng enabl ed"

--test | -t) # Enable testing.
echo "Option [$1] Testing enabl ed"

--help | -h)
echo "Option [$1] Display help"
br eak
--) # Done! $# is argunent number for "--", $@is "
echo "Option [$1] Dash Dash"
br eak
*)
echo "Mpjor internal error!”
exit 8
esac
echo "Nunber of argunents: [$#]"
shift
done
shift
)
exit

Example A.52. Cycling through all the possible color backgrounds
#!/ bi n/ bash

598

Contributed Scripts

showal | -col ors. sh

Displays all 256 possible background col ors, using ANSI escape sequences.
Aut hor: Chetankumar Phul pagare

Used in ABS Guide with perm ssion

T1=8
T2=6
T3=36
of f set =0

for nunil in {0..7}

do {
for nun2 in {0, 1}
do {
shownunm=" echo "$of fset + $T1 * ${nunR} + $numl" | bc’
echo -en "\ E[0; 48; 5; ${ shownun} m col or ${shownun} \ E[Ont
}
done
echo
}
done
of fset =16
for nuni in {0..5}
do {
for nun2 in {0..5}
do {
for nunB in {0..5}
do {
shownum="echo "$of fset + $T2 * ${nunB} \
+ $nun2 + $T3 * ${numl}" | bc’
echo -en "\ E[0; 48; 5; ${ shownun} m col or ${shownun} \ E[Ont'
}
done
echo
}
done
}
done
of f set =232
for nuni in {0..23}
do {

shownume" expr $of fset + $nuntl’
echo -en "\ E[0; 48; 5; ${ shownun} m ${ shownun}\ E[Ont
}

done

echo

Example A.53. Morse Code Practice

#! / bi n/ bash
samsh, v. .0Ola

599

Contributed Scripts

Still Another Mrse (code training script)

Wth profuse apol ogies to Sam (F.B.) Mbrse.

Aut hor: Mendel Cooper

License: GPL3

Rel date: 05/25/11

Morse code training script.

Converts arguments to audible dots and dashes.
Note: |owercase input only at this tine.

CGet the wav files fromthe source tarball:

http://bash.deta.in/abs-guide-latest.tar.bz2
DOT=' soundfi | es/ dot . wav'

DASH=' soundfi | es/ dash. wav’

Maybe nove soundfiles to /usr/local/sounds?

LETTERSPACE=300000 # M croseconds.
WORDSPACE=980000
Nice and slow, for beginners. Maybe 5 wpn?

EXIT _MSG="May the Morse be with you!"

E_NOARGS=75 # No command-1|ine args?
decl are - A norse # Associ ative array!
===

nor se[a] ="dot; dash"

nor se[b] ="dash; dot; dot; dot™"
nor se[c] ="dash; dot; dash; dot"
nor se[d] ="dash; dot; dot™"

nor se[e] ="dot "

norse[f]="dot; dot; dash; dot"
nor se[g] =" dash; dash; dot"

nor se[h] ="dot; dot; dot; dot"
norse[i]="dot; dot;"
norse[j]="dot; dash; dash; dash”
nor se[k] ="dash; dot; dash”
norse[l]="dot; dash; dot; dot"
nor se[m =" dash; dash”

nor se[n] =" dash; dot"

nor se[o] =" dash; dash; dash"

nor se[p] ="dot; dash; dash; dot"
nor se[g] ="dash; dash; dot; dash”
norse[r] ="dot; dash; dot"

nor se[s] ="dot; dot; dot"

nor se[t] ="dash"

nor se[u] ="dot; dot; dash"
norse[v] ="dot; dot; dot; dash"
nor se[w] ="dot; dash; dash”

nor se[x] ="dash; dot; dot; dash"
nor se[y] ="dash; dot; dash; dash”

600

Contributed Scripts

nor se[z] ="dash; dash; dot; dot"

nor se[0] ="dash; dash; dash; dash; dash"

nor se[1] ="dot; dash; dash; dash; dash"

nor se[2] ="dot; dot; dash; dash; dash”
norse[3] ="dot; dot; dot; dash; dash"

nor se[4] ="dot; dot; dot; dot; dash"

nor se[5] ="dot; dot; dot; dot; dot"

nor se[6] ="dash; dot; dot; dot; dot"

nor se[7] =" dash; dash; dot; dot; dot"

nor se[8] ="dash; dash; dash; dot; dot"

nor se[9] ="dash; dash; dash; dash; dot™"

The foll owi ng nust be escaped or quoted.
norse[?] ="dot; dot; dash; dash; dot; dot"
norse[.]="dot; dash; dot; dash; dot; dash”
nor se[,] ="dash; dash; dot; dot; dash; dash"
norse[/] ="dash; dot; dot; dash; dot"
norse[\ @ ="dot; dash; dash; dot; dash; dot"

play_letter ()

{
eval ${norse[$1]} # Play dots, dashes from appropriate sound files.
Why is 'eval' necessary here?
usl eep $LETTERSPACE # Pause in between |etters.

}

extract _letters ()

{ # Slice string apart, letter by letter
| ocal pos=0 # Starting at left end of string
[ocal |en=1 # One letter at a tine.

strlen=${#1}

while [$pos -1t $strlen]

do
| etter=${1: pos:|en}
ANNNNNNNNNNN See Chapter 10.1.
play_letter $letter
echo -n "*" # Mark letter just played.
((pos++))
done
}
#ip#H#HH## Pl ay the sounds ######H#H##ERH
dot() { aplay "$DOr" 2&/dev/null; }

dash() { aplay "$DASH' 2&>/dev/null; }
HHBHBH BRI H SRR R B AR AH AR R

no_args ()

decl are -a usage
usage=($0 wordl word2 ...)

echo "Usage:"; echo
echo ${usage[*]}

601

Contributed Scripts

for index in 0123
do
extract_|etters ${usage[i ndex]}
usl eep $WORDSPACE
echo -n " ™ # Print space between words.
done
echo "Usage: $0 wordl word2 ... "
echo; echo

}
int main()
{
cl ear # Clear the term nal screen
echo " SAM'
echo "Still Another Mrse code trainer”
echo " Aut hor: Mendel Cooper™
echo; echo;
if [-z "$1"]
t hen
no_args

echo; echo; echo "$EXIT _MSG'; echo
exit $E_NOARGS
f
echo; echo "$*" # Print text that will be played

until [-z "$1"]

do

extract _letters $1

shift # On to next word.

usl eep $WORDSPACE

echo -n " ™ # Print space between words.
done

echo; echo; echo "$EXIT _MSG'; echo

exit O

#}

[Exerci ses:

H o oo

1) Have the script accept either |owercase or uppercase words
#+ as argunents. Hint: Use "tr’

2) Have the script optionally accept input froma text file.

Example A.54. Base64 encoding/decoding

#1/ bi n/ bash

base64.sh: Bash inplenentation of Base64 encodi ng and decodi ng.
#

Copyright (c) 2011 vladz <vl adz@levzero.fr>

602

Contributed Scripts

Used in ABSG with perm ssion (thanks!).

#

Encode or decode original Base64 (and al so Base64url)
#+ from STDIN t o STDOUT.

#

Usage:

#

Encode

$./base64.sh < binary-file > binary-file.base64

Decode

$./base64.sh -d < binary-file.base64 > binary-file
#

Reference:

#

[1] RFC4648 - "The Basel6, Base32, and Base64 Data Encodi ngs"
http://tools.ietf.org/htm/rfcd4648#section-5

The base64 _charset[] array contains entire base64 charset,
and additionally the character "=" ...
base64 charset=({A .Z} {a..z} {0..9} +/ =)

Nice illustration of brace expansion

Uncomment the ### |ine below to use base64url encodi ng instead of
#+ origi nal base64.
base64_charset=({A. .Z} {a..z} {0..9} - _ =)

CQutput text w dth when encodi ng
#+ (64 characters, just |ike openssl output).
t ext _wi dt h=64

function di splay_base64 char {
Convert a 6-bit nunber (between 0 and 63) into its correspondi ng val ues
#+ in Base64, then display the result with the specified text w dth.
printf "${base64_charset[$1]}"; ((width++))
((width %text_width == 0)) & printf "\n"
}

function encode_base64 {
Encode three 8-bit hexadeci mal codes into four 6-bit nunbers.

We need two local int array variables:

c8[]: to store the codes of the 8-bit characters to encode
c6[]: to store the correspondi ng encoded val ues on 6-bit
declare -a -i c8 c6

Convert hexadeci mal to deci nal
c8=($(printf "ibase=16; ${1:0:2}\n${1:2: 2}\n${1:4:2}\n" | bc))

Let's play with bitw se operators

#+ (3x8-bit into 4x6-bits conversion).

((c6[0] = c8[0] >> 2))

((c6[1] = ((c8[0] & 3) << 4) | (c8[1] >> 4)))

The foll owi ng operati ons depend on the c8 el enent nunber.

603

Contributed Scripts

}

case ${#c8[*]} in
3) ((c6[2] = ((c8[1] & 15) << 2) | (c8[2] >> 6)))
((c6[3] = c8[2] & 63))
2) ((c6[2] = (c8[1] & 15) << 2))
((c6[3] =64)) :;
1) ((c6[2] = c6[3] =64))
esac

for char in ${c6[@}; do
di spl ay_base64_char ${char}
done

function decode_base64 {
Decode four base64 characters into three hexadeci mal ASCI| characters.

c8[]: to store the codes of the 8-bit characters
c6[]: to store the correspondi ng Base64 val ues on 6-bit
declare -a -i c8 c6

Find deci mal value corresponding to the current base64 character

for current_char in ${1:0:1} ${1:1:1} ${1:2:1} ${1:3:1}; do
["${current_char}" = "="] && break

posi ti on=0

while ["${current_char}" != "${base64_charset[${position}]}" 1;

((position++))
done

c6=(${c6[*]} ${position})
done

Let's play with bitw se operators
#+ (4x8-bit into 3x6-bits conversion).
((c8[0] = (c6[0] << 2) | (c6[1] >>4)))

The next operations depends on the c6 el ements nunber.
case ${#c6[*]} in

3) ((c8[1] = ((c6[1] & 15) << 4) | (c6[2] >> 2)))
((c8[2] = (c6[2] & 3) << 6)); unset c8[2] ;;
4) ((c8[1] = ((c6[1] & 15) << 4) | (c6[2] >> 2)))
(C c8[2] =((c6[2] & 3) << 6) | ¢c6[3])) ;;
esac

for char in ${c8[*]}; do
printf "\ x$(printf "o%" ${char})"
done

["$1" = "-d"]; then # decode

Reformat STDIN in pseudo 4x6-bit groups.

604

do

Contributed Scripts

content=$(cat - | tr -d "\n" | sed -r "s/(.{4})/\1/g")

for chars in ${content}; do decode_base64 ${chars}; done

el se
Make a hexdunp of stdin and reformat in 3-byte groups.
content=$(cat - | xxd -ps -u | sed -r "s/(\w6})/\1 /g"

tr -d "\n")
for chars in ${content}; do encode_base64 ${chars}; done
echo
f
Example A.55. Inserting text in afile using sed

#1/ bi n/ bash

Prepends a string at a specified line
#+ in files with nanmes ending in "sanple"
#+ in the current working directory.

000000000000000000000000000000000000
This script overwites filesl!

Be careful running it in a directory
#+ where you have inportant files!!

000000000000000000000000000000000000

Create a couple of files to operate on ..

Olsanmple

02sanmple

etc.

These files must not be enmpty, else the prepend will not work.
[i neno=1 # Append at line 1 (prepend).

filespec="*sanmple” # Filename pattern to operate on

string=$(whoami) # WII set your username as string to insert.
It could just as easily be any other string.

for file in $filespec # Specify which files to alter

do # NNANNNNANNNNN

sed -i ""$lineno"i "$string"" $file
AN - option edits files in-place.
N Insert (i) command.
echo ""$file" altered!"
done

echo "Warning: files possibly cl obbered!"
exit O
Exerci se

Add error checking to this script.
It needs it badly.

605

Contributed Scripts

Example A.56. The Gronsfeld Cipher

#1/ bi n/ bash
gronsfel d. bash

License: GPL3
Rel date 06/23/11

This is an inplementation of the Gonsfeld Cipher

1t's essentially a stripped-down variant of the

#+ pol yal phabetic Vigenere Tabl eau, but with only 10 al phabets.

The classic Gronsfeld has a nunmeric sequence as the key word,

#+ but here we substitute a letter string, for ease of use.

Allegedly, this cipher was invented by the eponynous Count G onsfeld
#+ in the 17th Century. It was at one tinme considered to be unbreakabl e.
Note that this is ###not### a secure cipher by nobdern standards.

G obal Variables
Enc_suffix="29379" # Encrypted text output with this 5-digit suffix.

This functions as a decryption flag,

#+ and when used to generate passwords adds security.
Def aul t _key="gr onsf el dk"

The script uses this if key not entered bel ow

(at "Keychain").

Change the above two val ues frequently

#+ for added security.

GROUPLEN=5 # Qutput in groups of 5 letters, per tradition
al phal=(abcdef ghij kl mopqr st uvwxyz)
al pha2=({A .Z}) # Qutput in all caps, per tradition
Use al pha2=({a..z}) for password generator
wr apl en=26 # Wap around if past end of al phabet.
df | ag= # Decrypt flag (set if $Enc_suffix present).
E _NOARGS=76 # M ssing command-I|ine args?
DEBUG=77 # Debuggi ng fl ag.
declare -a offsets # This array holds the nuneric shift values for
#+ encryption/decryption.

#iH###H#HKey chai n######H#H#

key= ### Put key here!!!
10 characters!

HUBHBHSEHE R R RS RS RS RS RH

Function
= 0)
{ # Encrypt or decrypt, depending on whether $dflag is set.
Wiy ": ()" as a function nane? Just to prove that it can be done.

| ocal idx keydx men offl shft
| ocal plaintext="%$1"
[ocal m en=${#pl ai nt ext}

606

Contributed Scripts

for ((idx=0; idx<$men; idx++))
do
let "keydx = $idx % $keyl en”
shft =${ of f set s[keydx] }

if [-n "$dflag"]

t hen # Decrypt!
let "off1l = $(expr index "${al phal[*]1}" ${plaintext:idx:1}) - $shft"
Shift backward to decrypt.

el se # Encrypt!
let "off1l = $(expr index "${al phal[*]1}" ${plaintext:idx:1}) + $shft"
Shift forward to encrypt.
test $(($idx % $GROUPLEN)) = 0 & & echo -n " " # Goups of 5 letters.
Comment out above line for output as a string wthout whitespace,
#+ for exanple, if using the script as a password generat or

f

((offl--)) # Normalize. Wiy is this necessary?

if [$offl -1t O]

t hen # Catch negative indices.
let "offl += $w apl en”

f

((of f1 9% $w aplen)) # Wap around if past end of al phabet.
echo -n "${al pha2[off1]}"
done

if [-z "$dflag"]
t hen
echo " $Enc_suffix"
echo "$Enc_suffix" # For password generator
el se
echo
f
} # End encrypt/decrypt function.

#int main () {

Check for command-line args.

if [-z "$1"]

t hen
echo "Usage: $0 TEXT TO ENCCDE/ DECCDE"
exit $E_NOARGS

f

if [${!#} == "$Enc_suffix"]
ANAAN Fipal command-1ine arg.
t hen

df ag=ON

607

Contributed Scripts

echo -n "+" # Flag decrypted text with a "+" for easy ID
f

if [-z "$key"]
t hen

key="$Def aul t _key" # "gronsfel dk" per above.
f

keyl en=${ #key}

for ((idx=0; idx<$keylen; idx++))
do # Calculate shift values for encryption/decryption
of fsets[idx] =$(expr index "${al phal[*]}" ${key:idx:1}) # Normal i ze.
((offsets[idx]--)) # Necessary because "expr index" starts at 1
#+ whereas array count starts at O.
Cenerate array of numerical offsets corresponding to the key.
There are sinmpler ways to acconplish this.
done

args=$(echo "$*" | sed -e 's/ //g" | tr A-Z a-z | sed -e 's/[0-9]//Q")
Renmove whitespace and digits fromcommand-1ine args.
Can nodify to al so renove punctuation characters, if desired

Debug:
echo "$args"; exit $DEBUG
" $ar gs" # Call the function named ":".
: is a null operator, except . . . when it's a function nane!

exit $? # } End-of-script

hkhkhkkhkhkhhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdddhdddhrddrrdrrdrx*k

This script can function as a password generator

#+ with several mnor nods, see above.

That would all ow an easy-to-renenber password, even the word

#+ "password” itself, which encrypts to vrgfotvo29379

#+ a fairly secure password not susceptible to a dictionary attack

O, you could use your own name (surely that's easy to renenber!).
For exanpl e, Bozo Bozeman encrypts to hfnbttdppkt29379.

hkhkhkkhkhkhhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhhhdhhhdhdhdddhdddhrddrrdrrdrx*k

Example A.57. Bingo Number Generator

#1/ bi n/ bash

bi ngo. sh

Bi ngo nunber generator

Rel date 20Augl2, License: Public Domain

HERHHHHH PR H T H R R H R H R R H
This script generates bingo nunbers.

Hitting a key generates a new nunber.

Hitting 'q" termnates the script.

In a given run of the script, there will be no duplicate nunbers.

608

Contributed Scripts

When the script terminates, it prints a log of the nunbers generated.
HERHHHHH TR H T H R H R

M N=1 # Lowest all owabl e bi ngo nunber.
MAX=75 # Hi ghest al | owabl e bi ngo numnber.
COLS=15 # Numbers in each colum (Bl NGO.

SINGLE_DI G T_MAX=9

decl are -a Nunbers
Prefix=(B 1l N GO

initialize_Nunbers ()
{ # Zero themout to start.
They'l|l be increnented if chosen
| ocal index=0
until ["$index" -gt $MAX]
do
Nunber s[i ndex] =0
((i ndex++))
done

Nunber s[0] =1 # Flag zero, so it won't be sel ected.

gener at e_numnber ()

{
| ocal nunber
while [1]
do
l et "nunber = $(expr $RANDOM % $NAX) '
if [${Nunbers[nunber]} -eq 0] # Number not yet called.
t hen
| et "Nunbers[nunber] +=1" # Flag it in the array.
br eak # And term nate | oop
fi # Else if already called, |oop and generate another numnber.
done
Exercise: Rewite this nore elegantly as an until-Ioop
return $nunber
}

print_nunbers_called ()
{ # Print out the called nunber |log in neat colums.
echo ${Nunbers[@}

| ocal pre2=0 # Prefix a zero, so colums will align
#+ on single-digit nunbers.

echo "Nunber Stats”

for ((index=1; index<=MAX; index++))

609

Contributed Scripts

do
count =${ Nunber s[i ndex] }
let "t = $index - 1" # Normalize, since array begins with index O.
let "colum = $(expr $t / $COLS)"
pre=${Prefix[col um]}
echo -n "${Prefix[colum]} "

if [$(expr $t % $COLS) -eq 0]
t hen

echo # Newl i ne at end of row.
f

if ["$index" -gt $SINGLE DIG T_MAX] # Check for single-digit nunber.
t hen
echo -n "prei ndex#$count
el se # Prefix a zero.
echo -n "prepre2$i ndex#$count

f

done

min () {
RANDOVE$S # Seed random nunber generat or

initialize_ Nunbers # Zero out the nunmber tracking array.

cl ear
echo "Bingo Number Caller"; echo

while [["$key" I'="q"]] # Main | oop.
do
read -s -nl -p "Hit a key for the next nunber [q to exit] " key
Usually 'q' exits, but not always.
Can always hit ¢l-Cif q fails.
echo

gener at e_nunber; new_nunber =$?

let "colum = $(expr $new_nunber / $COLS)"
echo -n "${Prefix[colum]} " #BI-NGO

echo $new_nunber
done

echo; echo
Game over
print_nunbers_call ed

echo; echo "[#0 = not called . . . #1 = called]"

echo

610

Contributed Scripts

Certainly, this script could stand sone inprovenent.
#See al so the author's Instructable:
#ww. | nst ruct abl es. conl i d/ Bi ngui no- An- Ar dui no- based- Bi ngo- Nunber - Gener at o/

To end this section, areview of the basics. . . and more.

Example A.58. Basics Reviewed

#1/ bi n/ bash

basi cs-revi ewed. bash

File extension == *.bash == specific to Bash

Copyright (c) Mchael S. Zick, 2003; Al rights reserved.
Li cense: Use in any form for any purpose.

Revision: ID

#

Edited for |ayout by MC

(aut hor of the "Advanced Bash Scripting Cuide")

Fi xes and updates (04/08) by diff Banford.

This script tested under Bash versions 2.04, 2.05a and 2.05b.
It may not work with earlier versions.
This denmonstration script generates one --intentional--

+ "command not found" error nessage. See |ine 436.

H H HH

The current Bash maintainer, Chet Raney, has fixed the itenms noted
#+ for later versions of Bash.

i T P #Hit#
Pipe the output of this script to 'nore'
###+ else it will scroll off the page. #H#
#Hit# #Hit#
You may al so redirect its output #H#
###+ to a file for exam nation. #HH
i T P #Hit#

Most of the follow ng points are described at length in

#+ the text of the foregoing "Advanced Bash Scripting CGuide."

This denonstration script is nmobstly just a reorgani zed presentation.
-- sz

Variables are not typed unl ess otherw se specified.

611

Contributed Scripts

\Variabl es are naned. Nanes mnmust contain a non-digit.
File descriptor nanes (as in, for example: 2>&1)
#+ contain ONLY digits.

Paranmeters and Bash array el enents are nunbered.
(Paraneters are very simlar to Bash arrays.)

A variable name may be undefined (null reference).
unset Var Nul

A variable name may be defined but enpty (null contents).
Var Empt y="" # Two, adjacent, single quotes.

A variable name may be defined and non-enpty.
Var Sonet hi ng='Literal"

A variable may contain

* A whole nunber as a signed 32-bit (or l|arger) integer
* Astring

A variable my al so be an array.

A string may contain enbedded bl anks and may be treated
#+ as if it where a function nane with optional argunents.

The names of variables and the names of functions
#+ are in different namespaces.

A variable may be defined as a Bash array either explicitly or
#+ implicitly by the syntax of the assignnment statement.

Explicit:

declare -a ArrayVar

The echo conmmand is a builtin.
echo $Var Sonet hi ng

The printf comuand is a builtin.
Translate % as: String- Format

printf % $Var Sonet hi ng # No |inebreak specified, none output.
echo # Default, only |inebreak output.

The Bash parser word breaks on whitespace.
Wi tespace, or the lack of it is significant.
(This holds true in general; there are, of course, exceptions.)

Transl ate the DOLLAR SI GN character as: Content-Of.

612

Contributed Scripts

Ext ended- Syntax way of witing Content-COf:
echo ${Var Sonet hi ng}

The ${ ... } Extended-Syntax allows nore than just the variable
#+ nane to be specified.
|In general, $VarSonething can always be witten as: ${Var Sonet hi ng}.

Call this script with arguments to see the following in action.

(Qutside of doubl e-quotes, the special characters @and *
#+ specify identical behavior.
May be pronounced as: All-El enents-O.

Wthout specification of a nanme, they refer to the
#+ pre-defined paraneter Bash-Array.

G ob-Pattern references
echo $* # Al paranmeters to script or function
echo ${*} # Sanme

Bash disables fil ename expansion for d ob-Patterns.
Only character matching is active.

Al -El enents-O references
echo $@ # Sane as above
echo ${ @ # Same as above

Wthin doubl e-quotes, the behavior of G ob-Pattern references
#+ depends on the setting of IFS (Input Field Separator).
Wthin doubl e-quotes, All-El enents-O references behave the sane.

Specifying only the name of a variable holding a string refers
#+ to all elenents (characters) of a string.

To specify an elenment (character) of a string,
#+ the Extended-Syntax reference notation (see bel ow) NMAY be used.

Specifying only the nanme of a Bash array references
#+ the subscript zero el enent,
#+ NOT the FI RST DEFI NED nor the FIRST W TH CONTENTS el erment .

613

Contributed Scripts

Additional qualification is needed to reference other elenents,
#+ whi ch means that the reference MUST be witten in Extended- Syntax.
The general formis: ${nane[subscript]}.

The string forms may al so be used: ${nane:subscript}

#+ for Bash-Arrays when referencing the subscript zero el enent.

Bash-Arrays are inplenented internally as linked lists,
#+ not as a fixed area of storage as in sone progranmm ng | anguages.

Characteristics of Bash arrays (Bash-Arrays):

If not otherw se specified, Bash-Array subscripts begin with
#+ subscript nunber zero. Literally: [O0]
This is called zero-based i ndexing.

#Hit#

If not otherw se specified, Bash-Arrays are subscript packed
#+ (sequential subscripts wthout subscript gaps).

#Hit#

Negati ve subscripts are not all owed.

#Hit#

El ements of a Bash-Array need not all be of the sane type.
#Hit#
El ements of a Bash-Array may be undefined (null reference).

That is, a Bash-Array may be "subscript sparse.”

#Hit#

El ements of a Bash-Array may be defined and enpty (null contents).
#Hit#

El ements of a Bash-Array may contain:

* A whol e nunber as a signed 32-bit (or larger) integer

* A string

* A string formated so that it appears to be a function nane
+ with optional argunents

#Hit#

Defined el ements of a Bash-Array may be undefined (unset).

That is, a subscript packed Bash-Array may be changed

+ into a subscript sparse Bash-Array.

#Hit#
El ements may be added to a Bash-Array by defining an el ement
#+ not previously defined.

#H#

For these reasons, | have been calling them "Bash-Arrays".
#1'1l return to the generic term"array" from now on.

-- sz

echo "o —-—o-—o—-————-—————————————=="

Lines 202 - 334 supplied by diff Banford. (Thanks!)
Denp --- Interaction with Arrays, quoting, IFS, echo, * and @ ---

614

Contributed Scripts

#+ all affect how things work

ArrayVar[0] =' zero' # 0 normal

ArrayVar [1] =one # 1 unquoted litera
ArrayVar[2] =" two' # 2 normal

ArrayVar[3] =" three' # 3 normal
ArrayVar[4]="1 am four’ # 4 normal wth spaces
ArrayVar[5] =" five' # 5 normal

unset ArrayVar] 6] # 6 undefi ned

ArrayVal ue[7] =' seven’ # 7 normal

ArrayVal ue[8] ="" # 8 defined but enmpty
ArrayVal ue[9] =' ni ne’ # 9 normal

echo '--- Here is the array we are using for this test

echo

echo "ArrayVar[0] =' zero' # 0 normal "

echo "ArrayVar|[1] =one # 1 unquoted literal”
echo "ArrayVar[2] = two' # 2 normal "

echo "ArrayVar[3]="three' # 3 normal "

echo "ArrayVar[4]="1 am four' # 4 normal with spaces”
echo "ArrayVar[5] = five' # 5 normal "

echo "unset ArrayVar][6] # 6 undefi ned”

echo "ArrayVal ue[7] = seven’ # 7 normal "

echo "ArrayVal ue[8] ="" # 8 defined but enmpty”
echo "ArrayVal ue[9] =' ni ne' # 9 normal "

echo

echo

echo '---Case0: No doubl e-quotes, Default |IFS of space,tab,newine ---'
| FS=$'\ x20" $' \ x09' $' \ XOA # In exactly this order
echo 'Here is: printf 9% {${ArrayVar[*]}'

printf % ${ArrayVar[*]}

echo

echo 'Here is: printf 9% {${ArrayVar[@}'

printf % ${ArrayVar[@}

echo

echo 'Here is: echo ${ArrayVar[*]}'

echo ${ArrayVar[@}

echo 'Here is: echo {${ArrayVar[@}'

echo ${ArrayVar[@}

echo

echo '---Casel: Wthin double-quotes - Default IFS of space-tab-
newine ---'

| FS=$'\ x20" $' \ x09' $' \ xOA # These three bytes,

echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'
printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"

615

Contributed Scripts

echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'

echo "${ArrayVar[@}"

echo

echo '---Case2: Wthin double-quotes - IFSis ('
| FS=" q'

echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'
printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"'

echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'

echo "${ArrayVar[@}"

echo

echo '---Case3: Wthin double-quotes - IFSis "'
| FS=' '

echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'
printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"'

echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'

echo "${ArrayVar[@}"

echo

echo '---Case4: Wthin double-quotes - IFSis " foll owed by
space, t ab, new i ne'

| FS=$' A $' \ x20" $' \ x09' $' \ x0A # N + space tab newine
echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'
printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"'

echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'

echo "${ArrayVar[@}"

echo

echo '---Case6: Wthin double-quotes - IFS set and enpty '
| FS=""

echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'

616

Contributed Scripts

printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"
echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'
echo "${ArrayVar[@}"

echo

echo '---Case7: Wthin double-quotes - IFS is unset
unset | FS

echo 'Here is: printf % "{${ArrayVar[*]}"'
printf % "${ArrayVvar[*]}"

echo

echo 'Here is: printf % "{${ArrayVar[@}"'
printf % "${ArrayVar[@}"

echo

echo 'Here is: echo "${ArrayVar[*]}"

echo "${ArrayVar[@}"

echo 'Here is: echo "{${ArrayVar[@}"'

echo "${ArrayVar[@}"

echo
echo '---End of Cases---'

Put IFS back to the default.
Default is exactly these three bytes.
| FS=$'\ x20" $' \ x09' $' \ XOA # In exactly this order

Interpretation of the above outputs:

A dob-Pattern is I/Q the setting of IFS matters.

#Hit#

An All-Elements-Of does not consider |FS settings.

#Hit#

Note the different output using the echo command and the
#+ quoted format operator of the printf comrand.

Recall:

Paranmeters are simlar to arrays and have the simlar behaviors.
#Hit#

The above exanpl es denonstrate the possible variations.
To retain the shape of a sparse array, additional script
#+ programming is required.

#Hit#

The source code of Bash has a routine to output the

#+ [subscri pt]=val ue array assignnent fornmat.

As of version 2.05b, that routine is not used,

#+ but that m ght change in future rel eases.

617

Contributed Scripts

The length of a string, neasured in non-null elenents (characters):
echo

echo '- - Non-quoted references - -
echo ' Non-Nul | character count: '${#VarSonething}' characters.'

test="Lit'$ \x00" 'eral’ # $' \x00' is a null character
echo ${#test} # See that?

The length of an array, neasured in defined el enents,
#+ including null content elenents.

echo

echo 'Defined content count: '${#ArrayVar[@}' elenments.’
That is NOT the maxi mum subscript (4).

That is NOT the range of the subscripts (1 . . 4 inclusive).
1t ISthe length of the linked list.
#Hit#

Both the maxi mum subscript and the range of the subscripts my
#+ be found with additional script progranmm ng.

The length of a string, neasured in non-null elenents (characters):
echo

echo '- - Quoted, G ob-Pattern references - -
echo ' Non-Nul | character count: '"${#VarSonething}"' characters."'

The length of an array, neasured in defined el enents,
#+ including null-content el enents.

echo
echo 'Defined el ement count: '"${#ArrayVar[*]}"' elements.’
|Interpretation: Substitution does not effect the ${# ... } operation

Suggestion:
Always use the All-Elements-O character
#+ if that is what is intended (independence from I FS)

Define a sinmple function

| include an underscore in the nane
#+ to make it distinctive in the exanpl es bel ow.
H#t#H

Bash separates variable nanes and function names
#+ in different nanespaces.
The Mark-One eyeball isn't that advanced.

#Hit#
_sinple() {
echo -n ' Sinpl eFunc' $@ # Newlines are swallowed in
} #+ result returned in any case.
The (...) notation invokes a command or function
The $(...) notation is pronounced: Result-Of.

618

Contributed Scripts

I nvoke the function _sinple

echo

echo '- - Qutput of function _sinmple - -'

_simle # Try passing argunents.
echo

or

(_sinple) # Try passing argunents.
echo

echo '- Is there a variable of that nanme? -'

echo $_sinple not defined # No variable by that nane.

Invoke the result of function _sinmple (Error nsg intended)

#Hit#

$(_sinple) # G ves an error nessage:

line 436: SinpleFunc: command not found
=
echo

#Hit#

The first word of the result of function _sinple

#+ is neither a valid Bash conmand nor the nane of a defined function.
#Hit#

This denonstrates that the output of _sinple is subject to evaluation
#Hit#

Interpretation:

A function can be used to generate in-line Bash commuands.

A sinple function where the first word of result 1S a bash conmand:
#Hit#

_print() {
echo -n '"printf % ' $@

}

echo '- - Qutputs of function _print - -'

_print parnml parn® # An Qut put NOT A Command.

echo

$(_print parnl parnR) # Executes: printf % parnl parn?
See above | FS exanples for the
#+ various possibilities.

echo

$(_print $Var Sonet hi ng) # The predictable result.

echo

Function vari abl es

619

Contributed Scripts

echo

echo '- - Function variables - -
A variable may represent a signed integer, a string or an array.

A string may be used like a function name with optional argunents.

set -vx # Enable if desired

declare -f funcVar #+ in nanespace of functions
funcVar =_print # Contai ns nane of function

$f uncVar parni # Sane as _print at this point.
echo

funcVar=$(_print) # Contains result of function
$f uncVar # No input, No output.

$f uncVar $Var Sonet hi ng # The predictable result.

echo

funcVar =$(_print $Var Sonet hi ng) # $Var Sonet hi ng repl aced HERE
$f uncVar # The expansion is part of the
echo #+ vari abl e contents.

funcVar ="$(_print $Var Sonet hi ng)" # $Var Sonet hi ng repl aced HERE
$f uncVar # The expansion is part of the
echo #+ vari abl e contents.

The difference between the unquoted and the doubl e-quoted versions
#+ above can be seen in the "protect_literal.sh" exanple.

The first case above is processed as two, unquoted, Bash-Wrds.

The second case above is processed as one, quoted, Bash-Wrd.

Del ayed repl acenent

o

echo

echo '- - Del ayed repl acenent - -'

funcVar="$(_print '$VarSonmething')" # No replacenment, single Bash-Wrd.
eval $funcVar # $Var Sonet hi ng repl aced HERE

echo

Var Sonet hi ng="' NewThi ng’
eval $funcVar # $Var Sonet hi ng repl aced HERE
echo

Restore the original setting trashed above.
Var Sonet hi ng=Li tera

There are a pair of functions denonstrated in the

#+ "protect literal.sh”™ and "unprotect _literal.sh" exanples.

These are general purpose functions for del ayed replacenent literals
#+ cont ai ni ng vari abl es.

620

Contributed Scripts

A string can be considered a C assic-Array of elenents (characters).
A string operation applies to all elements (characters) of the string
#+ (in concept, anyway).

#Hit#

The notation: ${array_nane[@} represents all elenents of the

#+ Bash-Array: array_nane.

#Hit#

The Extended-Syntax string operations can be applied to al

#+ el ements of an array.

#Hit#

This may be thought of as a For-Each operation on a vector of strings.
#Hit#

Paranmeters are simlar to an array.

The initialization of a paraneter array for a script

#+ and a paraneter array for a function only differ

#+ in the initialization of ${0}, which never changes its setting.

#Hit#

Subscript zero of the script's parameter array contains

#+ the name of the script.

#Hit#

Subscript zero of a function's paranmeter array DOES NOT contain

#+ the nane of the function.

The nane of the current function is accessed by the $FUNCNAME vari abl e.
#Hit#

A quick, reviewlist follows (quick, not short).

echo

echo '- - Test (but not change) - -'

echo '- null reference -'

echo -n ${VarNull-'NotSet'}"' ' # Not Set

echo ${Var Nul |} # NewLi ne only
echo -n ${VarNull:-"NotSet'}"' ' # Not Set

echo ${Var Nul |} # Newl ine only

echo '- null contents -'

echo -n ${VarEnpty-' Enpty'}"' ' # Only the space
echo ${Var Enpt y} # Newl ine only
echo -n ${VarEnpty:-'Enpty'}"' ' # Enmpty

echo ${Var Enpt y} # Newl ine only
echo '- contents -'

echo ${Var Sonet hi ng-' Content'} # Litera

echo ${Var Sonet hi ng: -' Content'} # Litera

echo '- Sparse Array -'
echo ${ArrayVar[@-' not set'}

621

Contributed Scripts

ASCI | -Art time
State Y==yes, N==no
- D
Unset Y Y ${# ... } ==
Enpty N Y ${# ... } ==
Contents N N ${# ... } >0
Either the first and/or the second part of the tests
#+ may be a command or a function invocation string
echo
echo '- - Test 1 for undefined - -'
declare -i t
_decT() {
t=$t-1
}
Null reference, set: t == -1
t =${#Var Nul | } # Results in zero.
${VarNul | - _decT } # Function executes, t now -1
echo $t

Null contents, set: t ==

t =${ #Var Enpt y} # Results in zero.

${Var Enpty- _decT } # _decT function NOT executed.
echo $t

Contents, set: t == nunber of non-null characters

Var Sonet hi ng=" _si npl €' # Set to valid function nane.
t =${ #Var Soret hi ng} # non-zero length

${ Var Sonet hi ng- _decT } # Function _sinple executed.
echo $t # Note the Append-To action

Exercise: clean up that exanple.
unset t

unset _decT

Var Sonet hi ng=Li tera

echo

echo '- - Test and Change - -'

echo '- Assignnment if null reference -'

echo -n ${VarNull =" NotSet'}" ' # Not Set Not Set

echo ${VarNul |}
unset Var Nul

echo '- Assignment if null reference -
echo -n ${VarNul|l:="NotSet'}"' ' # Not Set Not Set
echo ${VarNul |}

unset Var Nul

echo '- No assignnent if null contents -'

echo -n ${VarEnpty="Enpty'}"' ' # Space only
echo ${Var Enpt y}

Var Enpt y='

622

Contributed Scripts

echo '- Assignment if null contents -
echo -n ${VarEnpty: =' Enpty' }'
echo ${Var Enpt y}

Enpty Enpty

Var Enpt y='

echo '- No change if already has contents -'
echo ${Var Sonet hi ng=' Content'} # Litera
echo ${Var Sonet hi ng: =' Content'} # Litera

"Subscript sparse" Bash-Arrays

#Hit#

Bash-Arrays are subscript packed, beginning wth
#+ subscript zero unless otherw se specified.

#Hit#

The initialization of ArrayVar was one way

#+ to "otherw se specify". Here is the other way:
#Hit#

echo

decl are -a ArraySparse

ArraySparse=([1]=one [2]="" [4]=four"')

[0]=nul|l reference, [2]=null content, [3]=null reference
echo '- - Array-Sparse List - -'
Wthin doubl e-quotes, default IFS, G ob-Pattern

| FS=$'\ x20' $' \ x09' $' \ xOA

printf % "${ArraySparse[*]}"

echo

Note that the output does not distinguish between "null content™
#+ and "null reference".

Both print as escaped whitespace.

#Hit#

Note also that the output does NOT contain escaped whitespace
#+ for the "null reference(s)"” prior to the first defined el ement.
#Hit#

This behavior of 2.04, 2.05a and 2.05b has been reported

#+ and may change in a future version of Bash.

To output a sparse array and maintain the [subscript]=val ue
#+ rel ationship w thout change requires a bit of progranm ng.
One possible code fragnent:

#Hit#

local |=${#ArraySparse[@} # Count of defined el enments

local f=0 # Count of found subscripts

local i=0 # Subscript to test

(# Anonynous in-line function
for ((| =${#ArraySparse[@}, f =0, i =0 ; f <1 ; i++))
do

'if defined then...’
${ArraySparse[$i]+ eval echo '\ ['S$i']="${ArraySparse[$i]}
done

(C f++)) }

623

Contributed Scripts

)

The reader com ng upon the above code fragment cold

#+ m ght want to review "command lists" and "nultiple commands on a |ine"
#+ in the text of the foregoing "Advanced Bash Scripting CGuide."

#Hit#

Note:
The "read -a array_nanme" version of the "read" conmmand
#+ begins filling array_nane at subscript zero.

ArraySparse does not define a value at subscript zero
#Hit#

The user needing to read/wite a sparse array to either
#+ external storage or a communi cati ons socket nust invent
#+ a read/wite code pair suitable for their purpose.

#Hit#

Exercise: clean it up.

unset ArraySparse

echo
echo '- - Conditional alternate (But not change)- -'
echo '- No alternate if null reference -'

echo -n ${VarNul | +' Not Set"' }'

echo ${VarNul |}

unset Var Nul

echo '- No alternate if null reference -
echo -n ${VarNul|l:+' NotSet'}'

echo ${VarNul |}

unset Var Nul

echo '- Alternate if null contents -'

echo -n ${Var Enpty+' Enpty'}"' ' # Enmpty

echo ${Var Enpt y}

Var Enpt y='

echo '- No alternate if null contents -'

echo -n ${VarEnpty: + Enpty'}"' ' # Space only
echo ${Var Enpt y}

Var Enpt y='

echo '- Alternate if already has contents -'

Alternate litera
echo -n ${Var Sonet hi ng+' Content'}"' ' # Content Litera
echo ${Var Sonet hi ng}

| nvoke function

echo -n ${VarSonething:+ $(_sinple) }' ' # Sinpl eFunc Litera

echo ${Var Sonet hi ng}

echo

echo '- - Sparse Array - -'

echo ${ArrayVar[@ +' Enpty'} # An array of 'Enpty' (ies)

624

Contributed Scripts

echo
echo '- - Test 2 for undefined - -'
declare -i t
_incT() {
t=$t +1
}
Not e:

This is the same test used in the sparse array
#+ listing code fragment.

Null reference, set: t == -1
t=${#VarNull}-1 # Results in minus-one.
${VarNul I + _incT } # Does not execute.

echo $t' Null reference'

Null contents, set: t ==

t =${#Var Enpty}-1 # Results in mnus-one.

${ Var Empt y+ _incT } # Execut es.

echo $t' NMNull content

Contents, set: t == (nunmber of non-null characters)

t =${ #Var Sonet hi ng}- 1 # non-null [ength m nus-one
${ Var Sonet hi ng+ _incT } # Execut es.

echo $t' Contents'

Exercise: clean up that exanple.
unset t
unset _incT

${name?err_msg} ${nane: ?err_mnsg}

These follow the same rules but always exit afterwards

#+ if an action is specified followi ng the question mark

The action following the question mark may be a litera

#+ or a function result.

#Hit#

${name?} ${name:?} are test-only, the return can be tested.

El enent operations

echo
echo '- - Trailing sub-element selection - -'

Strings, Arrays and Positional paraneters

Call this script with multiple argunments
#+ to see the paraneter selections.

625

Contributed Scripts

echo '- Al -’
echo ${Var Sonet hi ng: 0} # all non-null characters
echo ${ArrayVar[@: 0} # all elenments with content
echo ${ @ 0} # all paranmeters with content;
ignoring paraneter][O0]
echo
echo '- Al after -'
echo ${Var Sonet hi ng: 1} # all non-null after character[0]
echo ${ArrayVar[@: 1} # all after elenment[0] wth content
echo ${ @ 2} # all after paranf{l1l] with content
echo
echo '- Range after -'
echo ${Var Sonet hi ng: 4: 3} # ral
Three characters after
character[3]
echo '- Sparse array gotch -'
echo ${ArrayVar[@: 1: 2} # four - The only element with content.

Two elenents after (if that nany exist).
the FIRST WTH CONTENTS
#+ (the FIRST WTH CONTENTS i s being
#+ considered as if it
#+ were subscript zero).
Executed as if Bash considers ONLY array elenents w th CONTENT
printf % "${ArrayVar[@:0: 3}" # Try this one

|In versions 2.04, 2.05a and 2.05b,

#+ Bash does not handl e sparse arrays as expected using this notation.
#

The current Bash maintainer, Chet Raney, has corrected this.

echo '- Non-sparse array -'
echo ${ @ 2: 2} # Two paraneters follow ng paraneter[1]

New victins for string vector exanples:

st ri ngZ=abcABC123ABCabc

arrayZ=(abcabc ABCABC 123123 ABCABC abcabc)

sparseZ=([1] = abcabc' [3]= ABCABC [4]="" [5]=' 123123)

echo

echo' - - Victimstring - -'$stringz' - - '

echo' - - Victimarray - -'${arrayZ[@}'- - '

echo ' - - Sparse array - -'${sparseZ[@}'- -

echo ' - [O]==null ref, [2]==null ref, [4]==null content - '

echo ' - [1]=abcabc [3]=ABCABC [5]=123123 - '

echo ' - non-null-reference count: '${#sparseZ[@}' elenents

echo

echo '- - Prefix sub-elenment renoval - -'

echo '- - dob-Pattern match nust include the first character. - -'
echo '- - Gob-Pattern may be a literal or a function result. - -'

626

Contributed Scripts

echo

Function returning a sinple, Literal, G ob-Pattern

_abe() {
echo -n 'abc’
}
echo '- Shortest prefix -'
echo ${stringz#123} # Unchanged (not a prefix).
echo ${stringz#$(_abc)} # ABC123ABCabc
echo ${arrayZ[@ #abc} # Applied to each el ement.
echo ${sparseZ[@ #abc} # Version-2.05b core dunps.

Has since been fixed by Chet Raney.

The -it would be nice- First-Subscript-Of

echo ${#sparseZ[@#*} # This is NOT valid Bash

echo

echo '- Longest prefix -'

echo ${stringz##1*3} # Unchanged (not a prefix)
echo ${stringz##a*C # abc

echo ${arrayZ[@ ##a*c} # ABCABC 123123 ABCABC

echo ${sparseZ[@ ##a*c} # Version-2.05b core dunps.

Has since been fixed by Chet Raney.

echo

echo '- - Suffix sub-element renoval - -'

echo '- - dob-Pattern match nust include the |ast character. - -'
echo '- - Gob-Pattern may be a literal or a function result. - -'
echo

echo '- Shortest suffix -'

echo ${stringz%i*3} # Unchanged (not a suffix).
echo ${stringZ¥%(_abc)} # abcABC123ABC

echo ${arrayZ[@ %abc} # Applied to each el ement.

echo ${sparseZ[@ %bc} # Version-2.05b core dunps.

Has since been fixed by Chet Raney.

The -it would be nice- Last-Subscript-O

echo ${#sparseZ[@ %} # This is NOT valid Bash.
echo

echo '- Longest suffix -'

echo ${stringzyed*3} # Unchanged (not a suffix)
echo ${stringZ%b*c} # a

echo ${arrayZ[@ %Wb*c} # a ABCABC 123123 ABCABC a
echo ${sparseZ[@ %Wm*c} # Version-2.05b core dunps.

Has since been fixed by Chet Raney.

echo

627

Contributed Scripts

echo '- - Sub-el enent replacenent - -'

echo '- - Sub-elenent at any location in string. - -'

echo '- - First specification is a dob-Pattern - -'

echo '- - Gob-Pattern may be a literal or dob-Pattern function result.
echo '- - Second specification may be a literal or function result. - -
echo '- - Second specification may be unspecified. Pronounce that'

echo ' as: Replace-Wth-Nothing (Delete) - -'

echo

Function returning a sinple, Literal, G ob-Pattern
-123() {

echo -n '123'
}
echo '- Replace first occurrence -
echo ${stringz/ $(_123)/999}
echo ${stringz/ ABC xyz}

echo ${arrayZ[@/ ABC xyz}
echo ${sparseZ[@/ ABC xyz}

Changed (123 is a component).
XyzABCl123ABCabc

Applied to each el enent.

Works as expected.

echo

echo '- Delete first occurrence -
echo ${stringz/ $(_123)/}

echo ${stringz/ ABC }

echo ${arrayZ[@/ ABC }

echo ${sparseZ[@/ ABC }

The replacenment need not be a literal,

#+ since the result of a function invocation is all owed.

This is general to all forns of replacenent.

echo

echo '- Replace first occurrence with Result-O -

echo ${stringz/$(_123)/$(_sinple)} # Wirks as expected.

echo ${arrayz[@/cal/ $(_sinple)} # Applied to each el ement.
#

echo ${sparsez[@/cal/ $(_sinple)} Works as expected

echo

echo '- Replace all occurrences -
echo ${stringz//[b2]/X}

echo ${stringz//abc/xyz}

echo ${arrayzZ[@//abc/ xyz}

echo ${sparsezZ[@//abc/xyz}

X-out b's and 2's
xXyzABC123ABCxyz

Applied to each el ement.
Wor ks as expect ed.

H H HH

echo

echo '- Delete all occurrences -
echo ${stringz//[b2]/}

echo ${stringz//abc/}

echo ${arrayz[@//abc/}

echo ${sparsez[@//abc/}

echo

echo '- - Prefix sub-el enment replacenent - -

628

Contributed Scripts

echo '- - Match nust include the first character. - -'

echo

echo '- Repl ace prefix occurrences -'

echo ${stringz/ #[b2]/X} # Unchanged (neither is a prefix).
echo ${stringz/ #$(_abc)/ XYz} # XYZABC123ABCabc

echo ${arrayZz[@/ #abc/ XYZ} # Applied to each el ement.

echo ${sparseZ[@/ #abc/ XYZ} # Works as expected.

echo

echo '- Delete prefix occurrences -'

echo ${stringz/ #[b2]/}
echo ${stringz/ #$(_abc)/}
echo ${arrayz[@/ #abc/}
echo ${sparsezZ[@/ #abc/}

echo

echo '- - Suffix sub-el emrent replacement - -'

echo '- - Match nust include the |ast character. - -'

echo

echo '- Repl ace suffix occurrences -'

echo ${stringz/ % b2]/X} # Unchanged (neither is a suffix).
echo ${stringz/ %(_abc)/ XYz} # abcABC123ABCXYZ

echo ${arrayZ[@/ Y%abc/ XYZ} # Applied to each el ement.
echo ${sparseZ[@/ Yabc/ XYZ} # Works as expected.

echo

echo '- Delete suffix occurrences -'

echo ${stringz/ % b2]/}
echo ${stringz/ %(_abc)/}
echo ${arrayzZ[@/ Y%abc/}
echo ${sparsezZ[@/ Y%abc/}

echo

echo '- - Special cases of null dob-Pattern - -'

echo

echo '- Prefix all -'

null substring pattern means 'prefix’

echo ${stringz/ # NEW # NEWAbcABC123ABCabc

echo ${arrayZ[@/ # NEW # Applied to each el ement.

echo ${sparseZ[@/ # NEW # Applied to null-content also.
That seens reasonabl e.

echo

echo '- Suffix all -'

null substring pattern means 'suffix’

echo ${stringz/ % NEW # abcABC123ABCabcNEW

echo ${arrayZ[@/ % NEW # Applied to each el ement.

echo ${sparseZ[@/ % NEW # Applied to null-content also.
That seens reasonabl e.

echo

629

Contributed Scripts

echo '- - Special case For-Each d ob-Pattern - -'
echo '- - - - This is a nice-to-have dream- - - -'
echo
_CGenFunc() {
echo -n ${0} # Illustration only.

Actually, that would be an arbitrary conputation

}

Al'l occurrences, matching the AnyThing pattern

Currently //*/ does not match null-content nor null-reference.
[#/ and /% does match null-content but not null-reference.
echo ${sparsez[@//*/$(_GenFunc)}

A possible syntax would be to make
#+ the paraneter notation used within this construct mnean:
${1} - The full el enent

${2} - The prefix, if any, to the matched sub-el enent

${3} - The mmtched sub-el ement

${4} - The suffix, if any, to the matched sub-el enent

#

echo ${sparsezZ[@//*/$(_CenFunc ${3})} # Same as ${1} here.
Perhaps it will be inplenented in a future version of Bash
exit O

Example A.59. Testing execution times of various commands

#1/ bi n/ bash

test-execution-tine.sh

Exanmple by Erik Brandsberg, for testing execution tine

#+ of certain operations.

Referenced in the "Optim zations" section of "Mscellany" chapter

count =50000
echo "Math tests”
echo "Math via \$(())"
time for ((1=0; i< $count; i++))
do
resul t=$(($iR))
done

echo "Math via *expr*:"
time for ((1=0; i< $count; i++))
do
resul t="expr "$i®""
done

echo "Math via *let*:"
time for ((1=0; i< $count; i++))
do

| et result=%$i w2

630

Contributed Scripts

done

echo
echo "Conditional testing tests”

echo "Test via case:"
time for ((1=0; i< $count; i++))
do
case $(($i®)) in
0) : s
1) s
esac
done

echo "Test with if [], no quotes:”
time for ((1=0; i< $count; i++))
do

if [$(($ioR)) =01, then

el se

f
done

echo "Test with if [], quotes:”
time for ((1=0; i< $count; i++))
do

if ["$((C $iR))" ="0"1,; then

el se

f
done

echo "Test with if [], using -eq:"
time for ((1=0; i< $count; i++))
do

if [$(($i%®2)) -eq 0]; then

el se

f
done

exit $?
Example A.60. Associative arrays vs. conventional arrays (execution times)

#1/ bi n/ bash

assoc-arr-test.sh

Benchmark test script to compare execution tinmes of
nuneric-indexed array vs. associative array.

Thank you, Erik Brandsberg.

631

Contributed Scripts

count =100000 # May take a while for sonme of the tests bel ow
decl are simple # Can change to 20000, if desired.

declare -a arrayl

declare -A array?2

declare -a array3

declare -A array4

echo "
echo

===Assi gnnent tests==="

echo "Assigning a sinple variable:"
References $i twice to equalize |ookup tines.
time for ((1=0; i< $count; i++)); do
sinmpl e=$i $
done

echo "---

echo "Assigning a nuneric index array entry:"

time for ((1=0; i< $count; i++)); do
arrayl{$i]=$

done

echo "---

echo "Overwiting a nuneric index array entry:"

time for ((1=0; i< $count; i++)); do
arrayl{$i]=$

done

echo "---

echo "Linear reading of numeric index array:"
time for ((1=0; i< $count; i++)); do

si npl e=arrayl[$i]
done

echo "---

echo "Assigning an associative array entry:"

time for ((1=0; i< $count; i++)); do
array2[$i]=$

done

echo "---

echo "Overwriting an associative array entry:"

time for ((1=0; i< $count; i++)); do
array2[$i]=$

done

echo "---

echo "Linear reading an associative array entry:"

632

Contributed Scripts

time for ((i=0; i< $count; i++)); do
si npl e=array?2[$i]
done

echo "---

echo "Assigning a random nunmber to a sinple variable:"
time for ((1=0; i< $count; i++)); do

si mpl e=$RANDOM
done

echo "---
echo "Assign a sparse nuneric index array entry randomy into 64k cells:"

time for ((1=0; i< $count; i++)); do
ar r ay3[$RANDOM =$i

done
echo "---

echo "Readi ng sparse numeric index array entry:"
time for value in "${array3[@}"i; do

si mpl e=$val ue
done

echo "---

echo "Assigning a sparse associative array entry randomy into 64k cells:™
time for ((1=0; i< $count; i++)); do

ar r ay4[$RANDOM =8$i
done

echo "---
echo "Readi ng sparse associative index array entry:"
time for value in "${array4[@}"; do
si mpl e=$val ue
done

exit $?

633

Appendix B. Reference Cards

The following reference cards provide a useful summary of certain scripting concepts. The foregoing text
treats these matters in more depth, as well as giving usage examples.

TableB.1. Special Shell Variables

Variable

M eaning

$0

Filename of script

$1

Positional parameter #1

$2 - $9

Positional parameters #2 - #9

${ 10}

Positional parameter #10

$#

Number of positional parameters

n $* n

All the positional parameters (as a single word) *

"$@

All the positional parameters (as separate strings)

${#*}

Number of positional parameters

${#@

Number of positional parameters

Return value

Process ID (PID) of script

Flags passed to script (using set)

Last argument of previous command

Process ID (PID) of last job run in background

* Must be quoted, otherwiseit defaultsto $@

TableB.2. TEST Operators: Binary Comparison

Operator Meaning |- Operator M eaning
Arithmetic Com- String Comparison
parison
-eq Equal to = Equal to
== Equal to
-he Not equal to I = Not equa to
-1t Lessthan \ < Lessthan (ASCII) *
-le Less than or equa
to
-gt Greater than \ > Greater than
(ASCII) *
-ge Greater than or
equal to

634

Reference Cards

Operator Meaning |- Operator M eaning
-z String is empty
-n String is not empty
Arithmetic Com-|within double
parison parentheses ((...))
> Greater than
>= Greater than or
equal to
< Lessthan
<= Less than or equa

to

* |f within a double-bracket [[...]] test construct, then no escape\ is needed.

TableB.3. TEST Operators: Files

Operator TestsWhether |- Operator Tests Whether

-e File exists -s Fileis not zero size

-f Fileisaregular file

-d Fileisadirectory -r File has read per-

mission

-h File is a symbolic -w File has write per-
link mission

-L File is a symbolic -X File has execute
link permission

-b File is a block de-
vice

-C File is a character -g sgid flag set
device

-p Fileisapipe -u suid flag set

-S Fileis asocket -k “sticky bit” set

-t File is associated
with aterminal

-N File modified since F1 -nt F2 File F1 is newer
it was last read than F2 *

-0 Y ou own thefile F1 -ot F2 FileFlisolder than

F2*
-G Group id of file F1 -ef F2 Files F1 and F2 are

same as yours

hard links to the
samefile*

635

Reference Cards

Operator TestsWhether | -----

Operator Tests Whether

! NOT (inverts sense
of above tests)

* Binary operator (requires two operands).

Table B.4. Parameter Substitution and Expansion

Expression M eaning
${var} Vaueof var (sameas$var)

${ var - $DEFAULT}

If var not set, evaluate expression as $DEFAULT *

${var: - SDEFAULT}

If var not set or is empty, evaluate expression as
$DEFAULT *

${ var =$DEFAULT}

If var not set, evaluate expression as $DEFAULT *

${ var : =$DEFAULT}

If var not set or is empty, evaluate expression as
$DEFAULT *

${ var +$OTHER}

If var set, evaluate expression as $OTHER, other-
wise as null string

${ var : +$OTHER}

If var set, evaluate expression as $OTHER, other-
wise as null string

${var ?$ERR_MSG

If var not set, print SERR_MSG and abort script
with an exit status of 1.*

${var: ?$ERR_M5G

If var not set, print $ERR_MSG and abort script
with an exit status of 1.*

${!varprefix*}

Matchesall previously declared variables beginning
withvar prefi x

${!varprefi x@

Matchesall previously declared variables beginning
withvar prefi x

* |f var isset, evaluate the expression as $var with no side-effects.

Note that some of the above behavior of operators has changed from earlier versions of Bash.

Table B.5. String Operations

Expression Meaning
${#string} Length of $stri ng

${string: position}

Extract substring from $st ri ng at $posi ti on

636

Reference Cards

Expression

M eaning

${string: position:length}

Extract $l ength characters substring from
$string a $position [zero-indexed, first
character is at position O]

${string#substring} Strip shortest match of $subst ri ng from front of
$string

${string##substri ng} Strip longest match of $subst r i ng from front of
$string

${string¥%ubstring} Strip shortest match of $subst r i ng from back of
$string

${string%substring} Strip longest match of $subst ri ng from back of
$string

${string/substring/repl acenent} Replace first match of $subst ri ng with $re-
pl acenent

${string//substring/replacenent} Replace all matches of $subst ri ng with $r e-
pl acenent

${string/#substring/replacenent} If $subst ri ng matches front end of $st ri ng,
substitute $r epl acenment for $subst ri ng

${string/ %substring/repl acenent} If $subst ri ng matches back end of $stri ng,

substitute $r epl acenent for $substri ng

expr match "$string" '$substring'

Length of matching $subst ri ng* at beginning of
$string

expr "$string" " $substring'

Length of matching $subst r i ng* at beginning of
$string

expr index "$string" $substring

Numerical position in $st ri ng of first character
in$subst ri ng* that matches [0 if no match, first
character counts as position 1]

expr substr $string $position|Extract $l engt h charactersfrom $st ri ng start-

$l ength ing a $posi tion [0if no match, first character
counts as position 1]

expr match "$string" "\ ($sub- |Extract $subst ri ng*, searching from beginning

string\)’ of $string

expr "$string" "\ ($substring\)'

Extract $subst ri ng* , searching from beginning
of $string

expr match
string\)’

"$string" '.*\($sub-

Extract $substri ng*, searching from end of
$string

expr "$string” @ '.*\($substring\)’

Extract $substri ng*, searching from end of
$string

* Where $subst r i ng isaRegular Expression.

637

Reference Cards

Table B.6. Miscellaneous Constructs

Expression I nter pretation
Brackets

if [CONDITION] Test construct

if [[CONDITION 1] Extended test construct

Array[1] =el enent 1

Array initialization

[a-z] Range of characters within a Regular Expression
Curly Brackets

${vari abl e} Parameter substitution

${!vari abl e} Indirect variable reference

{ comuandl; conmmand2; com |Block of code

mandN; }

{stringl,string2,string3,...} Brace expansion

{a..z} Extended brace expansion

{} Text replacement, after find and xargs
Parentheses

(commandl; command2) Command group executed within a subshell

Array=(el ement1l el ement 2 el ement 3)

Array initialization

resul t =$(COVWAND)

Command substitution, new style

>(COMVAND)

Process substitution

<(COVVAND)

Process substitution

Double Parentheses

((var =78))

Integer arithmetic

var=$((20 + 5))

Integer arithmetic, with variable assignment

((var++)) C-style variable increment
((var--)) C-style variable decrement
((var0O = var1<9879:21)) C-style ternary operation
Quoting

"$vari abl e" "Weak" quoting
"string' 'Strong' quoting

Back Quotes

resul t =~ COMVAND'

Command substitution, classic style

638

Appendix C. A Sed and Awk Micro-
Primer

Sed

This is a very brief introduction to the sed and awk text processing utilities. We will deal with only a
few basic commands here, but that will suffice for understanding simple sed and awk constructs within
shell scripts.

sed: anon-interactive text file editor
awk: afield-oriented pattern processing language with a C-style syntax

For al their differences, the two utilities share a similar invocation syntax, use regular expressions, read
input by default from st di n, and output to st dout . These are well-behaved UNIX tools, and they work
together well. The output from one can be piped to the other, and their combined capabilities give shell
scripts some of the power of Perl.

Note

Oneimportant difference between the utilitiesisthat while shell scripts can easily pass arguments
to sed, it ismore cumbersome for awk (see Example 36.5, “ A shell wrapper around another awk
script” and Example 28.2, “Passing an indirect reference to awk™).

Sed isanon-interactive stream editor. It receivestext input, whether from st di n or fromafile, performs
certain operations on specified lines of the input, one line at atime, then outputs the result to st dout or
to afile. Within a shell script, sed is usually one of several tool componentsin a pipe.

Sed determineswhich lines of itsinput that it will operate on from the address range passed to it. 2 Specify
this address range either by line number or by a pattern to match. For example, 3d signals sed to delete
line 3 of the input, and / W ndows/ d tells sed that you want every line of the input containing a match
to “Windows” deleted.

Of all the operations in the sed toolkit, we will focus primarily on the three most commonly used ones.
These are printing (to st dout), deletion, and substitution.

Table C.1. Basic sed operators

Operator Name Effect

[address-range] / p print Print [specified address range]

[address-range]/d delete Delete [specified address range]

s/ patternl/ pattern2/ substitute Subgtitute pattern2 for first in-
stance of patternlin aline

15ed executes without user intervention.
2If no address rangeis specified, the default isall lines.

639

A Sed and Awk Micro-Primer

Operator Name Effect

[addr ess-range] / s/ substitute Substitute pattern2 for first in-

patternl/ pattern2/ stance of patternl in aline, over
addr ess-range

[addr ess-range] /y/ transform replace any character in pat-

patternl/ pattern2/ ternl with the corresponding

character in pattern2, over ad-
dr ess-range (equivaentof tr)

[addr ess] i pattern|insert Insert pattern at address indicat-

Fi | ename ed in file Filename. Usually used
with-i i n- pl ace option.

g global Operate on every pattern match

within each matched line of input

Note

Unless the g (global) operator is appended to a substitute command, the substitution operates
only on thefirst instance of a pattern match within each line.

From the command-line and in a shell script, a sed operation may require quoting and certain options.

sed -e '/"$/d" $filenane

The -e option causes the next string to be interpreted as an editing instruction
(If passing only a single instruction to sed, the "-e" is optional.)

The "strong" quotes ('') protect the RE characters in the instruction

#+ fromreinterpretation as special characters by the body of the script.

(This reserves RE expansion of the instruction for sed.)

#

Qperates on the text contained in file $fil enane.

In certain cases, a sed editing command will not work with single quotes.
filenanme=filel.txt
pattern=BEG N

sed "/"$pattern/d" "$fil ename” # Wirks as specified.

sed '/ $pattern/d "$filenanme" has unexpected results.
In this instance, with strong quoting (' ... '),
#+ "$pattern” will not expand to "BEG N'.

Note

Sed uses the - e option to specify that the following string is an instruction or set of instructions.
If there is only asingle instruction contained in the string, then this may be omitted.

sed -n '/xzy/p' $fil enanme

The -n option tells sed to print only those lines matching the pattern.

Oherwise all input Iines would print.

The -e option not necessary here since there is only a single editing instructio

A Sed and Awk Micro-Primer

Table C.2. Examples of sed operators

Notation Effect

8d Delete 8th line of input.

/"$/d Delete al blank lines.

1,/"°$/d Delete from beginning of input up to, and including
first blank line.

/ Jones/ p Print only lines containing “Jones” (with -n option).

s/ W ndows/ Li nux/ Substitute “Linux” for first instance of “Windows”
found in each input line.

s/ BSOD/ stability/g Substitute “ stability” for every instance of “BSOD”
found in each input line.

sl *$// Delete all spaces at the end of every line.

s/ 00*/0/ g Compress all consecutive sequences of zeroes into
asingle zero.

echo "Wbrking on it." | sed -e '1i |Prints"How far areyou aong? asfirst line, "Work-

How far are you al ong?' ing on it" as second.

5i "Linux is great.' file.txt Inserts'Linux isgreat.' at line 5 of thefile file.txt.

/G /d Delete dl lines containing “GUI”.

s/IGU//g Deleteal instances of “GUI”, leaving the remainder

of each line intact.

Substituting a zero-length string for another is equivalent to deleting that string within aline of input. This
leaves the remainder of the lineintact. Applyings/ GUI / / totheline

The nost inportant parts of any application are its GUJI and sound effects
resultsin
The nost inportant parts of any application are its and sound effects

A backslash forces the sed replacement command to continue on to the next line. This has the effect of
using the newline at the end of the first line as the replacement string.

sin *[\
lg

This substitution replaces line-beginning spaces with a newline. The net result is to replace paragraph
indents with a blank line between paragraphs.

An address range followed by one or more operations may require open and closed curly brackets, with
appropriate newlines.

/10-9A-Za-z]/,/7$/{
/78l d
}

This deletes only the first of each set of consecutive blank lines. That might be useful for single-spacing
atext file, but retaining the blank line(s) between paragraphs.

641

A Sed and Awk Micro-Primer

Note

The usual delimiter that sed usesis /. However, sed allows other delimiters, such as %. Thisis
useful when/ispart of areplacement string, asin afile pathname. See Example 11.10, “ Checking
all the binaries in a directory for authorship” and Example 16.32, “ Stripping comments from C
program files’.

Tip

A quick way to double-space atext fileissed G fil enane.
For illustrative examples of sed within shell scripts, see:
1. Example 36.1, “shell wrapper”
2. Example 36.2, “ A dlightly more complex shell wrapper”

3. Example 16.3, “Badname, eliminatefile namesin current directory containing bad charactersand white-
space.”

4. Example A.2, “rn: A simple-minded file renaming utility”

5. Example 16.17, “Emulating grep in ascript”

6. Example 16.27, “Using column to format a directory listing”

7. Example A.12, “behead: Removing mail and news message headers”
8. Example A.16, “tree: Displaying a directory tree’

9. Example A.17, “tree2: Alternate directory tree script”

10.Example 16.32, “ Stripping comments from C program files’
11.Example 11.10, “Checking al the binaries in a directory for authorship”
12 Example 16.48, “Base Conversion”

13.Example A.1, “mailformat: Formatting an e-mail message”
14.Example 16.14, “ Generating 10-digit random numbers’

15.Example 16.12, “Word Frequency Analysis’

16.Example A.10, “ Game of Life”

17 Example 19.12, “ A self-documenting script”

18.Example 16.19, “Looking up definitions in Webster's 1913 Dictionary”
19.Example A.29, “ Spammer Hunt”

20.Example A.31, “A podcasting script”

21.Example A.24, “ Converting to HTML”

642

A Sed and Awk Micro-Primer

Awk

22 Example A.43, “ A command-line stopwatch”
23.Example A.55, “Inserting text in afile using sed”

For amore extensive treatment of sed, refer to the pertinent references in the Bibliography.

Awk 2 is a full-featured text processing language with a syntax reminiscent of C. While it possesses an
extensive set of operators and capabilities, we will cover only afew of these here - the ones most useful
in shell scripts.

Awk breakseach lineof input passedtoitinto fields. By default, afieldisastring of consecutive characters
delimited by whitespace, though there are options for changing this. Awk parses and operates on each
separate field. This makes it ideal for handling structured text files -- especially tables -- data organized
into consistent chunks, such as rows and columns.

Strong quoting and curly brackets enclose blocks of awk code within a shell script.

$1 is field #1, $2 is field #2, etc.

echo one two | awk '{print $1}'
one

echo one two | awk '{print $2}'
two

But what is field #0 ($0)?
echo one two | awk '{print $0}'
one two

Al the fields!

awk '{print $3}' $filenane
Prints field #3 of file $fil ename to stdout.

awk '{print $1 $5 $6}' $filenane
Prints fields #1, #5, and #6 of file $fil enane.

awk '{print $0}' $filenane
Prints the entire file!
Same effect as: cat $filename . . . or . . . sed '' $filenane

We have just seen the awk print command in action. The only other feature of awk we need to deal with
here is variables. Awk handles variables similarly to shell scripts, though a bit more flexibly.

{ total += ${colum_nunber} }

This adds the value of col umm_nunber to the running total of t ot al >. Finaly, to print “total”, there
isan END command block, executed after the script has processed all itsinput.

END { print total }

3Its name derives from the initials of its authors, Aho, Wei nberg, and K ernighan.

643

A Sed and Awk Micro-Primer

Corresponding to the END, there is a BEGIN, for a code block to be performed before awk starts pro-
cessing itsinput.

The following example illustrates how awk can add text-parsing tools to a shell script.

Example C.1. Counting L etter Occurrences

#! [/ bin/sh
letter-count2.sh: Counting letter occurrences in a text file.

#
#
Script by nyal [nyal @oila.fr].

Used in ABS Guide with perm ssion

Recommented and reformatted by ABS Gui de aut hor

Version 1.1: Mddified to work with gawk 3.1.3.

(WIIl still work with earlier versions.)

I NI T_TAB_AVWK=""

Parameter to initialize awk script.
count _case=0

FI LE_PARSE=$1

E_PARAMERR=85

usage()

{
echo "Usage: letter-count.sh file letters" 2>&1
For exampl e: ./letter-count2.sh filenane.txt a b c
exit $E_PARAMERR # Too few argunents passed to script.

}

if [! -f "$1"] ; then

echo "$1: No such file." 2>&1

usage # Print usage message and exit.
f

if [-z "$2"] ; then
echo "$2: No letters specified." 2>&1
usage

f

shift # Letters specified.
for letter in “echo $@ # For each one
do
I NI T_TAB_AWK="$I NI T_TAB_AWK t ab search[${count _case}] =\
\"$letter\"; final_tab[${count_case}] = O;
Pass as parameter to awk script bel ow.
count _case="expr $count _case + 1°
done

DEBUG
echo $I NI T_TAB_AVK;

cat $FI LE_PARSE

A Sed and Awk Micro-Primer

Pipe the target file to the follow ng awk script.

Earlier version of script:
awk -v tab_search=0 -v final _tab=0 -v tab=0 -v \
nb_letter=0 -v chara=0 -v chara2=0 \

awk \

"BEGA N { $INIT_TAB_ AWK } \

{ split(\$0, tab, \"\"); \

for (chara in tab) \

{ for (chara2 in tab_search) \

{ if (tab_search[chara2] == tab[chara]) { final _tab[chara2]++ } } } } \
END { for (chara in final_tab) \

{ print tab_search[chara] \" => \" finpal _tab[chara] } }"

Nothing all that conplicated, just
#+ for-loops, if-tests, and a couple of specialized functions.

exit $?

Compare this script to letter-count. sh.

For simpler examples of awk within shell scripts, see:

1. Example 15.14, “Forcing alog-off”

2. Example 20.8, “Redirected for loop”

3. Example 16.32, “ Stripping comments from C program files”

4. Example 36.5, “ A shell wrapper around another awk script”

5. Example 28.2, “Passing an indirect reference to awk”

6. Example 15.20, “Using export to pass a variable to an embedded awk script”
7. Example 29.3, “Finding the process associated with a PID”

8. Example 29.4, “On-line connect status’

9. Example 11.3, “Fileinfo: operating on afile list contained in avariable’
10.Example 16.61, “ Securely deleting afile’

11.Example 9.16, “Reseeding RANDOM”

12 Example 16.4, “Deleting afile by itsinode number”

13.Example 10.6, “Alternate ways of extracting and locating substrings’
14.Example 36.19, “Even more return value trickery”

15.Example 11.9, “Listing all users on the system”

16.Example 36.4, “ A shell wrapper around an awk script”

645

A Sed and Awk Micro-Primer

17 Example 16.53, “ Calculating the hypotenuse of atriangle”
18.Example T.3, “A third ASCI| table script, using awk”

That's all the awk we'll cover here, folks, but there's lots more to learn. See the appropriate referencesin
the Bibliography.

646

Appendix D. Parsing and Managing
Pathnames

Emmanual Rouat contributed the following example of parsing and transforming filenames and, in partic-
ular, pathnames. It draws heavily on the functionality of sed.

#!/ usr/ bi n/ env bash
Managenent of PATH, LD LI BRARY_PATH, MANPATH vari abl es. .
By Emanuel Rouat <no-enail >
(I'nspired by the bash docunentation 'pathfuncs' and on
di scussions found on stackoverfl ow
http://stackoverfl ow. com questions/ 370047/
http://stackoverfl ow. conif questi ons/ 273909/ #346860)
Last nodified: Sat Sep 22 12:01:55 CEST 2012

The foll owi ng functions handl e spaces correctly.
These functions belong in .bash profile rather than in
. bashrc, | guess.

The nodul ar aspect of these functions should nake it easy
to expand themto handle path substitutions instead
of path renpval etc...

See http://ww. cat onnat. net/ bl og/ awk- one- | i ners-expl ai ned- part-two/
(item 43) for an explanation of the 'duplicate-entries' renoval
(it's a nice trick!)

HHR I HFEHFHEHFHFHHF R HF R

Show $@ (usually PATH) as list.
function p_show() { local p="%$@ && for p; do [[${!p}]] &&
echo -e ${!p//:/\\n}; done }

Filter out enmpty lines, nultiple/trailing slashes, and duplicate entries.
function p filter()
{ awk "/~ \t]1*$/ {next} {sub(/\/+$/, "");gsub(/\/+/, "/")}!Ix[$0]++ ;}

Rebuild list of itens into ':' separated word (PATH i ke).
function p_build() { paste -sd: ;}

Cean $1 (typically PATH) and rebuild it
function p_clean()
{ local p=%{1} && eval ${p}="$(p_show ${p} | p_filter | p_build)' ;}

Renpbve $1 from $2 (found on stackoverflow, with nodifications).
function p_rm)
{ local d=$(echo $1 | p_filter) p=${2} &&

eval ${p}="$(p_show ${p} | p_filter | grep -xv "${d}" | p_build)" ;}

Sane as previous, but filters on a pattern (dangerous..
#+ don't use 'bin' or '/' as pattern!).

647

Parsing and Managing Pathnames

function p_rnpat()
{ local d=$(echo $1 | p_filter) p=%{2} && eval ${p}="$(p_show ${p}
p_filter | grep -v "${d}" | p_build)"' ;}

Delete $1 from $2 and append it cleanly.

function p_append()

{ local d=$(echo $1 | p_filter) p=%${2} & & p_rm"${d}" ${p} &&
eval ${p}="$(p_show ${p} d | p_build)" ;}

Delete $1 from $2 and prepend it cleanly.

function p_prepend()

{ local d=$(echo $1 | p_filter) p=%${2} & & p_rm"${d}" ${p} &&
eval ${p}="$(p_show d ${p} | p_build)" ;}

Some tests:

echo

MYPATH="/Dbi n:/usr/bin/:/bin://bin/"

p_append "/ project//ny project/bin" MYPATH

echo "Append '/project//ny project/bin" to '/bin:/usr/bin/:/bin://bin/""
echo "(result should be: /bin:/usr/bin:/project/ny project/bin)"

echo $MYPATH

echo

MYOTHERPATH="/ bi n: /usr/ bin/:/bin:/project//my project/bin"
p_prepend "/project//my project/bin" MYOTHERPATH

echo "Prepend '/project//ny project/bin \

to '/bin:/usr/bin/:/bin:/project//nmy project/bin/""

echo "(result should be: /project/my project/bin:/bin:/usr/bin)"
echo $MYOTHERPATH

echo

p_prepend "/project//ny project/bin" FOOPATH # FOOPATH doesn't exist.
echo "Prepend '/project//ny project/bin" to an unset variable"

echo "(result should be: /project/my project/bin)"

echo $FOOPATH

echo

BARPATH="/a:/b/://b c://a:/ny | ocal pub"

p_cl ean BARPATH

echo "Cl ean BARPATH='/a:/b/://b c://a:/my |ocal pub""
echo "(result should be: /a:/b:/b c:/ny |local pub)"”
echo $BARPATH

* k%

David Wheeler kindly permitted me to use his instructive examples.

Doing it correctly: A quick summary
by David Wheel er
htt p: // ww. dwheel er. com essays/fil enames-in-shell. htm

So, how can you process filenanes correctly in shell? Here's a quick
summary about how to do it correctly, for the inpatient who "just want the
answer"”. | n short: Double-quote to use "$variable" instead of $variable,

648

Parsing and Managing Pathnames

set IFS to just newine and tab, prefix all globs/filenames so they cannot
begin with "-" when expanded, and use one of a few tenplates that work
correctly. Here are sone of those tenplates that work correctly:

| FS="$(printf "\n\t"')"
Renmove SPACE, so filenanmes with spaces work well.

Correct gl ob use:
#+ al ways use "for" |oop, prefix glob, check for existence

for filein ./* ; do # Use "./*" ... NEVER bare "*" ..
if [-e "$file"] ; then # Make sure it isn't an enpty match.
COWAND ... "$file"
f
done

Correct glob use, but requires nonstandard bash extension
shopt -s nullglob # Bash extension,
#+ so that enpty gl ob matches will work.

for filein ./* ; do # Use "./*", NEVER bare "*"
COVWAND ... "$file"
done

These handle all filenanes correctly;

#+ can be unwieldy if COWAND is |arge

find ... -exec COWAND... {} \;

find ... -exec COWAND... {} \+ # If multiple files are okay for COMVAND.

This skips filenames with control characters
#+ (including tab and newine).

| FS="$(printf "\n\t"')"

control chars="$(printf "*[\001-\037\177]*")"

for file in $(find . ! -name "$control chars"') ; do
COVMVAND " $fi | e"
done

GCkay if filenames can't contain tabs or newines --
#+ beware the assunption.
| FS="$(printf "\n\t"')"
for file in $(find .) ; do
COVVAND " $fi | e"
done

Requi res nonstandard but conmon extensions in find and xargs:

649

Parsing and Managing Pathnames

find . -print0O | xargs -0 COVMVAND

Requi res nonstandard extensions to find and to shell (bash works).
variables mght not stay set once the | oop ends:
find . -printO | while IFS="" read -r -d "" file ; do ..
COMVAND "$file" # Use quoted "$file", not $file, everywhere.
done

Requires nonstandard extensions to find and to shell (bash works).
Underlying system nust include named pipes (FlIFGs)

#+ or the /dev/fd nmechani sm

1In this version, variables *do* stay set after the | oop ends,

and you can read fromstdin

#+ (Change the 4 to another nunber if fd 4 is needed.)

while IFS="" read -r -d "" file <&4 ; do
COVMAND " $fi | e" # Use quoted "$file" -- not $file, everywhere.
done 4< <(find . -print0)

Naned pi pe version.
Requi res nonstandard extensions to find and to shell's read (bash ok).
Under | yi ng system nust include named pipes (FIFGs).

Again, in this version, variables *do* stay set after the | oop ends,
and you can read from stdin.

(Change the 4 to something else if fd 4 needed).

HHHHH R

nkfifo nypipe

find . -print0 > nmypi pe &
while IFS="" read -r -d "" file <&4 ; do

COMVAND "$file" # Use quoted "$file", not $file, everywhere.
done 4< nypi pe

650

Appendix E. Exit Codes With Special

Meanings

Table E.1. Reserved Exit Codes

Exit Code Number Meaning Example Comments
1 Catchall for general er-|let "varl = 1/0" Miscellaneous errors,
rors such as “divide by zero”
and other impermissible
operations
2 Misuse of shell builtins|empty function() {} Missing keyword or
(according to Bash docu- command, or permission
mentation) problem (and diff return
code on a failed binary
file comparison).
126 Command invoked can-|/dev/null Permission problem or
not execute command is not an exe-
cutable
127 “command not found” |illegal_command Possible problem with
$PATHor atypo
128 Invalid argument to exit |exit 3.14159 exit takes only integer
args in the range O - 255
(seefirst footnote)
128+n Fatal error signa “n” kill -9 $PPI Dof script |$7? returns 137 (128 + 9)
130 Script terminated by|Ctl-C Control-C is fatal error
Control-C signal 2, (130 = 128 + 2,
see above)
255* Exit status out of range |exit -1 exit takes only integer
argsintherange O - 255

According to the above table, exit codes 1 - 2, 126 - 165, and 255 ! have special meanings, and should
therefore be avoided for user-specified exit parameters. Ending a script with exit 127 would certainly
cause confusion when troubleshooting (is the error code a*“ command not found” or a user-defined one?).
However, many scripts use an exit 1 as ageneral bailout-upon-error. Since exit code 1 signifies so many
possible errors, it is not particularly useful in debugging.

There has been an attempt to systematize exit statusnumbers (see/ usr /i ncl ude/ sysexi t s. h), but
thisis intended for C and C++ programmers. A similar standard for scripting might be appropriate. The
author of this document proposes restricting user-defined exit codes to the range 64 - 113 (in addition
to O, for success), to conform with the C/C++ standard. This would alot 50 valid codes, and make trou-

Tout of range exit values can result in unexpected exit codes. An exit value greater than 255 returns an exit code modulo 256. For example, exit
3809 gives an exit code of 225 (3809 % 256 = 225).

651

Exit Codes With Special Meanings

bleshooting scripts more straightforward. 2 All user-defined exit codes in the accompanying examples to
this document conform to this standard, except where overriding circumstances exist, asin Example 9.2,
“Timed Input”.

Note

Issuing a$?from the command-line after ashell script exits givesresults consistent with the table
above only from the Bash or sh prompt. Running the C-shell or tcsh may give different values
in some cases.

2An update of / usr/incl ude/ sysexi ts. h alocates previously unused exit codes from 64 - 78. It may be anticipated that the range of
unallotted exit codes will be further restricted in the future. The author of this document will not do fixups on the scripting examples to conform
to the changing standard. This should not cause any problems, since there is no overlap or conflict in usage of exit codes between compiled C/C
++ binaries and shell scripts.

652

Appendix F. A Detailed Introduction to
/O and I/O Redirection

written by Séphane Chazelas, and revised by the document author

A command expectsthe first threefile descriptorsto be available. Thefirst, fd O (standard input, st di n),
isfor reading. The other two (fd 1, st dout and fd 2, st der r) are for writing.

Thereisast di n,st dout ,andast der r associated with eachcommand.| s 2>&1 meanstemporarily
connecting the st der r of thels command to the same “resource” asthe shell'sst dout .

By convention, a command reads its input from fd O (st di n), prints normal output to fd 1 (st dout),
and error ouput to fd 2 (st der r). If one of those three fd's is not open, you may encounter problems:

bash$ cat /etc/passwd >&
cat: standard output: Bad file descriptor

For example, when xterm runs, it first initializes itself. Before running the user's shell, xterm opens the
terminal device (/dev/pts/<n> or something similar) three times.

At this point, Bash inherits these three file descriptors, and each command (child process) run by Bash
inheritsthem in turn, except when you redirect the command. Redirection meansreassigning one of thefile
descriptors to another file (or a pipe, or anything permissible). File descriptors may be reassigned locally
(for a command, a command group, a subshell, a while or if or case or for loop...), or globally, for the
remainder of the shell (using exec).

I's > /dev/ nul |l meansrunninglswithitsfd 1 connectedto/ dev/ nul I .

bash$ Isof -a -p $$ -d0, 1,2

COWAND PI D USER FD TYPE DEVI CE SI ZE NCDE NAME
bash 363 bozo Ou CHR 136,1 3 /dev/pts/1
bash 363 bozo 1lu CHR 136,1 3 /dev/pts/1
bash 363 bozo 2u CHR 136,1 3 /dev/pts/1

bash$ exec 2> /dev/null
bash$ Isof -a -p $$ -d0, 1,2

COWAND PI D USER FD TYPE DEVI CE SI ZE NODE NAME
bash 371 bozo Ou CHR 136,1 3 /dev/pts/1
bash 371 bozo 1lu CHR 136,1 3 /dev/pts/1
bash 371 bozo 2w CHR 1,3 120 /dev/nul |

bash$ bash -¢ 'Isof -a -p $$ -d0,1,2' | cat
COVWAND PI D USER FD TYPE DEVI CE SI ZE NODE NAME

| sof 379 root Ou CHR 136,1 3 /dev/pts/1
| sof 379 root 1w FIFO 0,0 7118 pi pe
| sof 379 root 2u CHR 136,1 3 /dev/pts/1

653

A Detailed Introduction
to 1/0 and /O Redirection

bash$ echo "$(bash -c 'Isof -a -p $$ -d0,1,2" 2>&1)"
COWAND PI D USER FD TYPE DEVI CE SI ZE NODE NAME

| sof 426 r oot Ou CHR 136,1 3 /dev/pts/1
| sof 426 r oot 1w FIFO 0,0 7520 pi pe
| sof 426 r oot 2w FI FO 0,0 7520 pi pe

Thisworks for different types of redirection.
Exer ci se: Analyze the following script.

#! /usr/ bin/env bash

nkfifo /tnp/fifol /tnp/fifo2
while read a; do echo "FIFOL: $a"; done < /tnp/fifol & exec 7> /tnp/fifol
exec 8> >(while read a; do echo "FD8: $a, to fd7"; done >&7)

exec 3>&1

(
(

(
while read a; do echo "FIFQ2: $a"; done < /tnp/fifo2 | tee /dev/stderr \

| tee /dev/fd/4 | tee /dev/fd/5 | tee /dev/fd/6 >&7 & exec 3> /tnp/fifo2

echo 1st, to stdout
sleep 1

echo 2nd, to stderr >&2
sleep 1

echo 3rd, to fd 3 >&3
sleep 1

echo 4th, to fd 4 >&4
sleep 1

echo 5th, to fd 5 >&5
sleep 1

echo 6th, through a pipe | sed 's/.*/PIPE: & to fd 5/' >&5
sleep 1

echo 7th, to fd 6 >&6
sleep 1

echo 8th, to fd 7 >&7
sleep 1

echo 9th, to fd 8 >&8

) 4>&1 >&3 3>& | while read a; do echo "FD4: $a"; done 1>&3 5>& 6>&
) 5>&1 >&3 | while read a; do echo "FD5: $a"; done 1>&3 6>&
) 6>&1 >&3 | while read a; do echo "FD6: $a"; done 3>&
rm-f /top/fifol /tnp/fifo2
For each conmmand and subshell, figure out which fd points to what.

CGood | uck!

exit O

654

Appendix G. Command-Line Options

Many executables, whether binaries or script files, accept options to modify their run-time behavior. For
example: from the command-line, typing command -0 would invoke command, with option o.

Standard Command-Line Options

Over time, there has evolved aloose standard for the meanings of command-line option flags. The GNU
utilities conform more closely to this“standard” than older UNIX utilities.

Traditionally, UNIX command-line options consist of a dash, followed by one or more lowercase |etters.
The GNU utilities added a double-dash, followed by a complete word or compound word.

The two most widely-accepted options are:
* -h

--help

Help: Give usage message and exit.
e -V

--version

Version: Show program version and exit.
Other common options are:
e -a

--all

All: show all information or operate on all arguments.
o -1

--list

List: list files or arguments without taking other action.
-0

Output filename
°-q

- - qui et

Quiet: suppressst dout .
o -

-R

--recursive

655

Command-Line Options

Recursive: Operate recursively (down directory tree).

-V

--verbose

Verbose: output additional information to st dout or st derr .
-z

--conpress

Compress: apply compression (usually gzip).

However:

A complete table of recommended options for the GNU tilities is available at the GNU standards page

Intar and gawk:

-f

--file

File: filename follows.
Incp, mv, rm:

-f

--force

Force: force overwrite of target file(s).

Caution

Many UNIX and Linux utilities deviate from this “ standard,” so it is dangerous to assume that
a given option will behave in a standard way. Always check the man page for the command in

guestion when in doubt.

[http://www.gnu.org/prep/standards/].

Bash

Bash itself has a number of command-line options. Here are some of the more useful ones.

Command-Line Options

-C

Read commands from the following string and assign any arguments to the positional parameters.

bash$ bash -c 'set a b c d; IFS="+-;"; echo "$*"'

at+b+c+d

656

http://www.gnu.org/prep/standards/
http://www.gnu.org/prep/standards/

Command-Line Options

-r

--restricted

Runs the shell, or a script, in restricted mode.
--posi x

Forces Bash to conform to POSI X mode.
--version

Display Bash version information and exit.

End of options. Anything further on the command line is an argument, not an option.

657

Appendix H. Important Files

startup files
These files contain the aliases and environmental variables made available
to Bash running as a user shell and to all Bash scriptsinvoked after system
initialization.

/etc/profile Systemwide defaults, mostly setting the environment (all Bourne-type
shells, not just Bash %)

/ et c/ bashrc systemwide functions and aliases for Bash

$HOVE/ . bash_profil e user-specific Bash environmental default settings, found in each user's
home directory (thelocal counterpartto/ et c/ profil e)

$HOVE/ . bashrc user-specific Bash init file, found in each user's home directory (the loca
counterpart to / et ¢/ bashr ¢). Only interactive shells and user scripts
read thisfile. See Appendix M, Sample. bashr c and. bash_profile
Filesfor asample. bashr c file.

logout file

$HOVE/ . bash_| ogout user-specific instruction file, found in each user's home directory. Upon exit
from alogin (Bash) shell, the commandsin this file execute.

datafiles

/ et c/ passwd A listing of al the user accounts on the system, their identities, their home directories,
the groups they belong to, and their default shell. Note that the user passwords are not
stored in thisfile, 2butin/ et ¢/ shadowin encrypted form.

system configuration files

/ et c/ sysconfi g/ hwconf Listing and description of attached hardware devices. This information
isin text form and can be extracted and parsed.

bash$ grep -A 5 AUDI O /etc/sysconfi g/ hweconf
class: AUDI O

bus: PCl

detached: O

driver: snd-intel 8x0

desc: "Intel Corporation 82801CA/ CAM AC 97 Audi o Controll er
vendor |l d: 8086

Note

Thisfileis present on Red Hat and Fedora Core installations,
but may be missing from other distros.

1This does not apply to csh, tesh, and other shells not related to or descended from the classic Bourne shell (sh).
2In older versions of UNIX, passwords were stored in/ et ¢/ passwd, and that explains the name of the file.

658

Appendix |. Important System
Directories

Sysadmins and anyone el se writing administrative scripts should beintimately familiar with the following
system directories.

e /bin

Binaries (executables). Basic system programs and utilities (such as bash).
« /usr/bint

More system binaries.
e /usr/local/bin

Miscellaneous binaries local to the particular machine.
* /sbin

System binaries. Basic system administrative programs and utilities (such as fsck).
e /usr/sbin

More system administrative programs and utilities.
« Jetc

Et cetera. Systemwide configuration scripts.

Of particular interest arethe/ et c/ f st ab (filesystemtable),/ et ¢/ nt ab (mounted filesystemtable),
andthe/ et c/inittab files.

« /etc/rc.d
Boot scripts, on Red Hat and derivative distributions of Linux.
* /usr/share/ doc
Documentation for installed packages.
e /usr/man
The systemwide manpages.
+ /dev

Device directory. Entries (but not mount points) for physical and virtual devices. See Chapter 29, /
dev and/ proc.

1some early UNIX systems had afast, small-capacity fixed disk (containing / , the root partition), and a second drive which was larger, but slower
(containing / usr and other partitions). The most frequently used programs and utilities therefore resided on the small-but-fast drive, in/ bi n, and
the others on the slower drive, in/ usr/ bi n.

This likewise accounts for the split between/ sbi nand/ usr/sbin,/liband/usr/lib, etc.

659

Important System Directories

/ proc

Process directory. Contains information and statistics about running processes and kernel parameters.
See Chapter 29, / dev and/ pr oc.

/ sys

Systemwide device directory. Contains information and statistics about device and device names. This
is newly added to Linux with the 2.6.X kernels.

/ mt

Mount. Directory for mounting hard drive partitions, suchas/ rt / dos, and physical devices. In newer
Linux distros, the/ nedi a directory has taken over as the preferred mount point for 1/0O devices.

/ medi a

In newer Linux distros, the preferred mount point for 1/O devices, such as CD/DVD drives or USB
flash drives.

[var

Variable (changeable) system files. Thisis a catchall “scratchpad” directory for data generated while
aLinux/UNIX machineisrunning.

/var/l og
Systemwide log files.

[var/ spool / mai |
User mail spool.

/lib

Systemwide library files.
lusr/lib

More systemwide library files.
/[tmp

System temporary files.

/ boot

System boot directory. The kernel, module links, system map, and boot manager reside here.
Warning

Altering filesin this directory may result in an unbootable system.

660

Appendix J. An Introduction to
Programmable Completion

The programmable completion feature in Bash permitstyping apartial command, then pressing the [T ab]
key to auto-complete the command sequence. L1 multi ple completions are possible, then [Tab] liststhem
all. Let's see how it works.

bash$ xtra[Tab]

xtraceroute xtrapin xtrapproto
xtraceroute.real xtrapinfo xt rapr eset
xtrapchar xt r apout xtrapstats

bash$ xtrac[Tab]
xtraceroute xtraceroute. real

bash$ xtraceroute.r[Tab]
xtraceroute. real

Tab completion also works for variables and path names.

bash$ echo $BASH Tab]

$BASH $BASH_COVPLETI ON $BASH_SUBSHELL
$BASH_ARGC $BASH_COVPLETI ON_DIR $BASH_VERSI NFO
$BASH_ARGV $BASH_LI NENO $BASH_VERSI ON
$BASH_COVMAND $BASH_SOURCE

bash$ echo /usr/Ilocal /[Tab]
bi n/ etc/ i ncl ude/ 1ibexec/ shin/ src/
doc/ ganes/ lib/ man/ shar e/

The Bash complete and compgen builtins make it possible for tab completion to recognize partial para-
meters and options to commands. In avery simple case, we can use complete from the command-line to
specify a short list of acceptable parameters.

bash$ touch sanpl e_command

bash$ touch filel.txt file2.txt file2.doc file30.txt file4.zzz
bash$ chnod +x sanpl e_conmand

bash$ conplete -f -X 'I*. txt' sanple_comand

Thisworks only from the command line, of course, and not within a script.

661

An Introduction to Pro-
grammable Completion

bash$./sanpl e[Tab] [Tab]
sampl e_conmmand
filel.txt file2. txt file30.txt

The- f option to complete specifies filenames, and - X the filter pattern.

For anything more complex, we could write a script that specifiesalist of acceptable command-line para-

meters. The compgen builtin expands a list of arguments to generate completion matches.

Let us take a modified version of the UseGetOpt.sh script as an example command. This script accepts
anumber of command-line parameters, preceded by either a single or double dash. And here isthe corre-
sponding completion script, by convention given a filename corresponding to its associated command.

Example J.1. Completion script for UseGetOpt.sh

file: UseGetOpt-2
UseCGet Opt - 2. sh paraneter-conpl etion

_UseCGet Opt-2 () # By convention, the function nane
{ #+ starts with an underscore.

| ocal cur

Pointer to current conpletion word.

By convention, it's naned "

cur" but this isn't strictly necessary.

COVMPREPLY=() # Array variable storing the possible conpletions.

cur =${ COVP_WORDS[COVP_CWORD) }

case "$cur" in

- %)

COWREPLY=($(compgen -W'-a -d -f -1 -t -h --aoption --debug \

--file --log --test --help --'

-- Seur))5

Generate the conpletion matches and | oad theminto $COVPREPLY arr ay.
xx) May add nore cases here.
YY)
z22)
esac
return O
}
conplete -F _UseGetOpt-2 -0 fil enanes ./ UseGet Opt-2.sh
AN NANNNANANANA | nvokes the function _UseGet Opt - 2.
Now, let'stry it.

bash$ source UseGet Opt -2

bash$./ UseGet Opt-2.sh -[Tab]
-- --aoption --debug --file --help --log
-a -d -f -h -1 -t

--test

662

An Introduction to Pro-
grammable Completion

bash$./ UseGet Opt-2.sh --[Tab]
-- --aoption --debug --file --help --log --test

We begin by sourcing the “ completion script.” This sets the command-line parameters. 2

In the first instance, hitting [Tab] after a single dash, the output is all the possible parameters preceded
by one or more dashes. Hitting [Tab] after two dashes gives the possible parameters preceded by two or
mor e dashes.

Now, just what is the point of having to jump through flaming hoops to enable command-line tab com-
pletion? It saves keystrokes. 3

Resour ces:
Bash programmable completion [http://freshmeat.net/proj ects/bashcompletion] project

Mitch Frazier's Linux Journal [http://www.linuxjournal.com] article, More on Using the Bash Complete
Command [http://www.linuxjournal .com/content/more-using-bash-compl ete-command]

Steve's excellent two-part article, “An Introduction to Bash Completion™: Part 1 [http://www.debian-
administration.org/article/An_introduction_to_bash _completion_part_1] and Part 2 [http://www.debian-
administration.org/article/An_introduction_to_bash_completion_part_2]

2Normally the default parameter completion files reside in either the / et ¢/ profi | e. d directory or in/ et c/ bash_conpl eti on. These
autoload on system startup. So, after writing a useful completion script, you might wish to moveit (asroot, of course) to one of these directories.
31t has been extensively documented that programmers are willing to put in long hours of effort in order to save ten minutes of “unnecessary” labor.
Thisisknown as optimization.

663

http://freshmeat.net/projects/bashcompletion
http://freshmeat.net/projects/bashcompletion
http://www.linuxjournal.com
http://www.linuxjournal.com
http://www.linuxjournal.com/content/more-using-bash-complete-command
http://www.linuxjournal.com/content/more-using-bash-complete-command
http://www.linuxjournal.com/content/more-using-bash-complete-command
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_1
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_1
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_1
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_2
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_2
http://www.debian-administration.org/article/An_introduction_to_bash_completion_part_2

Appendix K. Localization

Localization is an undocumented Bash feature.

A localized shell script echoes its text output in the language defined as the system'slocale. A Linux user
in Berlin, Germany, would get script output in German, whereas his cousin in Berlin, Maryland, would
get output from the same script in English.

To create alocalized script, use the following template to write all messages to the user (error messages,
prompts, etc.).

#1/ bi n/ bash

| ocalized. sh

Script by Stéphane Chazel as,

#+ nodified by Bruno Hai ble, bugfixed by Alfredo Pironti.

gettext.sh
E_CDERROR=65

error()
{
printf "$@ >&2
exit $E_CDERROR
}

cd $var || error "“eval _gettext \"Can\'t cd to \\\$var.\" "
The triple backslashes (escapes) in front of $var needed
#+ "Dbecause eval _gettext expects a string

#+ where the variabl e val ues have not yet been substituted.”

-- per Bruno Haible

read -p ""gettext \"Enter the value: \" " var

#

B e e

A fredo Pironti conments:

This script has been nodified to not use the $"..."
#+ favor of the ""gettext \"...\" " syntax.

This is ok, but with the new | ocalized.sh program the commands
#+ "bash -D fil enane" and "bash --dunp-po-string fil enane”

#+ wi || produce no out put

#+ (because those command are only searching for the $"..." strings)!
The ONLY way to extract strings fromthe newfile is to use the

'xgettext' program However, the xgettext programis buggy.

syntax in

Note that 'xgettext' has another bug.
#

The shell fragnent:

gettext -s "I |ike Bash"

will be correctly extracted, but

xgettext -s "I |ike Bash"

664

Localization

. . . fails!
‘'xgettext' will extract "-s
#+ the command only extracts the
#+ very first argunent after the 'gettext' word.

because

Escape characters:

#

To localize a sentence |ike

echo -e "Hello\tworld!"

#+ you nust use

echo -e "“gettext \"Hello\\tworld\" "

The "doubl e escape character" before the "t' is needed because
#+ 'gettext' will search for a string like: '"Hello\tworld

This is because gettext will read one literal "\")

#+ and will output a string |like "Bonjour\tnonde",

#+ so the 'echo' command will display the nessage correctly.
#

You may not use

echo ""gettext -e \"Hello\tworld\" "

#+ due to the xgettext bug explai ned above.

Let's localize the followi ng shell fragment:

echo "-h display help and exit"

#

First, one could do this:

echo ""gettext \"-h display help and exit\" "
This way 'xgettext' will work ok,

#+ but the "gettext' programw |l read "-h" as an option!

#

One sol ution could be

echo ""gettext -- \"-h display help and exit\" "

This way 'gettext' wll work,

#+ but 'xgettext' will extract "--", as referred to above.

#

The wor karound you may use to get this string localized is
echo -e "“gettext \"\\0-h display help and exit\" "

W have added a \0 (NULL) at the beginning of the sentence.
This way 'gettext' works correctly, as does 'xgettext.'

Moreover, the NULL character won't change the behavi or

#+ of the 'echo' commmand.

bash$ bash -D | ocal i zed. sh
"Can't cd to 9%."
"Enter the value: "

Thislistsall thelocalized text. (The- Doption listsdouble-quoted strings prefixed by a$, without executing
the script.)

bash$ bash --dunp-po-strings |ocalized.sh
#. a6

665

Localization

msgid "Can't cd to 9%."
msgstr ""

oa7

nmsgi d "Enter the val ue:
msgstr ""

The- - dunp- po- st ri ngs option to Bash resembles the - D option, but uses gettext “po” format.

Note

Bruno Haible points out:

Starting with gettext-0.12.2, xgettext -o - localized.sh is recommended instead of bash --dump-
po-stringslocalized.sh, because xgettext . . .

1. understands the gettext and eval_gettext commands (whereas bash --dump-po-strings under-
stands only its deprecated $'..." syntax)

2. can extract comments placed by the programmer, intended to be read by the tranglator.

This shell code is then not specific to Bash any more; it works the same way with Bash 1.x and
other /bin/sh implementations.

Now, build al anguage. po file for each language that the script will be translated into, specifying the
nmsgst r . Alfredo Pironti gives the following example:

fr.po:

#. a6
negid "Can't cd to $var."

nsgstr "l nmpossi bl e de se positionner dans |l e repertoire $var."
#oa7

nsgi d "Enter the val ue:
nsgstr "Entrez |a val eur

The string are dunped with the variable nanes, not with the % syntax,
#+ simlar to C prograns.

#+ This is a very cool feature if the programer uses

#+ vari abl e names that make sense!

Then, run msgfmt.
msgfm -o localized.sh.no fr.po

Place the resulting | ocalized.sh.no file in the /usr/local/share/locale/fr/
LC MESSAGES directory, and at the beginning of the script, insert the lines:

TEXTDOVAI NDI R=/ usr/ | ocal / share/ | ocal e
TEXTDOVAI N=Il ocal i zed. sh

If auser on a French system runs the script, she will get French messages.
Note

With older versions of Bash or other shells, localization requires gettext, using the - s option. In
this case, the script becomes:

666

Localization

#!/ bi n/ bash
| ocalized. sh

E_CDERROR=65

error() {
[ocal fornmat=%$1
shift
printf "$(gettext -s "$format")" "$@ >&2
exit $E_CDERROR

}

cd $var || error "Can't cd to %." "$var"”

read -p "$(gettext -s "Enter the value: ")" var
...

The TEXTDOVAI Nand TEXTDOMAI NDI R variables need to be set and exported to the environment. This
should be done within the script itself.

This appendix written by Stéphane Chazelas, with modifications suggested by Alfredo Pironti, and by
Bruno Haible, maintainer of GNU gettext.

667

Appendix L. History Commands

The Bash shell provides command-line tools for editing and manipulating a user's command history. This
is primarily a convenience, a means of saving keystrokes.

Bash history commands:
1. history
2. fc

bash$ history
1 nount /mt/cdrom
2 cd /mmt/cdrom
3 Is

Internal variables associated with Bash history commands:
1. $HISTCMD

2. $HISTCONTROL

3. $HISTIGNORE

4. $HISTFILE

5. $HISTFILESIZE

6. $HISTSIZE

7. $HISTTIMEFORMAT (Bash, ver. 3.0 or later)

8.1

9. 1%

10.1#

11N

12.I-N

13.ISTRING

141?STRING?

15/ASTRING string®

Unfortunately, the Bash history tools find no usein scripting.

#1/ bi n/ bash
history. sh
A (vain) attenpt to use the 'history' conmand in a script.

668

History Commands

hi story # No out put.
var=$(history); echo "$var" # $var is enpty.

Hi story commands are, by default, disabled within a script.
However, as dhw points out,

#+ set -0 history

#+ enabl es the history mechani sm

set -0 history
var=$(history); echo "$var” # 1 var=$(history)

bash$./ history.sh
(no out put)

The Advancing in the Bash Shell [http://samrowe.com/wordpress/advancing-in-the-bash-shell/] site gives
agood introduction to the use of history commands in Bash.

669

http://samrowe.com/wordpress/advancing-in-the-bash-shell/
http://samrowe.com/wordpress/advancing-in-the-bash-shell/

Appendix M. Sample . bashr c and
. bash_profil e Files

The ~/ . bashr c file determines the behavior of interactive shells. A good look at this file can lead to
a better understanding of Bash.

Emmanuel Rouat [mailto:emmanuel.rouat@wanadoo.fr] contributed the following very elaborate
. bashr c file, written for a Linux system. He welcomes reader feedback on it.

Study the file carefully, and feel free to reuse code snippets and functions from it in your own . bashr ¢
file or even in your scripts.

ExampleM.1. Sample. bashr c file

PERSONAL $HOWVE/ . bashrc FILE for bash-3.0 (or |ater)
By Emmanuel Rouat [no-enail]

Last nodified: Tue Nov 20 22:04:47 CET 2012

This file is normally read by interactive shells only.
#+ Here is the place to define your aliases, functions and
#+ other interactive features |ike your pronmpt.

The majority of the code here assunes you are on a GNU
#+ system (nost |ikely a Linux box) and is often based on code
found on Usenet or Internet.

#+
#
See for instance:

http://tldp.org/LDP/ abs/htm /index. htm

http://ww. cal i ban. org/ bash

http://ww. shel | dorado. com scri pts/categories. htm
http://ww. dotfiles.org

#
#

The choi ce of colors was done for a shell with a dark background
#+ (white on black), and this is usually also suited for pure text-node
#+ consoles (no X server available). If you use a white background,

#+ you' Il have to do some ot her choices for readability.

#

This bashrc file is a bit overcrowded.

Renenber, it is just an exanple.

Tailor it to your needs.

#

==t

--> Conments added by HOMO aut hor.

H*

If not running interactively, don't do anything
[-z "$PS1"] && return

670

mailto:emmanuel.rouat@wanadoo.fr
mailto:emmanuel.rouat@wanadoo.fr

Sample. bashr c and
. bash_profil e Files

Source gl obal definitions (if any)

if [-f /etc/bashrc]; then
/ et c/ bashrc # --> Read /etc/bashrc, if present.
fi

Automatic setting of $DI SPLAY (if not set already).

This works for ne - your mleage may vary.

The problemis that different types of tern1nals gi ve

#+ different answers to "who ami' (rxvt in particular can be
#+ troubl esonme) - however this code seenms to work in a majority
#+ of cases.

function get_xserver ()
{
case $TERMin
xterm)

XSERVER=$(who ami | awk '{print $NF}' | tr -d '")""'(')
Ane-Pieter Weringa suggests the follow ng alternative:
| _AME$(who ami)
SERVER=${|_AM#*(}
SERVER=${ SERVER%) }
XSERVER=${ XSERVERY®% *}

aterm | rxvt)
Find some code that works here.

esac

}

if [-z ${DISPLAY:=""}]; then
get_xserver

if [[-z ${XSERVER} || ${XSERVER} == $(hostnane) ||
${ XSERVER} == "unix"]]; then
DI SPLAY=":0. 0" # Display on |ocal host.
el se
DI SPLAY=${ XSERVER} : 0. 0 # Display on renote host.
fi

fi

export DI SPLAY

He mm mmm e m e e e

Some settings

He mm mmm e m e e e
#set -0 nounset # These two options are useful for debugging.

671

Sample. bashr c and
. bash_profil e Files

#set -0 xtrace

al i as debug="set -0 nounset; set -0 xtrace"

ulimt -S-c O # Don't want coredunps.
set -0 notify

set -o nocl obber

set -0 ignoreeof

Enabl e options:

shopt -s cdspel

shopt -s cdabl e_vars

shopt -s checkhash

shopt -s checkw nsize

shopt -s sourcepath

shopt -s no_enpty_cnd_conpl eti on

shopt -s cndhi st

shopt -s histappend histreedit histverify
shopt -s extgl ob # Necessary for

Di sabl e options:

Bash Prompt

programmabl e conpl eti on.

to warn nme of incomng mail.

HowTo) .

on my screen,
often use in my pronpt.

shopt -u mailwarn

unset MAI LCHECK # Don't want ny shell
o
Greeting, notd etc.
o
Col or definitions (taken from Col or

Some colors mght |ook different of some termnals.
For example, | see 'Bold Red" as 'orange'
hence the 'Geen' 'BRed' 'Red' sequence |
Normal Col ors

Bl ack="\e[0; 30m # Bl ack

Red="\e[0; 31m # Red

Green="\¢e[0; 32m # Green

Yel | ow="\ e[O0; 33mi # Yel |l ow

Bl ue="\¢e[0; 34ni # Bl ue

Pur pl e="\ e[O0; 35m # Purple

Cyan="\e[0; 36m # Cyan

VWite="\e[O0; 37m # White

Bold

BBl ack="\¢e[1; 30m # Bl ack

BRed="\e[1; 31 # Red

BG een="'\¢e[1; 32m # Green

BYel | ow="\e[1; 33mi # Yel |l ow

BBl ue="\e¢e[1; 34 # Bl ue

BPur pl e="\e[1; 35m # Purple

BCyan='\e[1; 36ni # Cyan
BWwhite="\e[1;37m # White

672

Sample. bashr c and
. bash_profil e Files

Backgr ound

On_Bl ack="\ e[40mM # Bl ack
On_Red="\e[41ni # Red
On_Geen='\e[42 # Green
On_Yel | ow="\ e[43m # Yel |l ow
On_Bl ue="\ e[44ni # Bl ue
On_Purpl e="\e[45m # Purple
On_Cyan='\e[46m # Cyan
On_Wiite="\e[47M # White
NC="\e[nt # Col or Reset

ALERT=${BWhi t e} ${On_Red} # Bold White on red background

echo -e "${BCyan}This is BASH ${ BRed} ${ BASH VERSI ON% *} ${ BCyan}\
- DI SPLAY on ${ BRed} $DI SPLAY${ NC}\ n"

date
if [-x /usr/ganes/fortune]; then

/usr/games/fortune -s # Makes our day a bit more fun.... :-)
fi
function _exit() # Function to run upon exit of shell.
{

echo -e "${BRed}Hasta | a vista, baby${NC"

}
trap _exit EXIT

Shell Pronpt - for nmany exanpl es, see:

htt p: // www. debi an- adm ni stration.org/articl es/ 205
htt p: // ww. askapache. coni | i nux/ bash- power - pronpt . ht m
http://tldp. or g/ HOMQ Bash- Pronpt - HOMO

https://github. com nojhan/Iiqui dpronpt
o
Current Format: [TlIME USER@HOST PWD >

TI MVE

G een == machine load is | ow

Orange == machi ne load is nmedium

Red == machine load is high

ALERT == machine load is very high

USER

Cyan == normal user

Orange == SU to user

Red == root

HOST:

Cyan == | ocal session

G een == secured renote connection (via ssh)

Red == unsecured renote connection

PWD:

G een == nore than 10% free di sk space

673

Sample. bashr c and
. bash_profil e Files

O ange == |l ess than 10% free di sk space

ALERT == |l ess than 5% free di sk space

Red == current user does not have wite privileges
Cyan == current filesystemis size zero (like /proc)
>

VWite == no background or suspended jobs in this shell
Cyan == at | east one background job in this shell

O ange == at | east one suspended job in this shell

#

Command is added to the history file each time you hit enter,
so it's available to all shells (using "history -a').

Test connection type:
if [-n "${SSH CONNECTION}"]; then

CNX=${ G een} # Connected on renote machine, via ssh (good).
elif [["${DI SPLAY®s O*}" = "" 1]; then

CNX=${ ALERT} # Connected on renote machi ne, not via ssh (bad).
el se

CNX=${ BCyan} # Connected on | ocal machine.

fi

Test user type:

if [[${USER} == "root"]]; then
SU=${ Red} # User is root.
elif [[${USER} != $(lognane)]]; then
SU=${ BRed} # User is not |ogin user.
el se
SU=${ BCyan} # User is normal (well ... nmost of us are).

fi

NCPU=$(grep -c 'processor' /proc/cpuinfo) # Number of CPUs

SLOAD=$((100*${NCPU})) # Small | oad
M.OAD=$((200* ${ NCPU})) # Medi um | oad
XLOAD=$((400*${NCPU})) # Xl arge | oad
Returns system | oad as percentage, i.e., '"40' rather than '0.40)".
function | oad()
{
| ocal SYSLOAD=$(cut -d " " -f1 /proc/loadavg | tr -d '.")
System | oad of the current host.
echo $((10#$SYSLQAD)) # Convert to decimal.
}

Returns a color indicating system]l oad.
function | oad_col or ()
{
| ocal SYSLOAD=$(I oad)
if [${SYSLOAD} -gt ${XLOAD}]; then
echo -en ${ALERT}
elif [${SYSLOAD} -gt ${M.OAD}]; then
echo -en ${Red}

674

Sample. bashr c and
. bash_profil e Files

elif [${SYSLOAD} -gt ${SLOAD}]; then
echo -en ${BRed}
el se
echo -en ${G een}
fi
}

Returns a color according to free disk space in $PWD.
function disk_col or()

{
if [! -w"${PWD}"] ; then
echo -en ${Red}
No "wite privilege in the current directory.
elif [-s "${PWD}"] ; then
| ocal used=$(conmmand df -P "$PWD"' |
awk 'END {print $5} {sub(/%,"")}")
if [${used} -gt 95]; then
echo -en ${ALERT} # Disk alnpst full (>95%.
elif [${used} -gt 90]; then
echo -en ${BRed} # Free di sk space al nost gone.
el se
echo -en ${G een} # Free di sk space is ok.
fi
el se
echo -en ${Cyan}
Current directory is size '0" (like /proc, /sys etc).
fi
}

Returns a col or according to runni ng/ suspended j obs.
function job_color()

{
if [$(jobs -s | wec -1) -gt "0"]; then
echo -en ${BRed}
elif [$(jobs -r | wec -1) -gt "0"] ; then
echo -en ${BCyan}
fi
}

Adds some text in the termnal frame (if applicable).

Now we construct the pronpt.

PROVPT_COVMAND=" hi story -a"

case ${TERM in

*term| rxvt | |inux)

PS1="\[\$(load_col or)\]J[VA [${NC}\]
Time of day (with load info):
PS1="\[\$(load_col or)\]J[VA [${NC}\]
User @ost (with connection type info):
PS1=${PS1}"\[${SUINJVUN[S${NCI\] @[${CNXG\]V V[${NC}\]
PW (with 'disk space' info):
PS1=${ PS1} "\ [\ $(di sk_col or)\T\W\ [${NC}\]
Pronpt (with "job" info):

675

Sample. bashr c and
. bash_profil e Files

*)

esac

export
export
export
export
export

ALI

| f
+ be

PS1=${ PS1}"\[\ $(job_color)\]>\[${NC}\] "
Set title of current xterm
PS1=${PS1}"\[\e]O;[\u@h] \wha\]"

PS1="(\A\u@h \W > " # --> PS1="(\A\u@h \w) > "
--> Shows full pathnanme of current dir

TI MEFORMAT=$' \ nreal %8R\ tuser %BWtsys %8S\t pcpu %\ n'

HI STI GNORE="&: bg: fg:11:h"

HI STTI MEFORMAT="$(echo -e ${BCyan})[%@/ %m % %t ¥&8] $(echo -e ${NC}) "
Hl STCONTROL=i gnor edups

HOSTFI LE=$HOVE/ . host s # Put a list of rempte hosts in ~/.hosts

ASES AND FUNCTI ONS

you want to make this file smaller, these functions can
converted into scripts and renoved from here

#
#
#
#
Arguably, some functions defined here are quite big.
#
#
#
#

Personnal Aliases

alias
alias
alias

rme' rm-i’
cp='cp -i'
m="m -i'

-> Prevents accidentally clobbering files.

alias

alias
alias
alias
alias

Pret
alias
alias

alias
alias

nkdi r="nkdir -p'

h="hi story’

j="jobs -1’

whi ch="type -a'

..="¢cd ..

ty-print of sone PATH vari abl es:

pat h="echo -e ${PATH /:/\\n}"

l'i bpath="echo -e ${LD LI BRARY_PATH /:/\\n}

du="du -kh' # Makes a nore readabl e out put.
df =" df -kTh'

"I's' family (this assunes you use a recent G\U I s).

676

Sample. bashr c and
. bash_profil e Files

Add colors for filetype and human-readabl e sizes by default on 'Is':

alias Is='Is -h --col or'

alias Ix="Is -1 XB # Sort by extension.

alias lk="Is -1Sr’ # Sort by size, biggest |ast.

alias It="1Is -ltr’ # Sort by date, npbst recent |ast.

alias lc="Is -ltcr’ # Sort by/show change tinme, nost recent | ast.
alias lu="Is -ltur’ # Sort by/show access tinme, nost recent |ast.
The ubiquitous '"Il"': directories first, with al phanuneric sorting:
alias Il ="Is -lv --group-directories-first"

alias Im=" 11 |nore’ # Pipe through 'nore'

alias Ir="1l -R # Recursive Is.

alias la="II -A # Show hidden files.

alias tree="tree -Csuh' # N ce alternative to 'recursive |s'

alias nore='|ess’
export PAGER=I ess
export LESSCHARSET='I ati nl’
export LESSOPEN='|/usr/bin/lesspipe.sh % 2>&'
Use this if |esspipe.sh exists.
export LESS='-i -N-w -z-4 -g -e -M-X-F -R-P%?f% \
cstdin . ?pb%b\ % ?| bLi ne % b: ?bbByte %bb:-..."

LESS man page col ors (nakes Man pages nore readabl e).
export LESS TERMCAP_mb=$'\E[01; 31m

export LESS TERMCAP_md=$'\E[01; 31m

export LESS TERMCAP_ne=$'\ E[Oni

export LESS TERMCAP_se=$'\ E[Oni

export LESS TERMCAP_so=$'\E[01; 44; 33mni

export LESS TERMCAP_ue=$'\ E[Oni

export LESS TERMCAP_us=$'\E[01; 32m

Spelling typos - highly personnal and keyboard-dependent :-)

alias xs='cd
alias vf="cd
alias nmoer='"nore'
al i as nmoew=' nore'

alias kk="11"

Hoo o o o o o o o o o o e e e e e e e e e e e e e e e eeea s
A few fun ones

Hoo o o o o o o o o o o e e e e e e e e e e e e e e e eeea s

677

Sample. bashr c and
. bash_profil e Files

Adds some text in the termnal frame (if applicable).

function xtitle()

{
case "$TERM in
*ternt | rxvt)
echo -en "\e]O;$*\a" ;;
*) s
esac
}

Aliases that use xtitle
alias top="xtitle Processes on $HOST && top'
al i as make='xtitle Making $(basename $PWD) ; make'

.. and functions
function man()
{

for i ; do

xtitle The $(basenane $1|tr -d .[:digit:]) manua
command man -a "$i"
done

function te() # wrapper around xemacs/gnuserv

{
if ["$(gnuclient -batch -eval t 2>&)" == "t"]; then
gnuclient -q "$@;
el se
(xemacs "$@ &);
fi
}

function soffice() { command soffice "$@ &}
function firefox() { command firefox "$@ &}
function xpdf() { command xpdf "$@ & }

Find a file with a pattern in nane:
function ff() { find . -type f -ipame '*"'"$*"'*'" -|s ; }

Find a file with pattern $1 in name and Execute $2 on it:
function fe() { find . -type f -iname '"*" "${1:-}""*' \

678

Sample. bashr c and
. bash_profil e Files

-exec ${2:-file} {} \; ; }

Find a pattern in a set of files and highlight them
#+ (needs a recent version of egrep).
function fstr()
{
OPTI ND=1
| ocal mycase=""
| ocal usage="fstr: find string in files.
Usage: fstr [-i] \"pattern\"” [\"filename pattern\"]
while getopts :it opt

do
case "$opt" in
i) mycase="-i ;
*) echo "$usage"; return ;;
esac
done

shift $(($OPTIND - 1))
if ["$#" -1t 1]; then
echo "$usage”
return;
f
find . -type f -name "${2:-*}" -print0 | \
xargs -0 egrep --col or=always -sn ${case} "$1" 2>& | nore

}

function swap()
{ # Swap 2 filenanmes around, if they exist (from Uzi's bashrc).
| ocal TMPFI LE=t np. $$

[$# -ne 2] && echo "swap: 2 argunents needed" && return 1
[! -e $1] && echo "swap: $1 does not exist" & return 1
[! -e $2] && echo "swap: $2 does not exist" & return 1

m "$1" $TMPFI LE

m 2" "$1"

mv $TMPFI LE " $2"
}

function extract() # Handy Extract Program
{
if [-f $1] ; then
case $1 in
*. tar.bz2) tar xvjf $1

*. tar.gz) tar xvzf $1
*. bz2) bunzi p2 $1
*.rar) unrar x $1
*.gz) gunzip $1

* tar) tar xvf $1

*. thz2) tar xvjf $1
*.tgz) tar xvzf $1
*.zip) unzip $1

679

Sample. bashr c and
. bash_profil e Files

*. 2Z) unconpress $1
*.72) 7z x $1 i
*) echo "'$1' cannot be extracted via >extract<"
esac
el se

echo "'"$1' is not a valid filel"
f

Creates an archive (*.tar.gz) fromgiven directory.
function maketar() { tar cvzf "${19%4}.tar.gz" "${1W4}/"

Create a ZIP archive of a file or folder.
function makezip() { zip -r "${1%4}.zip" "$1" ; }

Make your directories and files access rights sane.
function sanitize() { chnmod -R u=rwX, g=rX, o= "$@ ;}

function ny_ps() { ps $@-u $USER -0 pi d, %epu, %rem bsdti me, command ; }

function pp() { nmy_ps f | awk '!/awk/ && $0~var' var=${1:-"

function Killps() # kill by process nane
{
| ocal pid pnanme sig="-TERM # default signa
if ["$#" -1t 1] || ["$#" -gt 2],; then
echo "Usage: killps [-SIGNAL] pattern”
return;
f
if [$# =2]; then sig=$1 ; f

Y i)

pat =${! #})

for pidin $(nmy_ps| awk '!/awk/ && $0~pat { print $1 }'
do
pnanme=$(ny_ps | awk '$l~var { print $5 }' var=$pid)
if ask "Kill process $pid <$pnane> with signal $sig?"
then kill $sig $pid
f
done
}
function nydf() # Pretty-print of 'df' output.
{ # Inspired by "dfc' utility.

for fs ; do

if [! -d $fs]
t hen

echo -e $fs" :No such file or directory" ; continue

f

680

Sample. bashr c and
. bash_profil e Files

| ocal info=($(command df -P $fs | awk "END{ print $2,$3,%$5 }'))
local free=($(command df -Pkh $fs | awk "END{ print $4 }'))

| ocal nbstars=$((20 * ${info[1]} / ${info[O0]}))
local out="["
for ((j=0;j<20;j++)); do
if [${j} -1t ${nbstars}]; then
out =$out " *"
el se
out =$out " -"
f
done
out=${info[2]}" "Sout"] ("$free" free on "$fs")"
echo -e $out
done

function ny_ip() # Get |IP adress on ethernet.

{
MY_I P=$(/sbin/ifconfig ethO | awk '/inet/ { print $2 } ' |
sed -e s/addr://)
echo ${MY_I P:-"Not connected"}
}
function ii() # Get current host related info.
{
echo -e "\nYou are |ogged on ${BRed}$HOST"
echo -e "\ n${BRed}Addi tionnal information:$NC " ; uname -a
echo -e "\n${BRed}Users | ogged on:$NC " ; w -hs
cut -d " " -f1 | sort | uniq
echo -e "\n${BRed}Current date :$NC " ; date
echo -e "\n${BRed} Machine stats :$NC " ; uptine
echo -e "\n${BRed} Menory stats :$NC " ; free
echo -e "\n${BRed}Di skspace :$NC " ; nydf / $HOMVE
echo -e "\n${BRed}Local |IP Address :$NC' ; ny_ip
echo -e "\ n${BRed} Open connections :$NC "; netstat -pan --inet;
echo
}
H e o o e me e e
Msc utilities:
o
function repeat () # Repeat n tines command.
{
[ocal i max
max=$1; shift;
for ((i=1; i <= max ; i++)); do # --> C-like syntax
eval "$@;
done
}
function ask() # See 'killps' for exanple of use.

681

Sample. bashr c and
. bash_profil e Files

{
echo -n "$@ '[y/n] ' ; read ans
case "$ans" in
y*|Y*) return O ;;
*) return 1 ;;
esac
}

function corename() # CGet nane of app that created a corefile.

{

for file ; do

echo -n $file : ; gdb --core=$file --batch | head -1

done
}
#:::
#
PROGRAMVABLE COWPLETI ON SECTI ON
Most are taken fromthe bash 2.05 docunentation and fromlan MDonal d' s
' Bash conpletion' package (http://ww. cal i ban. org/ bash/#conpl eti on)
You will in fact need bash nore recent then 3.0 for sone features.
#
Note that nost |inux distributions now provide nany conpl etions
'out of the box' - however, you m ght need to make your own one day,
so | kept those here as exanpl es.
#:::
if ["${BASH VERSION% *}" \< "3.0"]; then

echo "You will need to upgrade to version 3.0 for full \

programmabl e conpl eti on features”

return
f
shopt -s extgl ob # Necessary.

conpl ete - A host nane rsh rcp telnet rlogin ftp ping disk
conpl ete - A export printenv

conplete -A variable export |ocal readonly unset

conpl ete -A enabl ed builtin

complete -A alias alias unalias

compl ete -A function function

conpl ete - A user su mail finger

conplete -A helptopic help # Currently same as builtins.
conpl ete - A shopt shopt

conplete -A stopped -P "% bg

conplete -Ajob -P "% fg jobs di sown

complete -A directory nkdir rndir
conplete -A directory -0 default cd

Conpr essi on

682

Sample. bashr c and
. bash_profil e Files

conmplete -f -o default -X'*. +(zip|ZIP)" zip
complete -f -o default -X'I*. +(zip|ZIP)' unzip

complete -f -o default -X'*.+(z|2)"' conpr ess
complete -f -o default -X'I*.+(z|2)"' unconpr ess
complete -f -o default -X'*. +(gz| &&)"' gzip

complete -f -o default -X'I*. +(gz| &))" gunzi p

complete -f -o default -X"'*.+(bz2|Bz2)' bzip2

complete -f -o default -X'!I*. +(bz2|BZ2)' bunzip2

complete -f -o default -X'"I*. +(zip|Zl P|z|Z gz| &Z| bz2| BZ2)' extract

Documents - Postscript, pdf,dvi.....

complete -f -o default -X '!I'* +(ps|PS)' gs ghostvi ew ps2pdf ps2ascii
complete -f -o default -X\

"I*. +(dvi | DVI)' dvips dvipdf xdvi dviselect dvitype

complete -f -o default -X '!* +(pdf|PDF)' acroread pdf2ps

complete -f -o default -X'I*. @@ ?(e)ps| ?(E)PS| pdf | PDF) 2\

(.9z| . &Z|.bz2|.Bz2|.2))" gv ggv

complete -f -0 default -X 'I* texi*' makeinfo texi2dvi texi2htm texi2pdf
complete -f -0 default -X "I'*. tex' tex latex slitex

complete -f -o default -X "!I'*. lyx" |yx

complete -f -o default -X '"!'* +(htm| HTM)' [ynx htm 2ps

complete -f -o default -X\

"I*. +(doc| DOC| xI s| XLS]| ppt | PPT| sx?| SX?| csv| CSV| od?| OD?| ott| OTT)" soffice

Mul timedi a

complete -f -o default -X\

"I* . +(gif| A F|jp*g| IP*QG bnp| BMP| xpm XPM png| PNG ' xv ginmp ee gqvi ew
complete -f -o default -X'"!I* +(nmp3| MP3)' npgl23 npg321
complete -f -0 default -X '!I*. +(ogg| OG5 "' 0ggl23

complete -f -o default -X\

txo@npl 23] | MP[23] | ogg| OGF wav| WAV] pl s|\

nBu| xm nod| s[3t]mit|mmult|flac)' xmrs

complete -f -o default -X'I'*. @nmp?(e)g| MP?(E) G wra| avi | AVI | \
asf| vob| VOB| bi n| dat | ved| ps| pes| fli|viv|rmran yuv| mov| MOV| gt |\
Qr| wnv| np3| MP3| ogg| OGF ogn{ OGM mp4| MP4| wav| WAV| asx| ASX)' xi ne

complete -f -o default -X'"!I*.pl" perl perl5

This is a 'universal' conmpletion function - it works when conmands have
#+ a so-called 'long options' nmode , ie: 'Is --all' instead of 'Is -a'

Needs the '-0' option of grep

#+ (try the comrented-out version if not avail able).

First, renmove from conpl eti on word separators
#+ (this will allow completions like 'Is --color=auto' to work correctly).

COVP_WORDBREAKS=${ COVP_WORDBREAKS/ =/ }

_get _| ongopt s()

683

Sample. bashr c and

. bash_profil e Files

{

#$1 --help | sed -e '/--/1d" -e
#grep " $2" |sort -u ;

"--[A[:space:].,1*" |

grep -e "$2" |sort

-0 default -F _longopts configure bash

idinfo a2ps Is recode

$1 --help | grep -0 -e
}
_longopts()
{

| ocal cur

cur =${ COVP_WORDS[COVP_CWORD }

case "${cur:-*}" in

*) }éturn -
esac
case "$1" in
\ ~*) eval cnmd="$1"
*) cmd="$1"

esac

COVMPREPLY=($(_get | ongopts ${1} ${cur}))
}
conpl ete
complete -o default -F _longopts wget
_tar()
{

| ocal cur ext regex tar untar

COVPREPLY=()

cur =${ COVP_WORDS[COVP_CWORD) }

If we want an option,
case "$cur" in

-*) COVPREPLY=($(_get _| ongopts $1 $cur));

esac
if [$COMP_CWORD -eq 1];

return O
f

case "${COVP_WORDS[1]}" in
?(-)c*f)

t hen
COVMPREPLY=($(conpgen -W'c t x ur d A

return the possible | ong options.

return O;;

-- $cur))

COVPREPLY=($(conpgen -f $cur))

return O

+([~zZjy])f)

ext="tar'
r egex=$ext
*z7*f)

ext="tar.gz'

regex="t\(ar\.\)\(gz\|2\)"’

"s/.*--\([M:space:].,]*\).*/--\1/"|

-u

684

\

Sample. bashr c and
. bash_profil e Files

“[1jyl*f)
ext="t?(ar.)bz?(2)’
regex="t\(ar\.\)bz2\?

*)
COVMPREPLY=($(conpgen -f $cur))
return O
esac
if [["$COWP_LINE" == tar*.$ext' '*]]; then
Complete on files in tar file.
#

Get nanme of tar file fromcommand |ine.
tar=$(echo "$COVWP_LINE" | \
sed -e "s|M* \ ([N]* $regex'\) . *$|\1]"
Devise howto untar and list it.
unt ar =t ${ COWP_WORDS[1]/ /[~ zj yf]/}

COVPREPLY=($(conpgen -W"$(echo $(tar $untar $tar \
2>/dev/null))" -- "$cur"))
return O
el se
File completion on relevant files.
COVMPREPLY=($(conpgen -G $cur*. $ext))
f
return O

}

complete -F _tar -o default tar

_make()

{
| ocal ndef makef makef _dir="." nakef_inc gcnd cur prev i;
COVPREPLY=() ;

cur =${ COMP_WORDS[COVP_CWORD)] } ;
pr ev=${ COMP_WORDS[COVMP_CWORD- 1] } ;
case "$prev" in
-*f)
COVPREPLY=($(conpgen -f $cur));
return O

esac;
case "$cur" in
_*)
COVPREPLY=($(_get _| ongopts $1 $cur));
return O

685

Sample. bashr c and
. bash_profil e Files

esac;

make reads

A\NUnekefi | e,
t hen nekefile

t hen Makefile ..
i

f [-f ${makef _dir}/GNUmakefile]; then

makef =${ makef _di r}/ GNUnaekefil e
elif [-f ${makef_dir}/makefile]; then

mekef =${ nakef _dir}/ makefile
elif [-f ${makef_dir}/ Makefile]; then

mekef =${ nakef _dir}/ Makefile
el se

makef =${ makef _dir}/*. nk # Local convention

f

Before we scan for targets, see if a Makefile name was
#+ specified with -f.
for ((1=0; i < ${#COWP_WORDS[@}; i++)); do
if [[${COW_WORDS[i]} == -f]]; then
eval for tilde expansion
eval nmakef=${ COMP_WORDS[i +1] }
br eak
f
done
[! -f $nekef] & & return O

Deal with included Makefil es.
mekef _i nc=$(grep -E '~-?include' $nmakef
sed -e "s, M. * ,"$makef _dir"/,")
for file in $makef_inc; do
[-f $file] && makef="$nmakef $file"
done

1f we have a partial word to conplete, restrict conpletions
#+ to matches of that word.

if [-n "S$cur"]; then gcnd="grep ""$cur"' ; else gcnd=cat ; f

COVPREPLY=($(awk -F':' "/7[a-zA-Z0-9)["$#A\/\t=]*:([*=]]$)/ \
{split($1,A/ /);for(i in Aprint Alil}" \
$makef 2>/dev/null | eval $gcmd))

}

complete -F _nmake -X '+($*|*.[cho])' make gmake pmake

killall()
{

| ocal cur prev

686

Sample. bashr c and
. bash_profil e Files

COVPREPLY=()
cur =${ COVP_\WORDS[COVP_CWORD] }

Get a list of processes
#+ (the first sed eval uation
#+ takes care of swapped out processes, the second
#+ takes care of getting the basename of the process).
COMPREPLY=($(ps -u $USER -o conm | \
sed -e '"1,1d" -e "S#[]J\[]##Q -e "sHEN.F/HH | N\
awk "{if ($0 ~ /~ $cur'/) print $0}'))

return O

}

complete -F _killall killall killps

Local Vari abl es:
nmode: shel | - scri pt
sh-shel | : bash

End:

And, hereis asnippet from Andrzej Szelachowski'sinstructive. bash_pr ofi | e file.

ExampleM.2.. bash_profil efile

From Andrzej Szel achowski's ~/.bash_profile:

Note that a variable may require special treatnent
#+ if it wll be exported.

DARKGRAY=' \ e[1; 30m
LI GHTRED='\ e[1; 31m
GREEN=' \ e[32
YELLOM' \ e[1; 33m

LI GHTBLUE="\ e[1; 34n
NC="\ e[m

PCT="\"if [[\$EUD -eq 0]]; then T='$LIGHTRED ; else T=' $LIGHTBLUE ; fi;
echo \$T \ "

For "literal" command substitution to be assigned to a vari abl e,
#+ use escapes and doubl e quotes:
#+ PCT="\" ... \"

O herwi se, the value of PCT variable is assigned only once,
#+ when the variable is exported/read from.bash_profile,
#+ and it will not change afterwards even if the user |ID changes.

PS1="\ n$GREEN[\ W] \ n$DARKGRAY($PCT\ t $DARKGRAY) - ($PCT\ u$DARKGRAY) - ($PCT\ !
$DARKGRAY) $YELLOW > $NC'

687

Sample. bashr c and
. bash_profil e Files

Escape a variabl es whose val ue changes:

if [[\SEUID -eq 0 117,

Oherwise the value of the EU D variable will be assigned only once,

#+ as above.

Wen a variable is assigned, it should be call ed escaped:

echo \ $T,

O herwise the value of the T variable is taken fromthe nmonent the PCT
#+ variable is exported/read from.bash_profile.

So, in this exanple it would be null.

\Wen a variable's value contains a semcolon it should be strong quoted:
T=" $LI GHTRED ,

Oherwise, the semicolon will be interpreted as a conmand separator.

Variables PCT and PS1 can be nerged into a new PS1 vari abl e:

PS1="\"if [[\SEUID -eq 0]]; then PCT="$LI GHTRED ;

el se PCT=' $LI GHTBLUE' ; fi;
echo '\ n$GREEN[\ w] \ n$DARKGRAY(' \ $PCT" \ t $DARKGRAY) - \
(' \ $PCT" \ u$DARKGRAY) - (' \ $PCT" \ | $DARKGRAY) $YELLOW > $NC \ "

The trick is to use strong quoting for parts of old PS1l vari able.

688

Appendix N. Converting DOS Batch
Files to Shell Scripts

Quite a number of programmers learned scripting on a PC running DOS. Even the crippled DOS batch
file language alowed writing some fairly powerful scripts and applications, though they often required
extensive kludges and workarounds. Occasionally, the need still arisesto convert an old DOS batch fileto
aUNIX shell script. Thisis generally not difficult, as DOS batch file operators are only a limited subset
of the equivalent shell scripting ones.

TableN.1. Batch file keywords/ variables/ operators, and their shell equivalents

Batch File Operator Shell Script Equivalent Meaning

% $ command-line parameter prefix

/ - command option flag

\ / directory path separator

== = (equal-to) string comparison test

I ==l 1= (not equal-to) string comparison
test

| | pipe

@ set +v do not echo current command

* * filename “wild card”

> > file redirection (overwrite)

>> >> file redirection (append)

< < redirect st di n

WARY $VAR environmental variable

REM # comment

NOT ! negate following test

NUL / dev/ nul | “black hole” for burying com-
mand output

ECHO echo echo (many more option in Bash)

ECHO. echo echo blank line

ECHO OFF Set +v do not echo command(s) follow-
ing

FOR 9%4/AR I N (LI ST) DO |for varin[list]; do “for” loop

: LABEL none (unnecessary) label

GOoro none (use afunction) jump to another location in the
script

PAUSE sleep pause or wait an interval

CHO CE case or select menu choice

I F if if-test

689

Converting DOS Batch
Filesto Shell Scripts

Batch File Operator

Shell Script Equivalent

M eaning

I F EXI ST FI LENAME

if [-efilename]

test if file exists

I F 1 o\==!

if[-"$N"]

if replaceable parameter “N” not
present

CALL source or . (dot operator) “include” another script

COMVAND / C source or . (dot operator) “include” another script (same as
CALL)

SET export set an environmental variable

SHI FT shift left shift command-line argument
list

SGN -It or -gt sign (of integer)

ERRORLEVEL $? exit status

CON stdin “console” (st di n)

PRN [dev/| p0 (generic) printer device

LPT1 [dev/| p0 first printer device

comL /dev/ttySO first seria port

Batch filesusually contain DOS commands. These must be translated into their UNIX equivalentsin order
to convert a batch file into a shell script.

TableN.2. DOS commands and their UNIX equivalents

DOS Command UNI X Equivalent Effect

ASSI GN In link file or directory
ATTRI B chmod change file permissions
D cd change directory

CHDI R cd change directory

CLS clear clear screen

coweP diff, comm, cmp file compare

CcorPY cp file copy

al-C Ctl-C break (signal)

-z Ctl-D EOF (end-of-file)

DEL rm delete file(s)

DELTREE rm -rf delete directory recursively
D R Is-I directory listing
ERASE m deletefile(s)

EXIT exit exit current process

FC comm, cmp file compare

FI ND grep find strings in files

MD mkdir make directory

MKDI R mkdir make directory

690

Converting DOS Batch
Filesto Shell Scripts

DOS Command UNIX Equivalent Effect

MORE more text file paging filter

MOVE mv move

PATH $PATH path to executables

REN mv rename (move)

RENANME mv rename (move)

RD rmdir remove directory

RMDI R rmdir remove directory

SORT sort sort file

TI ME date display system time

TYPE cat output fileto st dout

XCOPY cp (extended) file copy
Note

Virtually all UNIX and shell operators and commands have many more options and enhancements
than their DOS and batch file counterparts. Many DOS batch filesrely on auxiliary utilities, such
as ask.com, a crippled counterpart to read.

DOS supports only avery limited and incompatible subset of filename wild-card expansion, rec-
ognizing just the * and ? characters.

Converting a DOS batch file into a shell script is generally straightforward, and the result ofttimes reads
better than the original.

Example N.1. VIEWDATA.BAT: DOSBatch File
REM VI EWDATA

REM | NSPI RED BY AN EXAMPLE | N "DOS POAERTOOLS"
REM BY PAUL SOVERSON

@CHO COFF

| F 1%==! GOTO VI EWDATA

REM | F NO COWAND- LI NE ARG . .

FIND "9%" C:\BQZO BOOKLI ST. TXT

GOTO EXI TO

REM PRI NT LINE WTH STRI NG MATCH, THEN EXIT.

VI EWDATA
TYPE C:\ BOZO BOOKLI ST. TXT | MORE
REM SHOW ENTI RE FILE, 1 PAGE AT A TI ME.

:EXITO

691

Converting DOS Batch
Filesto Shell Scripts

The script conversion is somewhat of an improvement. !

Example N.2. viewdata.sh: Shell Script Conversion of VIEWDATA.BAT
#!/ bi n/ bash

vi ewdat a. sh

Conversi on of VI EWDATA. BAT to shell script.

DATAFI LE=/ hone/ bozo/ dat af i | es/ book-col | ecti on. dat a

ARGNC=1

@ECHO OFF Conmand unnecessary here.

if [$# -1t "$SARGNO'] # IF 19d==! GOTO VI EMDATA

t hfgss $DATAFI LE # TYPE C: \ MYDlI R\ BOOKLI ST. TXT | MORE
° ;(raep "$1" $DATAFI LE # FIND "9%" C:.\ MyDl R\ BOOKLI ST. TXT
fi

exit 0 # EXITO

QOICs, |abels, snoke-and-mirrors, and flinflam unnecessary.
The converted script is short, sweet, and clean,
#+ which is nore than can be said for the original.

Ted Davis Shell Scripts on the PC [http://www.maem.umr.edu/batch/] site had a set of comprehensive
tutorials on the old-fashioned art of batch file programming. Unfortunately the page has vanished without
atrace.

v arious readers have suggested modifications of the above batch file to prettify it and make it more compact and efficient. In the opinion of the
ABS Guide author, this is wasted effort. A Bash script can access a DOS filesystem, or even an NTFS partition (with the help of ntfs-3g [http://
www.ntfs-3g.org]) to do batch or scripted operations.

692

http://www.maem.umr.edu/batch/
http://www.maem.umr.edu/batch/
http://www.ntfs-3g.org
http://www.ntfs-3g.org
http://www.ntfs-3g.org

Appendix O. Exercises

The exercises that follow test and extend your knowledge of scripting. Think of them as a challenge, as
an entertaining way to take you further along the stony path toward UNIX wizardry.

On adingy side street in a run-down section of Hoboken, New Jersey,
there sits a nondescript squat two-story brick building with an inscription
incised on amarble platein itswall:

Bash Scripting Hall of Fane.

Inside, among various dusty uninteresting exhibits is a corroding,
cobweb-festooned brass plague inscribed with a short, very short

list of those few persons who have successfully mastered the material

in the Advanced Bash Scripting Guide, as evidenced by their performance
on the following Exercise sections.

(Alas, the author of the ABS Guide is not represented among the exhibits.
Thisis possibly due to malicious rumors about lack of credentials and
deficient scripting skills.)

Analyzing Scripts

Examine the following script. Runit, then explain what it does. Annotate the script and rewriteitin amore
compact and elegant manner.

#!/ bi n/ bash

MAX=10000

for((nr=1; nr<$MAX; nr++))
do

let "tl = nr %5"
if ["$t1" -ne 3]
t hen

conti nue
f

let "t2 =nr %7"
if ["$t2" -ne 4]
t hen

conti nue
fi

let "t3 = nr %9"
if ["$t3" -ne 5]
t hen

conti nue

693

Exercises

f
br eak # What happens when you coment out this |ine? Wiy?
done

echo "Nunber = $nr"

exit O

Explain what the following script does. It isreally just a parameterized command-line pipe.

#!/ bi n/ bash

DI RNAME=/ usr/ bin
FI LETYPE="shel | script"
LOGFI LE=l ogfil e

file "$DIRNAMVE"/* | fgrep "$FILETYPE" | tee $LOGFILE | wc -|

exit O

Examine and explain the following script. For hints, you might refer to the listings for find and stat.

#!/ bi n/ bash

Author: Nathan Coul ter
This code is released to the public domain.
The aut hor gave permi ssion to use this code snippet in the ABS Cuide.

find -maxdepth 1 -type f -printf "%\000" | {
while read -d $\000'; do
m/ "$REPLY" "$(date -d "$(stat -c ‘W' "$REPLY") " ' +%r%mPed%ANES
) - SREPLY"
done

}

Warning: Test-drive this script in a "scratch” directory.
1t will sonehow affect all the files there.

A reader sent in the following code snippet.

while read LINE
do
echo $LINE
done < “tail -f /var/log/ messages’

He wished to write a script tracking changes to the system log file, / var / | og/ messages. Unfortu-
nately, the above code block hangs and does nothing useful. Why? Fix this so it does work. (Hint: rather
than redirecting the st di n of theloop, try apipe.)

694

Exercises

Analyze the following “one-liner” (here split into two linesfor clarity) contributed by Rory Winston:

export SUMEO; for f in $(find src -nane "*.java");
do export SUME$(($SUM + $(wec -1 $f | awk '{ print $1 }'))); done; echo $SUM

Hint: First, break the script up into bite-sized sections. Then, carefully examine its use of double-paren-
theses arithmetic, the export command, the find command, the wc command, and awk.

Analyze Example A.10, “Game of Life", and reorganize it in asimplified and more logical style. See how
many of the variables can be eliminated, and try to optimize the script to speed up its execution time.

Alter the script so that it acceptsany ordinary ASCII text fileasinput for itsinitial “generation”. The script
will read the first $ROM $COL characters, and set the occurrences of vowels as “living” cells. Hint: be
sureto tranglate the spacesin the input file to underscore characters.

Writing Scripts

Write a script to carry out each of the following tasks.

EASY

Self-reproducing Script Writeascript that backsitself up, that is, copiesitself to afile named
backup. sh.
Hint: Use the cat command and the appropriate positional parame-
ter.

Home Directory Listing Perform a recursive directory listing on the user's home directory

and save theinformation to afile. Compressthefile, have the script
prompt the user to insert a USB flash drive, then press ENTER.
Finally, savethefileto theflash drive after making certain the flash
drive has properly mounted by parsing the output of df. Note that
the flash drive must be unmounted before it is removed.

Converting for loopstowhileand Convert thefor loopsin Example 11.1, “Simplefor loops’ to while
until loops loops. Hint: store the data in an array and step through the array
elements.

Having already done the “heavy lifting,” now convert the loopsin
the example to until loops.

Changing theline spacing of a Write a script that reads each line of atarget file, then writes the
text file line back to st dout , but with an extra blank line following. This
has the effect of double-spacing thefile.

Include all necessary code to check whether the script gets the nec-
essary command-line argument (afilename), and whether the spec-
ified file exists.

When the script runs correctly, modify it to triple-space the target
file

695

Exercises

Backwards Listing

Automatically Decompressing
Files

Unique System ID

Backup

Checking whether a processis
till running

Primes

Lottery Numbers

INTERMEDIATE

Integer or String

ASCII to Integer

Finally, write ascript to remove all blank lines from the target file,
single-spacing it.

Write ascript that echoesitself to st dout , but backwards.

Given alist of filenames asinput, this script queries each target file
(parsing the output of thefile command) for thetype of compression
used on it. Then the script automatically invokes the appropriate
decompression command (gunzip, bunzip2, unzip, uncompr ess,
or whatever). If atarget file is not compressed, the script emits a
warning message, but takes no other action on that particular file.

Generate a “unique” 6-digit hexadecimal identifier for your com-
puter. Do not use the flawed hostid command. Hint: md5sum /
et ¢/ passwd, then select the first 6 digits of output.

Archiveasa“tarbal” (*. t ar. gz file) dl the filesin your home
directory tree (/ hone/ your - nane) that have been modified in
the last 24 hours. Hint: use find.

Optional: you may use this as the basis of a backup script.

Given aprocess ID (PID) as an argument, this script will check, at
user-specified intervals, whether the given processis still running.
Y ou may use the ps and sleep commands.

Print (to st dout) all prime numbers between 60000 and 63000.
The output should be nicely formatted in columns (hint: use printf).

One type of lottery involves picking five different numbers, in the
range of 1 - 50. Write a script that generates five pseudorandom
numbers in this range, with no duplicates. The script will give the
option of echoing the numbersto st dout or saving themto afile,
aong with the date and time the particular number set was generat-
ed. (If your script consistently generates winning lottery numbers,
then you can retire on the proceeds and | eave shell scripting to those
of uswho have to work for aliving.)

Write ascript function that determinesif an argument passedtoitis
an integer or a string. The function will return TRUE (0) if passed
an integer, and FALSE (1) if passed a string.

Hint: What does the following expression return when $1 isnot an
integer?

expr $1 + 0

The atoi function in C converts a string character to an integer.
Writeashell script function that performsthe same operation. Like-
wise, write a shell script function that does the inverse, mirroring
the C itoa function which converts an integer into an ASCII char-
acter.

696

Exercises

Managing Disk Space

Banner

Removing I nactive Accounts

Enforcing Disk Quotas

Logged in User Information

Safe Delete

Making Change

Quadratic Equations

List, oneat atime, al fileslarger than 100K inthe/ hone/ user -
nane directory tree. Give the user the option to delete or compress
the file, then proceed to show the next one. Write to a logfile the
names of al deleted files and the deletion times.

Simulate the functionality of the deprecated banner command in a
script.

I nactive accounts on anetwork server waste disk space and may be-
come a security risk. Write an administrative script (to be invoked
by root or the cron daemon) that checks for and deletes user ac-
counts that have not been accessed within the last 90 days.

Write a script for amulti-user system that checks users' disk usage.
If a user surpasses a preset limit (500 MB, for example) in her /
hone/ user name directory, then the script automatically sends
her a*“pigout” warning e-mail.

The script will use the du and mail commands. As an option, it
will allow setting and enforcing quotas using the quotaand setquota
commands.

For al logged in users, show their real names and the time and date
of their last login.

Hint: use who, lastlog, and parse/ et ¢/ passwd.

Implement, as a script, a“safe” delete command, sdel . sh. File-
names passed as command-line arguments to this script are not
deleted, but instead gzipped if not already compressed (use file to
check), then moved to a~/ TRASH directory. Upon invocation, the
script checks the ~/ TRASH directory for files older than 48 hours
and permanently deletes them. (An better alternative might be to
have a second script handle this, periodically invoked by the cron
daemon.)

Extra credit: Write the script so it can handle files and directories
recursively. This would give it the capability of “safely deleting”
entire directory structures.

What isthe most efficient way to make changefor $1.68, using only
coins in common circulations (up to 25¢)? It's 6 quarters, 1 dime,
anickel, and three cents.

Given any arbitrary command-line input in dollars and cents
($*.??), calculate the change, using the minimum number of coins.
If your home country is not the United States, you may use your
local currency unitsinstead. The script will need to parse the com-
mand-line input, then change it to multiples of the smallest mon-
etary unit (cents or whatever). Hint: look at Example 24.8, “Con-
verting numbers to Roman numerals’.

Solve a quadratic equation of theform Ax*2 + Bx + C = 0.
Have a script take as arguments the coefficients, A, B, and C, and
return the solutionsto five decimal places.

697

Exercises

Table of Logarithms

Unicode Table

Sum of Matching Numbers

Lucky Numbers

Craps

Tic-tac-toe

Alphabetizing a String

Parsing

Logging Logins

Hint: pipe the coefficients to bc, using the well-known formula, x
=(-B +/- sqgrt(B*"2 - 4AC)) |/ 2A

Using the bc and printf commands, print out a nicely-formatted ta-
ble of eight-place natural logarithms in the interval between 0.00
and 100.00, in steps of .01.

Hint: bc requiresthe- | option to load the math library.

Using Example T.1, “A script that generates an ASCII table” asa
template, write ascript that printsto afileacomplete Unicodetable.

Hint: Usethe- e optionto echo: echo -e "\UXXXX", where XXXXis
the Unicode numerical character designation. Thisrequiresversion
4.2 or later of Bash.

Find the sum of al five-digit numbers (in the range 10000 - 99999)
containing exactly two out of the following set of digits: { 4,5,6}.
These may repeat within the same number, and if so, they count
once for each occurrence.

Some exampl es of matching numbersare 42057, 74638, and 89515.

A lucky number is one whose individual digits add up to 7, in suc-
cessive additions. For example, 62431 isalucky number (6 +2 + 4
+3+1=16,1+6=7). Find al the lucky numbers between 1000
and 10000.

Borrowing the ASCII graphicsfrom Example A .40, “ Petals Around
the Rose”, write a script that plays the well-known gambling game
of craps. The script will accept bets from one or more players,
roll the dice, and keep track of wins and losses, as well as of each
player's bankroll.

Write ascript that playsthe child's game of tic-tac-toe against a hu-
man player. The script will let the human choose whether to take the
first move. The script will follow an optimal strategy, and therefore
never lose. To simplify matters, you may use ASCII graphics:

Your nove, human (row, colum)?

Alphabetize (in ASCII order) an arbitrary string read from the com-
mand-line.

Parse/ et ¢/ passwd, and output its contentsin nice, easy-to-read
tabular form.

Parse/ var /| og/ messages to produce a nicely formatted file
of user logins and login times. The script may need to run as root.
(Hint: Search for the string “LOGIN.")

698

Exercises

Pretty-Printing a Data File Certain database and spreadsheet packages use save-files with the
fields separated by commas, commonly referred to as comma-sep-
arated values or CSVs. Other applications often need to parse these
files.

Given adatafile with comma-separated fields, of the form:

Jones, Bill,235 S. WIllianms St., Denver, CO 80221, (303) 244-
Smi t h, Tom 404 Pol k Ave., Los Angel es, CA 90003, (213) 879- 5

Reformat the data and print it out to st dout in labeled, even-
ly-spaced columns.

Justification Given ASCI| text input either from st di n or afile, adjust theword
spacing to right-justify each lineto auser-specified line-width, then
send the output to st dout .

Mailing List Using the mail command, write a script that manages a simple
mailing list. The script automatically e-mails the monthly compa:
ny newsletter, read from a specified text file, and sendsit to al the
addresses on the mailing list, which the script reads from another

specified file.

Gener ating Passwor ds Generate pseudorandom 8-character passwords, using charactersin
the ranges [0-9], [A-Z], [a-Z]. Each password must contain at least
two digits.

Monitoring a User Y ou suspect that one particular user on the network has been abus-

ing her privilegesand possibly attempting to hack the system. Write
a script to automatically monitor and log her activities when she's
signed on. The log file will save entries for the previous week, and
delete those entries more than seven days old.

Y ou may uselast, lastlog, and lastcomm to aid your surveillance of
the suspected fiend.

Checking for Broken Links Usinglynx withthe-t r aver sal option, writeascript that checks
aWeb site for broken links.

DIFFICULT

Testing Passwor ds Write ascript to check and validate passwords. The object isto flag
“weak” or easily guessed password candidates.

A trial password will be input to the script as a command-line pa-
rameter. To be considered acceptable, a password must meet the
following minimum qualifications:
¢ Minimum length of 8 characters

* Must contain at least one numeric character

e Must contain at least one of the following non-alphabetic char-
acters @,#,$,%, &, *, +,-, =

699

Exercises

Optional:

» Do adictionary check on every sequence of at |east four consec-
utive alphabetic charactersin the password under test. This will
eliminate passwords containing embedded “words’ found in a
standard dictionary.

» Enable the script to check al the passwords on your system.
These do not residein/ et ¢/ passwd.

This exercise tests mastery of Regular Expressions.

Cross Reference Write a script that generates a cross-reference (concordance) on a
target file. The output will bealisting of al word occurrencesin the
target file, along with the line numbers in which each word occurs.
Traditionally, linked list constructs would be used in such applica-
tions. Therefore, you should investigate arrays in the course of this
exercise. Example 16.12, “Word Frequency Analysis’ is probably
not agood place to start.

Squar e Root Write a script to calculate square roots of numbers using Newton's
Method.

The algorithm for this, expressed as a snippet of Bash pseudo-code
is:

(lsaac) Newton's Method for speedy extraction
#+ of square roots.

guess = $ar gument

$argunment is the nunmber to find the square root of.

$guess is each successive calcul ated "guess" -- or tri
#+ of the square root.

Qur first "guess" at a square root is the argument it:

ol dguess = 0
%ol dguess is the previous $guess.

tol erance = . 000001
To how cl ose a tolerance we wi sh to cal cul at e.

| oopcnt =0

Let's keep track of how many times through the | oop.
Some argunents will require nore |loop iterations than

while [ABS($guess $ol dguess) -gt $tol erance]

NNANNNNNNNNNNNNNNNNNNNNNN F|X up Synt aX, of cour se.
"ABS" is a (floating point) function to find the :
#+ of the difference between the two terns.

So, as long as difference between current
#+ trial solution (guess) exceeds the tol erant

700

Exercises

Logging File Accesses

M onitoring Processes

Strip Comments

Strip HTML Tags

XML Conversion

Chasing Spammers

do

ol dguess = $guess # Update $ol dguess to previ ous $gu

e s s s s s s s s s
guess = (%ol dguess + ($argument / $oldguess)) / 2.

= 1/2 ((%ol dguess **2 + $argunent) / $ol dguess

equivalent to:

= 1/2 ($ol dguess + $argunent / $ol dguess)

that is, "averaging out” the trial solution and

#+ the proportion of argument deviation

#+ (in effect, splitting the error in half).
This converges on an accurate solution
#+ with surprisingly few loop iterations .
#+ for argunents > $tol erance, of course.

((loopcnt++)) # Updat e | oop counter.
done

It's a simple enough recipe, and seems at first glance easy enough
to convert into aworking Bash script. The problem, though, is that
Bash has no native support for floating point numbers. So, the script
writer needs to use bc or possibly awk to convert the numbers and
do the calculations. It could get rather messy . . .

Log all accessesto thefilesin/ et ¢ during the course of asingle
day. Thisinformation should include the filename, user name, and
access time. If any alterations to the files take place, that will be
flagged. Writethisdataastabular (tab-separated) formatted records
inalogfile.

Write a script to continually monitor all running processes and to
keep track of how many child processes each parent spawns. If a
process spawns more than five children, then the script sends an
e-mail to the system administrator (or root) with all relevant infor-
mation, including the time, PID of the parent, PIDs of the children,
etc. The script appends areport to alog file every ten minutes.

Strip al comments from a shell script whose name is specified on
the command-line. Note that the initial # line must not be stripped
out.

Strip all the HTML tags from a specified HTML file, then reformat
it into lines between 60 and 75 charactersin length. Reset paragraph
and block spacing, asappropriate, and convert HTML tablesto their
approximate text equivalent.

Convert an XML fileto both HTML and text format.
Optional: A script that converts Docbook/SGML to XML.

Write a script that analyzes a spam e-mail by doing DNS lookups
onthe IP addressesin the headersto identify the relay hosts aswell
as the originating |SP. The script will forward the unaltered spam
message to the responsible I SPs. Of course, it will be necessary to

701

Exercises

filter out your own |SP's | P address, so you don't end up complain-
ing about yourself.

As necessary, use the appropriate network analysis commands.

For some ideas, see Example 16.41, “Analyzing a spam domain”
and Example A.28, “ Spammer |dentification”.

Optional: Write a script that searches through alist of e-mail mes-
sages and del etes the spam according to specified filters.

Creating man pages Write a script that automates the process of creating man pages.

Given atext file which contains information to be formatted into a
man page, the script will read the file, then invoke the appropriate
groff commandsto output the corresponding man pageto st dout .
Thetext file contains blocks of information under the standard man
page headings, i.e.,, NAME, SYNOPSIS, DESCRIPTION, etc.

Example A.39, “A man page editor” isan instructive first step.

Hex Dump Do ahex(adecimal) dump on ahinary file specified as an argument
to the script. The output should be in neat tabular fields, with the
first field showing the address, each of the next 8 fields a4-byte hex
number, and the final field the ASCII equivalent of the previous 8
fields.

The obviousfollowup to thisisto extend the hex dump script into a
disassembler. Using alookup table, or some other clever gimmick,
convert the hex values into 80x86 op codes.

Emulating a Shift Register Using Example 27.15, “Emulating a push-down stack” as an inspi-
ration, write a script that emul ates a 64-hit shift register asan array.
Implement functions to load the register, shift left, shift right, and
rotate it. Finally, write a function that interprets the register con-
tents as eight 8-bit ASCII characters.

Calculating Deter minants Write a script that cal cul ates determinants ! by recursively expand-
ing the minors. Use a4 x 4 determinant as atest case.

Hidden Words Write a “word-find” puzzle generator, a script that hides 10 input
wordsinalOx 10array of random letters. Thewordsmay be hidden
across, down, or diagonally.

Optional: Write a script that solves word-find puzzles. To keep this
from becoming too difficult, the solution script will find only hor-
izontal and vertical words. (Hint: Treat each row and column as a
string, and search for substrings.)

For all you clever types who failed intermediate algebra, a determinant is a numerical value associated with a multidimensional matrix (array
of numbers).

For the sinple case of a 2 x 2 determ nant:

|a b
b a

The solution is a*a - b*b, where "a" and "b" represent nunbers.

702

Exercises

Anagramming

Word Ladders

Fog Index

Calculating Pl using Buffon's
Needle

Anagram 4-letter input. For example, the anagrams of word
are: do or rod row word. You may use / usr/ share/ dict/
I i nux. wor ds asthereferencelist.

A “word ladder” isasequence of words, with each successive word
in the sequence differing from the previous one by asingle letter.

For example, to “ladder” from mark to vase:

mark --> park --> part --> past --> vast --> vase
VAN VAN VAN VAN VAN

Write a script that solves word ladder puzzles. Given a starting and
an ending word, the script will list all intermediate stepsin the“lad-
der.” Notethat all wordsin the sequence must be legitimate dictio-
nary words.

The“fogindex” of apassage of text estimatesitsreading difficulty,
as anumber corresponding roughly to a school grade level. For ex-
ample, a passage with afog index of 12 should be comprehensible
to anyone with 12 years of schooling.

The Gunning version of thefog index usesthe following algorithm.
1. Choose a section of the text at least 100 words in length.

2. Count the number of sentences (a portion of asentencetruncated
by the boundary of the text section counts as one).

3. Find the average number of words per sentence.
AVE_WDS SEN = TOTAL_WORDS/ SENTENCES

4. Count the number of “difficult” words in the segment -- those
containing at least 3 syllables. Dividethisquantity by total words
to get the proportion of difficult words.

PRO_DIFF_WORDS = LONG_WORDS/ TOTAL_WORDS

5. The Gunning fog index is the sum of the above two quantities,
multiplied by 0.4, then rounded to the nearest integer.

G_FOG_INDEX = int (04 * (AVE WDS SEN +
PRO_DIFF_WORDS))

Step 4 is by far the most difficult portion of the exercise. There
exist various algorithmsfor estimating the syllable count of aword.
A rule-of-thumb formula might consider the number of lettersin a
word and the vowel-consonant mix.

A strict interpretation of the Gunning fog index does not count com-
pound words and proper nouns as “difficult” words, but this would
enormously complicate the script.

The Eighteenth Century French mathematician de Buffon came up
with anovel experiment. Repeatedly drop aneedle of length n onto

703

Exercises

Playfair Cipher

awooden floor composed of long and narrow paralel boards. The
cracks separating the equal-width floorboards are a fixed distance
d apart. Keep track of the total drops and the number of times the
needle intersects a crack on the floor. The ratio of these two quan-
tities turns out to be afractional multiple of PI.

In the spirit of Example 16.50, “Calculating Pl”, write a script that
runsaMonte Carlo simulation of Buffon's Needle. To simplify mat-
ters, set the needle length equal to the distance between the cracks,
n = d.

Hint: there are actually two critical variables: the distance from the
center of the needleto the nearest crack, and theinclination angle of
the needle to that crack. Y ou may use bc to handle the calculations.

Implement the Playfair (Wheatstone) Cipher in a script.

The Playfair Cipher encryptstext by substitution of digrams (2-let-
ter groupings). It istraditional to usea5 x 5 letter scrambled-al pha-
bet key square for the encryption and decryption.

CODES

<v—>»
SOX®
X
<-H4z0
NCzI

Each | etter of the al phabet appears once, except al st
"J". The arbitrarily chosen key word, "CODES" cones fir st
the rest of the al phabet, in order fromleft to right, sl
al ready used.

To encrypt, separate the plaintext nessage into digrans |
groups). If a group has two identical letters, delete the
forma new group. If there is a single letter |left over
insert a "null" character, typically an "X."

THIS IS A TOP SECRET MESSAGE

TH1S 1S AT OP SE CR ET ME SA GE

For each digram there are three possibilities.

1) Both letters will be on the same row of the key squar
For each letter, substitute the one inmrediately to th
row. If necessary, wap around |l eft to the beginning ¢

or
2) Both letters will be in the sane colum of the key sqt

For each letter, substitute the one inmedi ately bel ow
row. If necessary, wap around to the top of the col ul

704

Exercises

or

3) Both letters will formthe corners of a rectangle witl
For each letter, substitute the one on the other corn
which |ies on the same row.

The "TH' digramfalls under case #3.

GH

M N

TU (Rectangle with "T" and "H' at corners)
T-->U

The "SE" digramfalls under case #1.
CODES (Row containing "S" and "E")

S-->C (waps around left to begi nning of row
E-->S

To decrypt encrypted text, reverse the above procedure ul
and #2 (rmove in opposite direction for substitution). Unc
just take the remaining two corners of the rectangle.

Hel en Fouche Gai nes' classic work, ELEMENTARY CRYPTANALY:
fairly detailed description of the Playfair G pher and if

This script will have three main sections

I. Generating the key square, based on a user-input keyword.
I1. Encrypting a plaintext message.

I11.Decrypting encrypted text.

The script will make extensive use of arrays and functions. You
may use Example A.56, “ The Gronsfeld Cipher” as an inspiration.

Please do not send the author your solutionsto these exercises. There are more appropriate waysto impress
him with your cleverness, such as submitting bugfixes and suggestions for improving the book.

705

Appendix P. Revision History

Thi s docunent first appeared as a 60-page HOMO in the |ate spring
of 2000. Since then, it has gone through quite a nunber of updates
and revisions. This book could not have been witten without the
assi stance of the Linux comunity, and especially of the volunteers
of the Linux Docunmentation Project [http://ww.tldp.org].

Here isthe e-mail to the LDP requesting permission to submit version 0.1.

From t hegrendel @ heri ver.com Sat Jun 10 09: 05: 33 2000 -0700
Date: Sat, 10 Jun 2000 09:05:28 -0700 (MST)

From "M Leo Cooper" <thegrendel @heriver.conp

X- Sender: thegrendel @ ocal host

To: | dp-discuss@ists.|inuxdoc.org

Subj ect: Permission to submt HOMO

Dear HOWO Coor di nat or,

I amworking on and would like to submit to the LDP a HOMO on the subject
of "Bash Scripting” (shell scripting, using 'bash'). As it happens,

| have been witing this docunent, off and on, for about the |ast eight
nmonths or so, and | could produce a first draft in ASCI1 text format in

a matter of just a few nore days.

| began witing this out of frustration at being unable to find a

decent book on shell scripting. | managed to | ocate sone pretty good
articles on various aspects of scripting, but nothing Iike a conplete,
begi nning-to-end tutorial. WelIl, in keeping with my philosophy, if all

else fails, do it yourself.

As it stands, this proposed "Bash-Scripting HOMO' woul d serve as a
conmbination tutorial and reference, with the heavier enphasis on the

tutorial. It assunmes Linux experience, but only a very basic |evel
of programm ng skills. Interspersed with the text are 79 illustrative
exanpl e scripts of varying conplexity, all liberally cormented. There

are even exercises for the reader.

At this stage, |'mup to 18, 000+ words (124k), and that's over 50 pages of
text (whew!).

I haven't nmentioned that |'ve previously authored an LDP HOMO the

" Sof t war e- Bui | di ng HOMO', which | wote in Linuxdoc/ SGVML. | don't know
if I could handl e Docbook/ SGW., and I'm gl ad you have volunteers to do

t he conversion. You people seemto have gotten on a nore organi zed basis
these | ast few nmonths. Working with Greg Hankins and Ti m Bynum was ni ce,
but a professional teamis even nicer.

Anyhow, pl ease advi se.

706

http://www.tldp.org
http://www.tldp.org

Revision History

Mendel Cooper
t hegr endel @ heri ver.com

TableP.1. Revision History

Release Date

0.1 14 Jun 2000
0.2 30 Oct 2000
0.3 12 Feb 2001
0.4 08 Jul 2001
0.5 03 Sep 2001
1.0 14 Oct 2001
1.1 06 Jan 2002
1.2 31 Mar 2002
1.3 02 Jun 2002
1.4 16 Jun 2002
1.5 13 Jul 2002
1.6 29 Sep 2002
1.7 05 Jan 2003
1.8 10 May 2003
1.9 21 Jun 2003
2.0 24 Aug 2003
2.1 14 Sep 2003
2.2 31 Oct 2003

Comments
Initial release.

Bugs fixed, plus much addition-
a material and more example
scripts.

Major update.

Complete revision and expansion
of the book.

Magjor update: Bugfixes, materia
added, sections reorganized.
Stablerelease: Bugfixes, reorgani-
zation, material added.

Bugfixes, material and scripts
added.

Bugfixes, material and scripts
added.

TANGERINE release: A few bug-
fixes, much more material and
scripts added.

MANGO release: A number of
typos fixed, more material and
scripts.

PAPAYA release: A few bugfix-
es, much more material and scripts
added.

POMEGRANATE release: Bug-
fixes, more material, one more
script.

COCONUT release: A couple of
bugfixes, more material, one more
script.

BREADFRUIT release: A num-
ber of bugfixes, more scripts and
material.

PERSIMMON release: Bugfixes,
and more material.

GOOSEBERRY release: Major
update.

HUCKLEBERRY release: Bug-
fixes, and more material.

CRANBERRY release: Mgjor up-
date.

707

Revision History

Release
2.3

2.4

Date
03 Jan 2004

25 Jan 2004

15 Feb 2004

15 Mar 2004
18 Apr 2004

11 Jul 2004

03 Oct 2004

14 Nov 2004

06 Feb 2005

20 Mar 2005

08 May 2005

05 Jun 2005

28 Aug 2005

23 Oct 2005

26 Feb 2006

15 May 2006

18 Jun 2006

08 Oct 2006

10 Dec 2006

29 Apr 2007

24 Jun 2007

10 Nov 2007

16 Mar 2008

Comments

STRAWBERRY release: Bugfix-
es and more material.

MUSKMELON release: Budfix-
€s.

STARFRUIT release: Budfixes
and more material.

SALAL release: Minor update.
MULBERRY release: Minor up-
date.

ELDERBERRY release: Minor
update.

LOGANBERRY release: Major
update.

BAYBERRY release: Bugfix up-
date.

BLUEBERRY release: Minor up-
date.

RASPBERRY release: Bugfixes,
much material added.

TEABERRY release: Bugfixes,
stylistic revisions.

BOXBERRY release: Bugfixes,
some material added.

POKEBERRY release: Bugfixes,
some material added.

WHORTLEBERRY release:
Bugfixes, some material added.
BLAEBERRY release: Bugfixes,
some material added.

SPICEBERRY release: Bugfixes,
some material added.

WINTERBERRY release: Major
reorganization.

WAXBERRY release: Minor up-
date.

SPARKLEBERRY release: Im-
portant update.

INKBERRY release: Bugfixes,
meaterial added.

SERVICEBERRY release: Major
update.

LINGONBERRY release: Minor
update.

SILVERBERRY release: Impor-
tant update.

708

Revision History

Release
5.3

5.4

10

Date
11 May 2008

21 Jul 2008

23 Nov 2008

26 Jan 2009

23 Mar 2009

30 Sep 2009

17 Mar 2010

30 Apr 2011

30 Aug 2011

05 Apr 2012

27 Nov 2012

10 Mar 2014

Comments

GOLDENBERRY release: Minor
update.

ANGLEBERRY release: Major
update.

FARKLEBERRY release: Minor
update.

WORCESTERBERRY release:
Minor update.

THIMBLEBERRY release: Ma-
jor update.

BUFFALOBERRY release: Mi-
nor update.

ROWANBERRY release: Minor
update.

SWOZZLEBERRY release Ma-
jor update.

VORTEXBERRY release: Minor
update.

TUNGSTENBERRY release: Mi-
nor update.
YTTERBIUMBERRY release:
Minor update.

YTTERBIUMBERRY release:
License change.

709

Appendix Q. Download and Mirror
Sites

The latest update of this document, as an archived, bzip2-ed “tarball” including both the SGML
source and rendered HTML, may be downloaded from the author's home site [http://bash.deta.in/
abs-guide-latest.tar.bz?]). A pdf version [http://bash.deta.in/abs-guide.pdf] is also available (mirror
site [http://www.mediafire.com/file/xi34apelbifcnlb/abs-guide.pdf]). There is likewise an epub ver-
sion [http://bash.deta.in/abs-guide.epub], courtesy of Craig Barnes and Michael Satke. The change
log [http://bash.deta.in/Change.log] gives a detailed revision history. The ABS Guide even has its
own freshneat . net/freecode page [http://freecode.com/projects/advancedbashscriptingguide/]
to keep track of major updates, user comments, and popularity ratings for the project.

Thelegacy hosting site for this document is the Linux Documentation Project [http://www.tldp.org/LDP/
abs/], which maintains many other Guides and HOWTOs as well.

Many thanks to Ronny Bangsund for donating server space [http://bash.deta.in/] to host this project.

710

http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide-latest.tar.bz2
http://bash.deta.in/abs-guide.pdf
http://bash.deta.in/abs-guide.pdf
http://www.mediafire.com/file/xi34ape1bifcnlb/abs-guide.pdf
http://www.mediafire.com/file/xi34ape1bifcnlb/abs-guide.pdf
http://www.mediafire.com/file/xi34ape1bifcnlb/abs-guide.pdf
http://bash.deta.in/abs-guide.epub
http://bash.deta.in/abs-guide.epub
http://bash.deta.in/abs-guide.epub
http://bash.deta.in/Change.log
http://bash.deta.in/Change.log
http://bash.deta.in/Change.log
http://freecode.com/projects/advancedbashscriptingguide/
http://freecode.com/projects/advancedbashscriptingguide/
http://freecode.com/projects/advancedbashscriptingguide/
http://www.tldp.org/LDP/abs/
http://www.tldp.org/LDP/abs/
http://www.tldp.org/LDP/abs/
http://bash.deta.in/
http://bash.deta.in/

Appendix R. To Do List

» A comprehensive survey of incompatibilities between Bash and the classic Bourne shell.

» Same as above, but for the Korn shell (ksh).

711

Appendix S. Copyright

The Advanced Bash Scripting Guideis herewith granted to the PUBLIC DOMAIN. Thishasthefollowing
implications and consegquences.

A. Al previous releases of the Advanced Bash Scripting CGuide
are as well granted to the Public Domain.

Al. Al printed editions, whether authorized by the author or not,
are as well granted to the Public Domain. This legally overrides
any stated intention or wi shes of the publishers. Any statenent
of copyright is void and invalid.

THERE ARE NO EXCEPTI ONS TO THI S.

A2. Any rel ease of the Advanced Bash Scripting Guide, whether in
electronic or print formis granted to the Public Domain by the
express directive of the author and previous copyright hol der, Mendel
Cooper. No other person(s) or entities have ever held a valid copyright.

B. As a Public Domain docurment, unlinited copying and distribution rights
are granted. There can be NOrestrictions. |If anyone has published or wll
in the future publish an original or nodified version of this docunent,
then only additional original naterial may be copyrighted. The core
work will remain in the Public Domain.

By law, distributors and publishers (including on-line publishers) are prohibited from imposing any con-
ditions, strictures, or provisions on this document, any previous versions, or any derivative versions. The
author asserts that he has not entered into any contractual obligations that would ater the foregoing dec-
larations.

Essentially, you may freely distribute this book or any derivative thereof in electronic or printed form. If
you have previously purchased or are in possession of a printed copy of acurrent or previous edition, you
havethe LEGAL RIGHT to copy and/or redistribute it, regardless of any copyright notice. Any copyright
noticeisvoid.

Additionally, the author wishes to state his intention that:

If you copy or distribute this book, kindly DO NOT

use the materials within, or any portion thereof, in a patent or copyright
| awsuit agai nst the Open Source conmunity, its devel opers, its

di stributors, or against any of its associated software or documentation

i ncluding, but not limted to, the Linux kernel, Open Ofice, Sanba,

and Wne. Kindly DO NOT use any of the materials within

this book in testinony or depositions as a plaintiff's "expert witness" in
any | awsuit against the Open Source conmunity, any of its developers, its
distributors, or any of its associated software or docunentation.

A Public Domain license essentially does not restrict ANY legitimate distribution or use of thisbook. The
author especially encourages its (royalty-free!) use for classroom and instructional purposes.

To date, limited print rights (Lulu edition) have been granted to one individual and to no one else. Neither
that individual nor Lulu holds or ever has held avalid copyright.

712

Copyright

Warning

It has come to the attention of the author that unauthorized electronic and print editions of this
book are being sold commercially on itunes®, amazon.com and elsewhere. These areillegal and
pirated editions produced without the author's permission, and readers of this book are strongly
urged not to purchase them. In fact, these pirated editions are now legal, but necessarily fall into
the Public Domain, and any copyright notices contained within them are invalid and void.

The author produced this book in a manner consistent with the spirit of the LDP Manifesto [http://
www.tldp.org/manifesto.htmi].

Linux isatrademark registered to Linus Torvalds.

Fedorais atrademark registered to Red Hat.

Unix and UNIX are trademarks registered to the Open Group.
MS Windows is a trademark registered to the Microsoft Corp.
Solarisis atrademark registered to Oracle, Inc.

OSX isatrademark registered to Apple, Inc.

Y ahoo is a trademark registered to Y ahoo, Inc.

Pentium is atrademark registered to Intel, Inc.

Thinkpad is a trademark registered to Lenovo, Inc.

Scrabble is atrademark registered to Hasbro, Inc.

Librie, PRS-500, and PRS-505 are trademarks registered to Sony, Inc.

All other commercial trademarks mentioned inthe body of thiswork areregisteredto their respective
owners.

Hyun Jin Cha has done a Korean trandation [http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOW-
TO/index.html] of version 1.0.11 of this book. Spanish, Portuguese, French [http://abs.traduc.org/
], German, Italian [http://it.tldp.org/guide/abs/index.html], Russian [http://gazette.linux.ru.net/rus/arti-
cles/index-abs-guide.html], Czech [http://premekvihan.net/bash], Chinese [http://www.linuxsir.org/bbs/
showthread.php?=256887], Indonesian, Dutch, Romanian, Bulgarian, and Turkish trandations are also
available or in progress. If you wish to trandate this document into another language, please feel free to
do so, subject to the terms stated above. The author wishes to be notified of such efforts.

Those generous readers desiring to make a donation to the author may contribute a small amount
via Paypal to my e-mail address, <t hegr endel . abs@nuai | . con®. (An Honor Rol | of
Support er s isgiven at the beginning of the Change L og [http://bash.deta.in/Change.log].) This
is not a requirement. The ABS Guide is a free and freely distributed document for the use and en-
joyment of the Linux community. However, in these difficult times, showing support for voluntary
projects and especially to authors of limited meansis more critically important than ever.

713

http://www.tldp.org/manifesto.html
http://www.tldp.org/manifesto.html
http://www.tldp.org/manifesto.html
http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOWTO/index.html
http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOWTO/index.html
http://kldp.org/HOWTO/html/Adv-Bash-Scr-HOWTO/index.html
http://abs.traduc.org/
http://abs.traduc.org/
http://it.tldp.org/guide/abs/index.html
http://it.tldp.org/guide/abs/index.html
http://gazette.linux.ru.net/rus/articles/index-abs-guide.html
http://gazette.linux.ru.net/rus/articles/index-abs-guide.html
http://gazette.linux.ru.net/rus/articles/index-abs-guide.html
http://premekvihan.net/bash
http://premekvihan.net/bash
http://www.linuxsir.org/bbs/showthread.php?t=256887
http://www.linuxsir.org/bbs/showthread.php?t=256887
http://www.linuxsir.org/bbs/showthread.php?t=256887
http://bash.deta.in/Change.log
http://bash.deta.in/Change.log

Appendix T. ASCII Table

Traditionally, a book of this sort has an ASCII Table appendix. This book does not. Instead, here are
several short scripts, each of which generates a complete ASCII table.

Example T.1. A script that generatesan ASCI| table

#!/ bi n/ bash
ascii.sh
ver. 0.2, reldate 26 Aug 2008

Patched by ABS Cui de aut hor.

Original script by Sebastian Arm ng.
Used with perm ssion (thanks!).

exec >ASCl | . txt

Save stdout to file,

#+ as in the exanple scripts
#+ reassign-stdout.sh and upperconv. sh.

MAXNUM=256
COLUWNS=5

OCT=8

CCTSQU=64
LI TTLESPACE=- 3
Bl GSPACE=-5

i=1 # Deci mal counter
o=1 # Cctal counter

while [

done

exit $?

"Si" -1t "SMAXNUM']; do # We don't
paddi =" $i"

echo -n "${paddi: $BI GSPACE} "
paddo="00%0"

echo -ne "\\${paddo: $LI TTLESPACE}"
echo -ne "\\0${paddo: $LI TTLESPACE}"
N

echo -n " "

if ((i %$COLUWS == 0)); then
echo

f

((i++, o++))

have to count past 400 octal

Col um spaci ng.

Origi nal
Fi xup.
New | i ne.

The octal notation for 8 is 10, and 64 decimal is 100 octal

((1 %S$OCT == 0)) && ((0+=2))
((i %$OCTSQU == 0)) && ((0+=20))

Conpare this script with the "pr-asc.sh” exanple
This one handl es "unprintabl e" characters.

Exerci se
Rewite this script to use decimal nunbers,

rat her than octal

714

ASCII Table

Example T.2. Another ASCII table script

#1/ bi n/ bash

Script author: Joseph Steinhauser

Lightly edited by ABS Cui de author, but not commented.
Used in ABS Guide with perm ssion

Hoo o o o o o o o o o o o o o e e e e e e e e e e e e e e e e e eeeeao s
#-- File: ascii.sh Print ASCIl chart, base 10/8/16 (JETS-2012)
Hoo o o o o o o o o o o o o o e e e e e e e e e e e e e e e e e eeeeao s
#-- Usage: ascii [oct]|dec| hex|hel p| 8| 10| 16]

H- -

#-- This script prints out a summary of ASCI|I char codes from Zero to 127.
#-- Numeric values may be printed in BaselO, Cctal, or Hex.

#-- Format Based on: /usr/share/lib/pub/ascii with base-10 as default.
#-- For nore detail, nman asci
[-n "$BASH VERSI ON'] && shopt -s extglob

case "$1" in

oct|[Qo]?2([Cc][Tt])]8) hase=Cctal; Numy=3o0;
hex| [Hh] ?2([Ee] [Xx]) | 16] [Xx]) Obase=Hex; Numy=2X; ;
hel p| ?(-)[h?]) sed -n '2,/"[]*$/p' $0;exit;;

code|[Cc][Oo][Dd] [Ee])sed -n '/case/, $p' $0;exit;;
*) (Obase=Deci mal
esac # CODE is actually shorter than the chart!

printf "\t\t## $Cbase ASCI| Chart ##\n\n"; FML="| %O${Numy:-3d}"; LD=-1

AB="nul soh stx etx eot enqg ack bel bs tab nl vt np cr so si dle"
AD="dc1l dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us sp"

for TOK in $AB $AD; do ABR] $((LD+=1))]=$TCK; done;
ABR[127] =del

| DX=0
while [$IDX -1e 127] && CHR="${ABR[$IDX] }"
do ((${#CHR}))&& FM2="% 3s' || FM2="printf "\\\\% ' $IDX
printf "$FML $FM2" "$IDX'" $CHR (((IDX+=1)uB))||echo '|'
done

exit $?
Example T.3. A third ASCII table script, using awk

#1/ bi n/ bash

ASCI| table script, using awk.

Aut hor: Joseph Stei nhauser

Used in ABS Guide with perm ssion

715

ASCII Table

#-- File: ascii Print ASCII chart, base 10/8/16 (JETS-2010)

#-- Usage: ascii [oct]|dec| hex|hel p| 8| 10| 16]

#-- This script prints a summary of ASCI| char codes from Zero to 127.
#-- Nunmeric values may be printed in BaselO, Cctal, or Hex (Baselé6).

H- -
#-- Format Based on: /usr/share/lib/pub/ascii with base-10 as default.

#-- For nore detail, man asci

Ho o o o o o o o o o o o o o e e e e e e e e e e e e e e e e eeeee s
[-n "$BASH VERSION'] && shopt -s extglob

case "$1" in

oct|[Oo]?2([Cc][Tt])]|8) hase=Cctal; Nuny=3o0;
hex| [Hh] 2([Ee] [Xx]) | 16] [Xx]) Cbase=Hex; Nuny=2X;;
hel p| 2(-)[h?]) sed -n "2,/ 1*$/p' $0;exit;

code|[Cc][Oo][Dd] [Ee])sed -n '/case/, $p' $0; exit;;
*) Cbase=Deci mal

esac
export Obase # CODE is actually shorter than the chart!

awk 'BEG N{print "\n\t\t## "ENVI RON["Cbase"]" ASCII Chart ##\ n"

ab="soh, stx, et x, eot, enq, ack, bel , bs, tab, nl,vt, np, cr,so,si,dle,"”
ad="dc1, dc2, dc3, dc4, nak, syn, et b, can, em sub, esc, fs, gs, rs, us, sp”
split(ab ad,abr,”,");abr[0] ="nul";abr[127] ="del "

fml="]9%0" "${Nuny: - 4d}""' % 3s"
for(idx=0;idx<128;idx++){fm=fnl (++col z¥B?"":"|\n")
printf(fnt,idx,(idx in abr)?abr[idx]:sprintf("%",idx))} }'

exit $?

716

Index

This index / glossary / quick-reference lists many of the
important topicscoveredinthetext. Termsarearrangedin
approximate ASCI| sorting order, modified as necessary
for enhanced clarity.

Note that commands are indexed in Part 4.

* *x %

" (caret)

* Beginning-of-line, in a Regular Expression

o N

AN

Uppercase conversion in parameter substitution
~ Tilde
» ~ home directory, corresponds to $HOVE
* ~/ Current user's home directory
» ~+ Current working directory
» ~ Previousworking directory
= Equalssign

* = Variable assignment operator

String comparison operator
== String comparison operator
» =~ Regular Expression match operator
Example script
< Left angle bracket
* Islessthan
String comparison
Integer comparison within double parentheses
* Redirection
< stdin

<< Here document

<<< Herestring
<> Opening afilefor both reading and writing
> Right angle bracket
* |s-greater-than
String comparison
Integer comparison, within double parentheses
* Redirection
> Redirect st dout to afile
>> Redirect st dout to afile, but append
i>&j Redirect file descriptor i to file descriptor j
>&j Redirect st dout to file descriptor j
>& 2 Redirect st dout of acommandtost derr
2>&1 Redirect st derr tost dout

&> Redirect both st dout and st derr of a com-
mand to afile

:>fil e Truncatefileto zero length

| Pipe, adevice for passing the output of a command to
another command or to the shell

|| Logical OR test operator
- (dash)
* Prefix to default parameter, in parameter substitution
* Prefix to option flag
* Indicating redirection from st di n or st dout
¢ -- (double-dash)
Prefix to long command options
C-style variable decrement within double parentheses
; (semicolon)
» Ascommand separator
* \; Escaped semicolon, terminates afind command

* ;; Double-semicolon, terminator in a case option

717

Index

Required when ...
do keyword is on thefirst line of loop
terminating curly-bracketed code block

* ;& ;& Terminators in a case option (version 4+ of
Bash).

: Colon

« :>fil enamne Truncatefileto zero length

» null command, equivalent to the true Bash builtin
 Used in an anonymous here document

¢ Used in an otherwise empty function

» Used asafunction name

I' Negation operator, inverts exit status of atest or com-
mand

1= not-equal-to String comparison operator

? (question mark)

Match zero or one characters, in an Extended Regular
Expression

Single-character wild card, in globbing

In aC-style Trinary operator
/I Double forward slash, behavior of cd command toward

. (dot / period)

. Load afile (into a script), equivalent to source com-
mand

» . Match single character, in a Regular Expression
e . Current working directory
. Current working directory
.. Parent directory
... (single quotes) strong quoting

... " (double quotes) weak quoting

» Double-quoting the backslash (\) character

« Comma operator

L]
3

2]

L owercase conversion in parameter substitution
() Parentheses
* (...) Command group; starts a subshell
* (...) Enclose group of Extended Regular Expressions
e >(...)
<(...) Process substitution
* ...) Terminatestest-condition in case construct
* ((...)) Double parentheses, in arithmetic expansion
[Left bracket, test construct
[1Brackets
» Array element
» Enclose character set to match in aRegular Expression
* Test construct
[[... 1] Double brackets, extended test construct
$ Anchor, in aRegular Expression
$ Prefix to avariable name

$(...) Command substitution, setting avariable with out-
put of acommand, using parentheses notation

" ... Command substitution, using backquotes notation
9[...] Integer expansion (deprecated)
¥ ... } Variable manipulation / evaluation
» Hvar} Vaueof avariable
o ${#var} Length of avariable
. ${#@}
${#*} Number of positional parameters
o ${parameter?err_msg} Parameter-unset message
* ${parameter-default}

${parameter:-default}

718

Index

${par ameter=default}
${parameter:=default} Set default parameter
* ${parameter+alt_value}
${parameter:+alt_value}
Alternate value of parameter, if set
o Hlvar}
Indirect referencing of a variable, new notation
« ¥4

Final positional parameter. (Thisis an indirect refer-
enceto $#.)

o ${!varprefix*}
${!varprefix@}

Match names of al previously declared variables be-
ginning with var pr ef i x

e ${string:position}
${string: position:length} Substring extraction
o ${var#Pattern}
${var##Pattern} Substring removal
o ${var%Pattern}
${var % % Pattern} Substring removal
o Hstring/substring/replacement}
${string//substring/replacement}
${string/#substring/r eplacement}

${string/% substring/replacement} Substring re-
placement

$... String expansion, using escaped characters.
\ Escape the character following

e \<..\> Angle brackets, escaped, word boundary in a
Regular Expression

* \{ N\} “Curly” brackets, escaped, number of character
setsto match in an Extended RE

 \; Semicolon, escaped, terminates afind command

* \$$ Indirect reverencing of a variable, old-style nota-
tion

 Escaping anewline, to write a multi-line command
&

» &> Redirect both st dout and st derr of a com-
mand to afile

* >&j Redirect st dout to file descriptor j
>& 2 Redirect st dout of acommandto st derr
* i>&] Redirect file descriptor i to file descriptor |
2>& 1 Redirect st der r to st dout
 Closing file descriptors
n<&- Close input file descriptor n
0<&-, <&- Closest di n
n>& - Close output file descriptor n
1>& -, >& - Close st dout
* && Logica AND test operator
e Command & Run job in background
Hashmark, special symbol beginning a script comment
#! Sha-bang, special string starting a shell script
* Asterisk
» Wild card, in globbing
» Any number of charactersin a Regular Expression
» ** Exponentiation, arithmetic operator
« ** Extended globbing file-match operator
% Percent sign
* Modulo, division-remainder arithmetic operation
* Substring removal (pattern matching) operator

+ Plussign

Character match, in an extended Regular Expression

Prefix to alternate parameter, in parameter substitu-
tion

719

Index

e ++ C-stylevariableincrement, within double parenthe-
ses

Shell Variables

$_ Last argument to previous command

$- Flags passed to script, using set

$! Process D of last background job

$? Exit status of acommand

$@ All the positional parameters, as separate words
$* All the positional parameters, as asingle word
$$ Process D of the script

$# Number of arguments passed to a function, or to the
script itself

$0 Filename of the script

$1 First argument passed to script

$9 Ninth argument passed to script

Table of shell variables

-a Logical AND compound comparison test
Address database, script example

Advanced Bash Scripting Guide, where to download
Alias

* Removing an alias, using unalias
Anagramming

And list

» To supply default command-line argument
And logical operator & &

Angle brackets, escaped, \< . . . \> word boundary in a
Regular Expression

Anonymous here document, using :

Archiving

* rpm
e tar

Arithmetic expansion

* exit status of

* variations of

Arithmetic operators

« combination operators, C-style

+= = *= [= Op=

Note

In certain contexts, += can also function as a
string concatenation operator.

Arrays
» Associative arrays
more efficient than conventional arrays
* Bracket notation
» Concatenating, example script
» Copying
» Declaring
decl are -a array_nane
e Embedded arrays
» Empty arrays, empty elements, example script
* Indirect references
* Initidization
el e-

array=(elenmentl elenent2

ment N)

Example script

Using command substitution
» Loading afileinto an array
» Multidimensional, simulating
* Nesting and embedding

* Notation and usage

720

Index

* Number of elementsin
${#array_nane[@}
${#array_nane[*]}

e Operations

e Passing an array to afunction

 As return value from afunction

 Specia properties, example script

* String operations, example script

* unset deletes array elements

Arrow keys, detecting

ASCII

* Definition

 Scriptsfor generating ASCII table

awk field-oriented text processing language

e rand(), random function

* String manipulation

e Using export to pass a variable to an embedded awk
script

* ok %
Backlight, setting the brightness
Backquotes, used in command substitution
Base conversion, example script
Bash
 Bad scripting practices
» Basicsreviewed, script example
e Command-line options

Table
* Features that classic Bourne shell lacks
* Internal variables

* Version?2

* Version3
* Version4
Version4.1
Version 4.2
.bashrc
$BASH_SUBSHELL
Basic commands, external
Batch files, DOS
Batch processing
bc, calculator utility
* In ahere document
» Template for calculating a script variable
Bibliography
Bison utility
Bitwise operators
» Example script
Block devices
* testing for
Blocks of code
* lterating / looping
* Redirection
Script example: Redirecting output of a a code block
Bootable flash drives, creating
Brace expansion
* Extended,{a. .z}
» Parameterizing

« Withincrement and zero-padding (new featurein Bash,
version 4)

Brackets, []
e Array element

» Enclose character set to match in aRegular Expression

721

Index

 Test construct
Brackets, curly, {}, used in
+ Code block

e find

» Extended Regular Expressions

Positional parameters

e Xxargs

break 1oop control command

» Parameter (optional)
Builtinsin Bash

» Do not fork a subprocess

*x ok

case construct

e Command-line parameters, handling
* Globbhing, filtering strings with
cat, concatentate file(s)

* Abuse of

e cat scripts

Less efficient than redirecting st di n

* Piping the output of, to aread

» Usesof

Character devices

* testing for

Checksum

Child processes

Calon, : , equivalent to the true Bash builtin
Colorizing scripts

» Cycling through the background colors, example script
» Table of color escape sequences

» Template, colored text on colored background

Comma operator, linking commands or operations
Command-line options

command_not_found_handle () builtin error-handling
function (version 4+ of Bash)

Command substitution

e $(...), preferred notation

» Backquotes

 Extending the Bash tool set

* Invokes a subshell

* Nesting

* Removestrailing newlines

* Setting variable from loop output
» Word splitting

Comment headers, special purpose
Commenting out blocks of code
 Using an anonymous here document
e Using an if-then construct
Communications and hosts
Compound comparison operators
Compression utilities

o bzip2

* compress

* gzip

e Zip

continue loop control command
Control characters

» Control-C, break

» Control-D, terminate/ log out / erase

Control-G, BEL (beep)
» Control-H, rubout

» Control-J, nemine

722

Index

 Control-M, carriage return
Coprocesses

cron, scheduling daemon

C-style syntax , for handling variables
Crossword puzzle solver
Cryptography

Curly brackets{}

¢ infind command

* in an Extended Regular Expression
* inxargs

Daemons, in UNIX-type OS

date

dc, calculator utility

dd, data duplicator command

+ Conversions

» Copying raw data to/from devices
 Filedeletion, secure

» Keystrokes, capturing

* Options

» Random access on a data stream

» Raspberry Pi, script for preparing a bootable SD card
» Swapfiles, initializing

» Thread on www.linuxquestions.org
Debugging scripts

» Tools

e Trapping at exit

» Trapping signals

Decimal number, Bash interprets numbers as

declare builtin

 options
case-modification options (version 4+ of Bash)
Default parameters
/ dev directory
e /dev/ nul | pseudo-devicefile

e /dev/urandom pseudo-device file, generating
pseudorandom numbers with

» /dev/ zer o, pseudo-devicefile

Devicefile

dialog, utility for generating dialog boxesin a script
$DI RSTACK directory stack

Disabled commands, in restricted shells

do keyword, begins execution of commandswithin aloop
done keyword, terminates a loop

DOSbatch files, converting to shell scripts

DOS commands, UNIX equivalents of (table)

dot files, “hidden” setup and configuration files
Double brackets|[...]] test construct

+ and evaluation of octal/hex constants

Double parentheses ((...)) arithmetic expansion/evalua-
tion construct

Double quotes” ... " weak quoting
 Double-quoting the backslash (\) character
Double-spacing a text file, using sed

* ok %

-e Fileexiststest

echo

» Feeding commands down a pipe

 Setting a variable using command substitution

* / bi n/ echo, external echo command

elif, Contraction of else and if

723

Index

else

Encrypting files, using openssl

esac, keyword terminating case construct
Environmental variables

-eq , is-equal-to integer comparison test

Eratosthenes, Sieve of, algorithm for generating prime
numbers

Escaped characters, special meanings of
e Within$... " string expansion

» Used with Unicode characters

/ et c/ f st ab (filesystem mount) file
/ et ¢/ passwd (user account) file
$EUI D, Effective user ID

eval, Combine and evaluate expression(s), with variable
expansion

 Effects of, Example script

* Forcesreevaluation of arguments
» And indirect references

* Risk of using

e Using eval to convert array elements into a command
list

» Using eval to select among variables

Evaluation of octal/hex constants within[[...]]

exec command, using in redirection

Exercises

Exit and Exit status

* exit command

« Exit status (exit code, return status of a command)
Table, Exit codes with special meanings
Anomalous

Out of range

Pipe exit status
Specified by afunction return
Successful, 0

[usr/include/ sysexits. h, system file listing
C/C++ standard exit codes

Export, to make available variablesto child processes
 Passing avariable to an embedded awk script

expr, Expression evaluator

* Substring extraction

* Substring index (numerical position in string)

* Substring matching

Extended Regular Expressions

* ? (question mark) Match zero / one characters

e (...) Group of expressions

* \{ N\} “Curly” brackets, escaped, number of character
sets to match

* + Character match
* x *
factor, decomposes an integer into its prime factors
» Application: Generating prime numbers
false, returns unsuccessful (1) exit status
Field, agroup of charactersthat comprisesan item of data
Files/ Archiving
File descriptors
» Closing
n<&- Close input file descriptor n
0<&-, <&- Closest di n
n>& - Close output file descriptor n
1>&-, >&- Close st dout

e Filehandlesin C, similarity to

724

Index

File encryption

find

{} Curly brackets

\; Escaped semicolon

Filter

Using - with file-processing utility as afilter

Feeding output of afilter back to same filter

Floating point numbers, Bash does not recognize

fold, afilter to wrap lines of text

Forking a child process

for loops

Functions

Arguments passed referred to by position
Capturing the return value of a function using echo
Colon as function name

Definition must precede first call to function

Exit status

Local variables

and recursion

Passing an array to afunction

Passing pointersto afunction

Positional parameters

Recursion

Redirecting st di n of afunction

return

Multiple return values from afunction, example script
Returning an array from afunction

Return range limits, workarounds

Shift arguments passed to a function

Unusual function names

*

* %

Games and amusements

Anagrams

Anagrams, again

Bingo Number Generator
Crossword puzzle solver
Crypto-Quotes

Dealing a deck of cards
Fifteen Puzzle
Horserace

Knight's Tour

“Life” game

Magic Squares
Music-playing script
Nim

Pachinko

Perquackey

Petals Around the Rose
Podcasting

Poem

Speech generation
Towers of Hanoi
Graphic version

Alternate graphic version

getopt, external command for parsing script com-
mand-line arguments

Emulated in a script

getopts, Bash builtin for parsing script command-line ar-
guments

$OPTI ND/ $OPTARG

Global variable

725

Index

Globbing, filename expansion e Limit string

» Handling filenames correctly I'asalimit string

* Wild cards Closing limit string may not be indented

* Will not matchdot files Dash option to limit string, <<- Li mi t St ri ng
Golden Ratio (Phi) » Literal text output, for generating program code
-ge, greater-than or equal integer comparison test Parameter substitution

-gt , greater-than integer comparison test Disabling parameter substitution

groff, text markup and formatting language « Passing parameters

Gronsfeld cipher « Temporary files

$CGROUPS, Groups user belongs to

Using vi non-interactively

gzip, compression utility History commands

* k%

$HOVE, user's home directory

Hashing, creating lookup keysin atable Homework assignment solver

» Example script $HOSTNANME, system host name

head, echoto st dout linesat the beginning of atext file

* *x %

help, gives usage summary of aBash builtin $I d parameter, in rcs (Revision Control System)

Here documents . -
if [condition]; then ... test construct

» Anonymous here documents, using : . . . "
4 g « if-grep, if and grep in combination
Commenting out blocks of code ,)
Fixup for if-grep test

Self-documenting scripts i)
$I FS, Internal field separator variable

* bcin ahere document)
 Defaults to whitespace

e cat scripts
Integer comparison operators
» Command substitution
in, keyword preceding [| i st] inafor loop
o exscripts
Initialization table, / et c/inittab
* Function, supplying input to
Inline group, i.e., code block
» Herestrings
Interactive script, test for
Calculating the Golden Ratio
1/O redirection
Prepending text
Indirect referencing of variables
Asthest di n of aloop
. * New notation, introduced in version 2 of Bash (exam-
Using read ple script)

726

Index

iptables, packet filtering and firewall utility

» Usage example

» Example script

Iteration

-

Job IDs, table

jot, Emit a sequence of integers. Equivalent to seq.
» Random seguence generation

Just another Bash hacker!

Keywords

* error, if missing

kill, terminate a process by process |ID

e Options(-1,-9)

killall, terminate a process by name

killall scriptin/etc/rc.d/init.d

*x ok

lastpipe shell option

-le, less-than or equal integer comparison test

let, setting and carrying out arithmetic operations on vari-
ables

» C-styleincrement and decrement operators
Limit string, in a here document

$LI NENO, variable indicating the line number where it
appearsin a script

Link, file (using In command)

* Invoking script with multiple names, using In
e symboliclinks, In -s

List constructs

¢ Andlist

e Orlist

Local variables
* and recursion
Localization
Logical operators (&&, | | , €tc.)
Logout file, the~/ . bash_| ogout file
L oopback device, mounting afile on ablock device
Loops
* break loop control command
« continue loop control command
» C-styleloop within double parentheses
for loop
while loop

» do (keyword), begins execution of commands within a
loop

* done (keyword), terminates aloop
« for loops
forargin[list];do
Command substitution to generate[| i st]
Filename expansionin[| i st]
Multiple parametersineach [| i st] element
Omitting [| i st], defaultsto positional parameters
Parameterizing [| i st]
Redirection
* in, (keyword) preceding [list] in afor loop
* Nested loops
* Running aloop in the background, script example
» Semicolon required, when do is on first line of loop
for loop
while loop

* until loop

727

Index

until [condition-is-true]; do
» whileloop
while [condition]; do
Function call inside test brackets
Multiple conditions
Omitting test brackets
Redirection
while read construct
» Which type of loop to use
L oopback devices
* In/ dev directory
* Mounting an 1SO image
-It , less-than integer comparison test
* ok %
m4, macro processing language
$MACHT YPE, Machine type

Magic number, marker at the head of afileindicating the
filetype

Makef i | e, file containing the list of dependencies used
by make command

man, manual page (lookup)

» Man page editor (script)

mapfile builtin, loads an array with atext file
Math commands

Meta-meaning

Morse code training script

Modulo, arithmetic remainder operator

» Application: Generating prime numbers

Mortgage cal culations, example script

* % %

-n String not null test

Named pipe, atemporary FIFO buffer

» Example script

nc, netcat, a network toolkit for TCP and UDP ports
-ne, not-equal-to integer comparison test

Negation operator, !, reverses the sense of atest
netstat, Network statistics

Network programming

nl, afilter to number lines of text

Noclobber, - C option to Bash to prevent overwriting of
files

NOT logical operator, !

null variable assignment, avoiding

* x *

-0 Logical OR compound comparison test
Obfuscation

» Colon as function name

» Homework assignment

 Just another Bash hacker!

octal, base-8 numbers

od, octal dump

$COLDPWD Previous working directory
openssl encryption utility

Operator

* Definition of

* Precedence

Options, passed to shell or script on command line or by
set command

Or list

Or logical operator, ||

* % %

728

Index

Parameter substitution
» ${parameter+alt_value}
${parameter:+alt_value}
Alternate value of parameter, if set
o ${parameter-default}
${ parameter:-default}
${parameter=default}
${parameter: =default}
Default parameters
o H!varprefix*}
${!varprefix@}
Parameter name match
o ${parameter?err_msg}
Parameter-unset message
o ${parameter}
Value of parameter
» Case modification (version 4+ of Bash).
» Script example
» Table of parameter substitution

Parent / child process problem, a child process cannot ex-
port variables to a parent process

Parentheses

» Command group

» Enclose group of Extended Regular Expressions

» Double parentheses, in arithmetic expansion

$PATH, the path (location of system binaries)
 Appending directoriesto $SPATHusing the += operator.

Pathname, af i | enane that incorporates the complete
path of agiven file.

* Parsing pathnames

Perl, programming language

e Combined in the same file with a Bash script

» Embedded in a Bash script

Perquackey-type anagramming game (Quackey script)
Petals Around the Rose

PID, Process ID, an identification number assigned to a
running process.

Pipe, | , adevice for passing the output of a command to
another command or to the shell

» Avoiding unnecessary commandsin a pipe
» Comments embedded within
* Exit status of apipe

 Pipefail, set -0 pipefail option to indicate exit status
within apipe

e $PI PESTATUS, exit status of last executed pipe

* Piping output of a command to a script

» Redirecting st di n, rather than using cat in apipe
Pitfalls

* - (dash) isnot redirection operator

* /I (doubleforward slash), behavior of cd command to-
ward

» #/bin/sh script header disables extended Bash features
* Abuse of cat

e CGI programming, using scripts for

» Closing limit string in a here document, indenting

» DOS-type newlines (\r\n) crash a script

» Double-quoting the backslash (\) character

* eval, risk of using

» Execute permission lacking for commands within a
script

» Exit status, anomalous

 Exit statusof arithmetic expression not equivalent to an
error code

» Export problem, child process to parent process

729

Index

Extended Bash features not available

Failing to quote variables within test brackets
GNU command set, in cross-platform scripts
let misuse: attempting to set string variables

Multiple echo statementsin a function whose output is
captured

null variable assignment

Numerical and string comparison operators not equiv-
alent

= and -eq not interchangeable

Omitting terminal semicolon, inacurly-bracketed code
block

Piping
echo to aloop

echo to read (however, this problem can be circum-
vented)

tail - f togrep

Preserving whitespace within a variable, unintended
consequences

suid commands inside a script
Undocumented Bash features, danger of
Updates to Bash breaking older scripts
Uninitialized variables

Variable names, inappropriate
Variablesin a subshell, scope limited
Subshell in while-read loop

Whitespace, misuse of

Pointers

and file descriptors
and functions
and indirect references

and variables

Portahility issuesin shell scripting

* Setting path and umask

A test suite script (Bash versus classic Bourne shell)
» Using whatis

Positional parameters

» $@ as separate words

e $*,asasingleword

* infunctions

POSIX, Portable Operating System Interface / UNIX
* --posi x option

+ 1003.2 standard

* Character classes

$PPI D, process ID of parent process
Precedence, operator

Prepending lines at head of afile, script example
Prime numbers

» Generating primes using the factor command
» Generating primes using the modul o operator

» Sieve of Eratosthenes, example script

printf, formatted print command

/ pr oc directory

* Running processes, files describing

» Writingtofilesin/ pr oc, warning

Process

 Child process

» Parent process

e ProcessID (PID)

Process substitution

» To compare contents of directories

» Tosupply st di n of acommand

730

Index

e Template read, set value of avariable from st di n
 while-read loop without a subshell * Detecting arrow keys

Programmable completion (tab expansion) » Options

Prompt * Piping output of cat to read

» $PS1, Main prompt, seen at command line * “Prepending” text

* $PS2, Secondary prompt « Problems piping echo to read
Pseudo-code, as problem-solving method « Redirection from afile to read

$PWD, Current working directory o $REPLY, default read variable

e « Timed input

Quackey, a Perquackey-type anagramming game (SCript) . \vhile read construct

Question mark, ? readline library

» Character match in an Extended Regular Expression Recursion

 Single-character wild card, in globbing « Demonsiration of

* InaC-style Trinary (ternary) operator « Factorial

Quoting « Fibonacci sequence

» Character string e Loca variables

» Variables Script calling itself recursively

within test brackets .
» Towers of Hanoi

» Whitespace, using quoting to preserve .
&P g4 gtop Redirection

* % %

» Code blocks

Random numbers)
 exec<fil enane,

e /dev/ urandom o)
to reassign file descriptors

e rand(), random function in awk
* Introductory-level explanation of I/O redirection

» $RANDOM Bash function that returns a pseudorandom

integer * Open afilefor both reading and writing
« Random sequence generation, using date command <>fil enane
» Random sequence generation, using jot + read input redirected from afile
» Random string, generating » stderr tostdout
Raspberry Pi (single-board computer) 2>&1
* Script for preparing a bootable SD card e stdin/stdout,usng -
rcs » st di nof afunction

731

Index

» stdout toafile
> .. >>
» st dout tofiledescriptor j
>&j
« filedescriptori to file descriptor |
i >&
» stdout of acommandtostderr
>&2
» stdout andst derr of acommand to afile
&>

* tee, redirect to a file output of command(s) partway
through a pipe

Reference Cards
» Miscellaneous constructs

» Parameter substitution/expansion

Specia shell variables
* String operations
» Test operators
Binary comparison
Files
Regular Expressions

e " (caret) Beginning-of-line

$ (dollar sign) Anchor

. (dot) Match single character

* (asterisk) Any number of characters

[] (brackets) Enclose character set to match

\ (backslash) Escape, interpret following character lit-
eraly

» \<...\> (angle brackets, escaped) Word boundary
» Extended REs

+ Character match

\{'\} Escaped “curly” brackets
[: ;] POSIX character classes
$REPLY, Default value associated with read command

Restricted shell, shell (or script) with certain commands
disabled

return, command that terminates a function

run-parts

» Running scriptsin sequence, without user intervention
* % %

Scope of avariable, definition

Script options, set at command line

Scripting routines, library of useful definitions and func-
tions

Secondary prompt, $PS2

Security issues

* nmap, network mapper / port scanner
+ sudo

* suid commands inside a script

* Viruses, trojans, and wormsin scripts
* Writing secure scripts

sed, pattern-based programming language
» Table, basic operators

» Table, examples of operators

select, construct for menu building

* in |ist omitted

Semaphore

Semicolon required, when do keyword is on first line of
loop

* When terminating curly-bracketed code block
seq, Emit a sequence of integers. Equivalent to jot.

set, Change value of internal script variables

732

Index

 set -u, Abort script with error message if attempting to
use an undeclared variable.

Shell script, definition of
Shell wrapper, script embedding a command or utility
shift, reassigning positional parameters

$SHLVL, shell level, depth to which the shell (or script)
is nested

shopt, change shell options
Signal, amessage sent to a process
Simulations

» Brownian motion

Galton board

» Horserace

* Life, game of

* PI, approximating by firing cannonballs

* Pushdown stack

Single quotes (' ... ") strong quoting

Socket, acommuni cation node associated with an I/O port
Sorting

* Bubble sort

* Insertion sort

source, execute a script or, within a script, import afile
 Passing positional parameters

Soam, dealing with

» Example script

» Example script

» Example script

» Example script

Specia characters

Stack

» Definition

Emulating a push-down stack, example script

Standard Deviation, example script

Startup files, Bash

st di n and st dout

Stopwatch, example script

Strings

=~ String match operator
Comparison

Length

${#string}
Manipulation
Manipulation, using awk

Null string, testing for

Protecting strings from expansion and/or reinterpreta-

tion, script example
Unprotecting strings, script example
strchr(), equivalent of

strlen(), equivalent of

strings command, find printable strings in a binary or

datafile

Substring extraction

${ string: position}

${ string: position:length}

Using expr

Substring index (numerical position in string)
Substring matching, using expr
Substring removal

${ var#Pattern}

${ vartfPattern}

${ var%Pattern}

${ varveYoPattern}

733

Index

* Substring replacement
${ string/substring/replacement}
${ string//substring/replacement}
${ string/#substring/replacement}
${ string/%substring/replacement}

Script example

stty
tput
wall

test command

» Table of string/substring manipulation and extraction

operators
Srong quoting ' ...
Stylesheet for writing scripts
Subshell
e Command list within parentheses
e Variables, $BASH SUBSHELL and $SHLVL
» Variablesin asubshell
scope limited, but ...
... can be accessed outside the subshell?
su Substitute user, log on as a different user or as root
suid (set user id) file flag
* suid commands inside a script, not advisable
Symbolic links

Swapfiles

* * %

Tab completion
Table lookup, script example
tail, echo to st dout linesat the (tail) end of atext file

tar, archiving utility

Bash builtin

external command, / usr/ bi n/ t est (equivaent to
[fusr/bin/[)

Test constructs

Test operators

tee, redirect to a file output of command(s) partway

through a pipe
Terminals
» setserid

e setterm

-a Logical AND compound comparison
-e Fileexists

-eq is-equal-to (integer comparison)

-f Fileisaregular file

-ge greater-than or equal (integer comparison)
-gt greater-than (integer comparison)

-le less-than or equal (integer comparison)
-It less-than (integer comparison)

-n not-zero-length (string comparison)
-ne not-equal-to (integer comparison)

-0 Logical OR compound comparison

-u suid flag set, file test

-z is-zero-length (string comparison)

is-equal-to (string comparison)

is-equal-to (string comparison)
< less-than (string comparison)

< less-than, (integer comparison, within double paren-
theses)

<= lessthan-or-equal, (integer comparison, within
doubl e parentheses)

> greater-than (string comparison)

> greater-than, (integer comparison, within double
parentheses)

734

Index

» >= greater-than-or-equal, (integer comparison, within
doubl e parentheses)

* || Logica OR

* && Logica AND

| Negation operator, inverts exit status of atest
= not-equal-to (string comparison)

» Tables of test operators
Binary comparison
File

Text and text file processing

Time/ Date

Timed input

e Usingread -t

e Using stty

e Using timing loop

» Using $TMOUT

Tips and hints for Bash scripts

» Array, asreturn value from afunction

Associative array more efficient than anumerically-in-
dexed array

 Capturing the return value of afunction, using echo
» CGI programming, using scripts for
» Comment blocks
Using anonymous here documents
Using if-then constructs
e Comment headers, special purpose
e C-style syntax , for manipulating variables
» Double-spacing atext file
» Filenames prefixed with a dash, removing
* Filter, feeding output back to same filter

» Function return value workarounds

* if-grep test fixup

o Library of useful definitions and functions

» null variable assignment, avoiding

e Passing an array to afunction

¢ $PATH, appending to, using the += operator.

* Prepending lines at head of afile

 Progress bar template

* Pseudo-code

* ICS

» Redirecting atestto/ dev/ nul | to suppress output

* Running scripts in sequence without user intervention,
using run-parts

* Script as embedded command
 Script portability
Setting path and umask
Using whatis

* Setting script variable to a block of embedded sed or
awk code

» Speeding up script execution by disabling unicode
* Subshell variable, accessing outside the subshell

e Testing avariableto seeif it contains only digits

» Testing whether a command exists, using type

» Tracking script usage

 while-read loop without a subshell

» Widgets, invoking from a script

$TMOUT, Timeout interval

Token, a symbol that may expand to a keyword or com-
mand

tput, terminal-control command
tr, character trandlation filter

» DOSto Unix text file conversion

735

Index

e Options

 Soundex, example script

* Variants

Trap, specifying an action upon receipt of asignal
Trinary (ternary) operator, C-style, var >10?88: 99
* in double-parentheses construct

* inlet construct

true, returns successful (0) exit status

typeset builtin

 options

* ok %

$UI D, User ID number

unalias, to remove an dias

uname, output system information

Unicode, encoding standard for representing letters and
symbols

« Disabling unicode to optimize script
Uninitialized variables
uniq, filter to remove duplicate lines from a sorted file
unset, delete ashell variable
until loop
until [condition-is-true]; do
T
Variables
 Array operations on
e Assignment
Script example
Script example
Script example

» Bashinternal variables

Block of sed or awk code, setting avariable to
C-style increment/decrement/trinary operations
Change value of internal script variables using set
declare, to modify the properties of variables
Deleting a shell variable using unset
Environmental

Expansion / Substring replacement operators
Indirect referencing

eval variabl el=\ $$vari abl e2
Newer notation

${!vari abl e}

Integer

Integer / string (variables are untyped)
Length

${#var}

Lvalue

Manipulating and expanding

Name and value of a variable, distinguishing between

Null string, testing for

Null variable assignment, avoiding
Quoting

within test brackets

to preserve whitespace

rvalue

Setting to null value

In subshell not visible to parent shell
Testing avariable if it contains only digits
Typing, restricting the properties of avariable
Undeclared, error message

Uninitialized

736

Index

*

Unquoted variable, splitting
Unsetting

Untyped

* %

wait, suspend script execution

To remedy script hang

Weak quoting " ... "

while loop

while[condition]; do

C-style syntax

Calling a function within test brackets
Multiple conditions

Omitting test brackets

while read construct

Avoiding a subshell

Whitespace, spaces, tabs, and newline characters

$I FS defaultsto

Inappropriate use of

Preceding closing limit string in a here document, error
Preceding script comments

Quoting, to preserve whitespace within strings or vari-
ables

[:space], POS X character class

who, information about logged on users

w
whoami

logname

Widgets

Wild card characters

Asterisk *

In [list] constructs

e Question mark ?

* Will not matchdot fil es

Word splitting

* Definition

 Resulting from command substitution

Wrapper, shell

* % %

xargs, Filter for grouping arguments
» Curly brackets

 Limiting arguments passed

* Options

* Processes arguments one at atime

* Whitespace, handling

* Kk %

yes
* Emulation

* Kk %

-z String isnull

Zombie, a process that has terminated, but not yet been
killed by its parent

Symbols

I, 14, 63

", 32

#, 13

#,8

$, 14, 14, 24, 113, 154

$l, 72

$#, 71

$$, 14, 72

$..14

$,14,71

$, 72

$0, 71

$?, 14, 40, 72

$@, , 71
positional parameters,

$BASH, 71

$BASHPID, 71

737

Index

$BASH_ENV, 71

$BASH_SUBSHELL, 71
$BASH_VERSINFO, 71

$BASH_VERSION, 71
$CDPATH, 71
$DIRSTACK, 71
$EDITOR, 71
$EUID, 71
$FUNCNAME, 71
$GLOBIGNORE, 71
$GROUPS, 71
$HOME, 71
$HOSTNAME, 71
$HOSTTYPE, 71
$IFS, 71
$IGNOREEOF, 71
$LC_COLLATE, 71
$LC_CTYPE, 71
$LINENO, 71
$MACHTYPE, 71
$OLDPWD, 71
$OPTARG,
$OPTIND,
$OSTYPE, 71
$PATH, 71,
$PIPESTATUS, 71
$PPID, 71

$PROMPT_COMMAND, 71

$PSL, 71

$PS2, 71

$PS3, 71

$Ps4, 71
$PWD, 71,
$RANDOM, 75
$REPLY, 71
$SECONDS, 71
$SHELLOPTS, 71
$SHLVL, 71
$TMOUT, 71
$UID, 71
$1],15

$,72

${}, 14

%, 62

%=, 62

&, 63

&&, 16,63, 226
&=, 63

' 32

((, 50, 50

(), 15

0, 155

* 14, 14, 62, 154
* % , 62

*=,62

+, 62, 155
+=, 62

, 63

-, 17,62
-=, 62

. 13,13, 13, , 154

/,62

/=, 62

14

;5 13

&,
case statement,

i 13, ,

&, 13

<, , 15

<<, 63, 158

<<=, 63

=, 24, 62

> 15, ,
ASCII comparison,
word boundary,

>&,

>>, , 63

>>= 63

>|, 15

?, 14, 14, 155

[, 46

[1, 15,15

[..], 154

[:, 155

([, 48

(11, 15

(1,15

\, 32, 154

\", 36

\$, 36

\Oxx, 36

\,

\<, 15

\<\>, 154

\a, 36

\b, 36

\n, 36

\r, 36

\t, 36

\v, 36

\\, 36

\{'\}, 155

], 46

11,48

A, 18, 63, 154

=, 63

{a.z}, 14

738

Index

{xxx,yyy,zzz.}, 14 caler, 138
{1, 14, carriage return,
|, 15, 63, 155 case, 112
=, 63 cat, 140
|l 15, 63, 226 cd, 138
~, 63 path,
cd path,
A character match,
ac, 147 character range
addition, aphabetic,
agetty, alphabetic numeric,
dert control,
dias, 223 decimal digit,
alnum, 155 greph,
alpha, 155 hexadecimal,
and, lowercase,
AND printable,
bitwise, space b,
list, 226 vhperease
logical, whitespace,
and-equal, chattr, 140
ar, 143 chfn, 144
arch, 147 charp, -
arithmetic chkconfig, 148
expansion, 120, chmod, 140
arithmetic operator, chown, 147
array element, chroot, 149
at, 142, cksum,
autoload, 139 clear, 145
ank, , 145, 317 clock,
cmp, 144
cntrl, 155
B col, 143
background, colrm, 143
backspace, column, 143
badblocks, 148 comm, 144
banner, 145 command, 139
basename, 144 , , 139
batch, 142 .
Eg,erl)45 accounting,
beginning of line, ?ftge
bind, 138 arch,
key bindings, archive,)
blank, 155 arj.exe,
block of code, at, ,
bookmark, autol oader,
brace expansion, awk, ,
break, 112 badbl ocks,
builtin, 136, 139 banner,
bzip2, 143 basename,
batch,
C bc,
cal, 142 bg,

739

Index

bison,
bootdisk,
browser,
builtin,
bzip2,

cal,

caller,

cat,

cd,

chattr,
chgrp,
chmod,
chown,
chroot,
cksum,
clear,
clock,

cmp,
colrm,
column,
comm,
command,
COMpress,
conversion,
cookie,

cp,

cpio, ,
cron,
crond,
crypt,
csplit,

cut, ,
date,

dc,

dd,
debugfs,
declare, 72,
device,

df,

dialog,

diff,

diff3,
dirname,
dirs,
disown,
dmesyg,
domain information groper,
domain name server,
download,
du,

dump,
dumpe2fs,
e2fsck,
echo,

enable,
encode,
encoding, ,
env,
environment,
equation,
eval,

exec,
executable arg list,
exit, 39,
expand,
export,

expr, 62,
factor,

false,

fdisk,

file,

file converter,
file transfer,
filename,
find,

finger, ,
firewall,

flex,

floppy,

fmt, ,
fold,
foreground,
free,

fsck,

fuser,

getfacl,
getopts,

getty,

grep,

groff,

group, ,
groups,

gzip,

halt,

hard disk parameters,
hash,

head,
hexadecimal,
host,

host id,
hostname,
hweclock,

id,

ifconfig,
index,

info,

init,

install,

740

Index

ipcalc,
1SO9660,
jobs,

join,

jot,

kill, ,
last, ,
Idd,

less,

let, 62,

link,
loadable modules,

localization, ,
locate,

lock file,
lockfile,

log out,
logged in,
logger,
logname,
logrotate,
look,

losetup,

lpr,

Is, ,

| sof,

|zcat,

Izma,

macro, ,
mail, ,
make devicefile,
Makefile,
man,

math,
md5sum,
merge,

mesg,

mime,

MIME mail,
mkdir,
mkdosfs,
mke2fs,
mkfifo,
mknod,
mkswap,
more,

mount, ,
name server lookup,
nc,

netstat,
network,

network configuration,

nice,

nohup,
object binary dump,
od,

option,
package manager,
password,
paste,

patch,
pathchk,

pci,

pdf,
periodic,
ping,
pkzip.exe,
popd,

port scan,
Postscript,
PostScript,
pr,

printf,
process grep,
process D,
process kill,
processes,
procinfo,

ps, ,
pstree,
pushd,

pwd,

quota,)
rar.exe,

rdev,

rdist,

read,
readonly,
reboot,
remote copy,
remote login,
remote shell,
remote update,
reset,

resize,
restore,
return,

rev,

reverse line feed,
rm,

rmdir,

route,
routing,
run-parts,
runlevel,

rX,

rz,

741

Index

script,

sdiff,

secure copy,
secure delete,
secure shell,
sed,

segment,

Seq,

serial,

service,

Set,

setfacl,
shalsum,

shift, 30

shopt,
shutdown,
sleep,

slocate,

sort,

sound,

source,

split,

Sq,

SSL,

stat,

statistics, ,
strings,

stty,

su,

sudo,

sum,

suspend,
swapoff,
swapon,

X,

symbol, ,
sync,

system activity report,
Z,

table,

tac,

tail,

tar,

tcp,

tee,

telinit,

telnet,

terminal, ,
TeX,

time,

time zone dump,
times,
tmpwatch,
topological sort,

touch,
tr,
trace, ,
traceroute,
true,
tset,
tty,
tunezfs,
type,
typeset, 72,
ulimit,
umask,
umount,
uname,
uNCOMpress,
unexpand,
uniq,
unlzma,
unset,
unxz,
unzip,
uptime,
usb, ,
useradd,
userdel,
usermod,
users,
usleep,
uucp, ,
uudecode,
uuencode,
virtual memory,
vrfy,
W,
wait,
wall,
WC,
whatis,
whereis,
which,
whoami,
wireless,
write,
xargs,
xrandr,
XZ,
xzcat,
yes,
comment,
compress, 143
continue,
cp, 140
cpio, 143
cron, , 148

742

Index

crypt, 144 eseif, 42
csplit, enable, 139
cu end of line,
cal up, endless|oop,
cut, 142, enscript, 143
env, 149
D eqn,
date, 142 esac,
dc, 145 escape, 32
dd’, 145 esczla'ped character
debugfs, t ,
declare, 72, 138 $,
default value of read, t.Onn,
depmod, 149 \,,
df, 147 \«8,
dialog, 146 \)
diff, 143 \n,
diff3, 144 \r,
dig, 144 \t,
digit, 155 \;/,
dlnra]c(:)tg]rg eval, 138
root ’ exgc, 138
change, ex!t, 39, 138
stack, ' exit stgtus, , 39,
working, , , , variable,
directory stack, expand, 142
dirname, 144 exponentiation,
dirs, , export, 138
disown, 138 expr, 62, 142 _
divisior’1, extended brace expansion,
dmesg, 147
do, , , F
doexec, 146 factor, 145
dollar, false, 138
done, , , fdformat, 149
dos2unix, 144 fdisk, 148
dot command, fg, 138
double file, 143
parentheses, 120 filename,
double backslash, find, 142
du, 147 finger, 144
dUmp, 149 flags,
dumpe2fs, 148 flash,
flock, 149
E fmt, 143
fold, 143
ZCZI\?)Cki38 for, 111
editc;r, free, 147
effective user ID, fsck, 148
elf, 148 ftp, 144
dif, 42 fuser, 148
else, 42

743

Index

G

getfacl, 143
getopt, 145
getopts, 138
gettext, 143

getty, 147
gnome-mount, 148
graph, 155

grep, 142

groff, 143
groupmod, 147
groups, , 147
gs,

gzip, 143

H

halt, 148

hash, 138
hdparm, 148
head, 142
help, 138
hexdump, 145
home directory,
host, 144

host type,
hostid, 148
hostname, 147
hwclock, 142

I

iconv, 143
id, 147

if, 42
ifconfig, 148
ignore,
Ignore EOF,
in, ,
info,
infocmp, 145
init, 148
insmod, 149
install, 144

integer arithmetic (obsolete),

integer comparison,

internal field separator,

ip, 148
ipcalc, 144
iptables, 148
iwconfig, 148

J
jobs, 138
join, 142

jot, 145

K
kill, 139
killall, 139

L

last, 147
lastcomm, 147
lastlog, 147
ldd, 149
left shift,
left-shift-equal,
less,
let, 62, 138
let,
lex, 143
lid, 147
line number,
linking,
locate, 143
lockfile, 149
logger, 148
logical operator,
logname, 147
logout, 138
logrotate, 148
look, 142
loop
arguments,
break,
continue,
for,
until,
while,
losetup, 148
lower, 155

lowercase character type,

lowercase collate,
Ip, 145

Is, 140
Isdev, 147
Ismod, 149
Isof, 147
Ispci, 148
Isush, 148
Itrace, 147
lynx, 144
|zcat,
Izma, 143

M
m4, 145

744

Index

machine type, nslookup, 144
magic, 145 null command,
magic number, 8
mail, 145 @)
mai Istats, 145 objdump, 145
mailto, 145
octal ASCII,

make, 144 od, 145
MAKEDEV, 149 openssl, 144
man, 141 operation
match single character, %,
md5sum, %’:,
menus,) &,
merge, &=
mesg, 147 .
mimencode, 144 *
minus, .
minus-equal, +_,
mkbootdisk, 149 =
mkdir, 140 '
mkdosfs, 148)
mke2fs, 148 =
mkfifo, 145 /_,
mkisofs, 149 .
mknod, 149 <_<'
mkswap, 148 <<':
mmencode, =
mod-equal, ;>
modinfo, 149 S>m
modprobe, 149 A
modulo, A=
more, 144 | B
mount, 148 |’—
msgfmt, 143 =
multi pllcatloln,. operator

exponentiation, I

&&,

N Il
name, or,
nc, 147 OR
negate, bitwise,
netconfig, 145 list, 226
netstat, 148 logical,
newgrp, 147 OR-equal,
newline, ostype,
nice, 148
nl, 143 P
nm, 149

, parameter
nmap, 148 positional, 26,
noclobber, all
nohup, 148 nu;nber of,
notl,Ogicaj parameter substitution,
NOT part of afilename,

passwd, 147

745

Index

paste, 142
patch,
path to bash,
path to binaries,
pathchk, 145
pax, 143
pgrep, 148
PID
last job background,
of script,
pidof, 148
ping, 144
pipe,
pkill,
plus,
plus-equal,
popd,
positional parameter,
all, ,
number of,
pr, 143

previous working directory,

print, 155
printenv, 145
printf, 138
process D, ,
variable,
procinfo, 147
prompt,
quartenary,
secondary,
tertiary,
ps, , 148
pstree, 148
ptx, 144
pushd, 138
pwd, 138

Q

quota, 149
quote, 32,

R
rcp, 144
rdev, 149
rdist, 149
read, 138
readlink, 143
readonly, 138
reboot,
recode, 143
redirection,
force,

from/to stdin/stdout,
stdin, 212
regular expression,
\<,
reply
read,
reset, 145
resize, 145
restore,
return, 212
return status, 39
rev, 140
right shift,
right-shift-equal,
rlogin, 144
rm, 140
rmdir, 140
rmmod, 149
route, 148
rpm, 143, 143
rsh, 144
rsync, 145
run-parts, 145
runlevel, 148
runtime
seconds,
rx,
rz,

S

sar, 148
scp, 145
script, 145
awk, 317
sed, 317
sdiff, 144
seconds execution time,
sed, 142, 317
select, 112
separator,
Seq,
service, 148
set, 138
setfacl,
setquota, 149
setserial, 147
setterm, 147
sha-bang, 8
shar, 143
shell level,
shell options,
shift, 30
shopt, 138

746

Index

shred, 144 {3, , , ,
shutdown, l ,
size, 148 Il , 226
slash-equal, split, 144
sleep, 142 s, 143
slocate, ssh, 145
sort, 142 stat, 147
source, , 138 strace, 147
sox, 146 string expansion, ,
space, 155 string length
special character expr, 89, 89
I parameter substitution, 89
", 32 strings, 143
#, strip, 149
$, , , , stty, 147
$3, su, 147
$*, substring
$}, extraction, 90, 90
&&, , 226 extraction expr, 92, 92, 92, 92, 92
', 32 removal, 93, 93, 93, 93
()R replacement, 97, 97, 98, 98
0, substring extraction
)), 50, 50 substring index
*, , , expr, 90
+, substring length
o) expr, 90, 90
o ; , , subtraction,
:, sudo, 147
;], 155 sum, 144
i’ suspend, 138
né&, swapoff,
<,) swapon, 148
<<, 158 switch,
>, X, 144
>&, sync, 148
>>, system name,
>|, sz, 144
?, : : :
array_element[], T
case, tabulation,
pharacter range, tac
integer expansion, taiI’, 142
[46 tar, 143
(1, thl,
[-], tcpdump, 148
[[, 48 tee, 145
[, i, 148
\<\> telnet, 144
\(\} ' temporary, 144
{ test, , , 46, 48, 50
}] > if, 42
n operator,
113 test, 46, 48, 50

747

Index

test token,
TeX, 143
texexec, 143
then, 42

time, 142
timeout interval,
times, 139
times-equal,
tmpwatch, 149
top, 148
touch, 142
tput, 145

tr, 143
traceroute, 144
true, , 138
tset, 147

tsort, 142

tty, 147
tune2fs, 148
type, 138
typeset, 72,

U
ulimit, 149
umask, 149
umount, 148
uname, 147
unarc, 143
unarj,
uNCoOMpress,
underscore
last argument,
unexpand,
uniq, 142
units, 145
unlzma,
unrar,
unset, 138
until, 111
unxz,
unzip,
upper, 155

uppercase modification
parameter substitution,

uptime, 147
usbmodules,
user ID,
useradd, 147
userdel,
usermod, 147
users, 147
usleep, 142
uucp, 144

uudecode, 144
uuencode, 144
uux

\%

unix to unix execute,

vacation, 145
variable

$,
$,
$H,
$$,

$, ,
$,

$0,

$?, 40,

$BASH,
$BASH_ENV,
$BASH_VERSION,
$CDPATH,
$DIRSTACK,
$EDITOR,

$EUID,
$GROUPS,
$HOME,
$HOSTNAME,
$HOSTTYPE,
$IFS,
$|GNOREEOF,
$LC_COLLATE,
$LC_CTYPE,
$LINENO,
$MACHTYPE,
$OLDPWD,
$OPTARG,
$OPTIND,
$OSTYPE,
$PATH, ,
$PPID,

$PSI,

$PS2,

$PS3,

$P4,

$PWD, .
$RANDOM, 75
$REPLY,
$SECONDS,
$SHELLOPTS,
$SHLVL,
$TMOUT,

$UID,

$,

assignment,

748

Index

environmental, 26
function,
globbing,
local, 25, 213
name,
pipe,
process D,
prompt,
subshell,
substitution,
version information,
which,
variable substitution,
vdir, 143
vertical tabulation,
vmstat, 147
vrfy, 144

W

w, 147

wait, 138

wall, 147

watch, 149

wc, 143

wget, 144

whatis, 143

whereis, 143

which, 143

while, 111

who, 147

whois, 144

wild card
globbing, ,

working directory,

write, 145

X

xargs, 142
xdigit, 155
xmessage, 146
XOR,
XOR-equdl,
xrandr, 149
Xz, 143

xzcat,

Y

yacc,
yes, 145

Z

zdump, 142
zenity, 146

zip, 143

749

	Advanced Bash-Scripting Guide
	Table of Contents
	Part Part 1. Introduction
	Chapter 1. Shell Programming!
	Chapter 2. Starting Off With a Sha-Bang
	Invoking the script
	Preliminary Exercises

	Part Part 2. Basics
	Chapter 3. Special Characters
	Chapter 4. Introduction to Variables and Parameters
	Variable Substitution
	Variable Assignment
	Bash Variables Are Untyped
	Special Variable Types

	Chapter 5. Quoting
	Quoting Variables
	Escaping

	Chapter 6. Exit and Exit Status
	Chapter 7. Tests
	Test Constructs
	File test operators
	Other Comparison Operators
	Nested if/then Condition Tests
	Testing Your Knowledge of Tests

	Chapter 8. Operations and Related Topics
	Operators
	Numerical Constants
	The Double-Parentheses Construct
	Operator Precedence

	Part Part 3. Beyond the Basics
	Chapter 9. Another Look at Variables
	Internal Variables
	Typing variables: declare or typeset
	Another use for declare

	$RANDOM: generate random integer

	Chapter 10. Manipulating Variables
	Manipulating Strings
	Manipulating strings using awk
	Further Reference

	Parameter Substitution

	Chapter 11. Loops and Branches
	Loops
	Nested Loops
	Loop Control
	Testing and Branching

	Chapter 12. Command Substitution
	Chapter 13. Arithmetic Expansion
	Chapter 14. Recess Time

	Part Part 4. Commands
	Chapter 15. Internal Commands and Builtins
	Job Control Commands

	Chapter 16. External Filters, Programs and Commands
	Basic Commands
	Complex Commands
	Time / Date Commands
	Text Processing Commands
	File and Archiving Commands
	Communications Commands
	Terminal Control Commands
	Math Commands
	Miscellaneous Commands

	Chapter 17. System and Administrative Commands
	Analyzing a System Script

	Part Part 5. Advanced Topics
	Chapter 18. Regular Expressions
	A Brief Introduction to Regular Expressions
	Globbing

	Chapter 19. Here Documents
	Here Strings

	Chapter 20. I/O Redirection
	Using exec
	Redirecting Code Blocks
	Applications

	Chapter 21. Subshells
	Chapter 22. Restricted Shells
	Chapter 23. Process Substitution
	Chapter 24. Functions
	Complex Functions and Function Complexities
	Local Variables
	Local variables and recursion.

	Recursion Without Local Variables

	Chapter 25. Aliases
	Chapter 26. List Constructs
	Chapter 27. Arrays
	Chapter 28. Indirect References
	Chapter 29. /dev and /proc
	/dev
	/proc

	Chapter 30. Network Programming
	Chapter 31. Of Zeros and Nulls
	Chapter 32. Debugging
	Chapter 33. Options
	Chapter 34. Gotchas
	Chapter 35. Scripting With Style
	Unofficial Shell Scripting Stylesheet

	Chapter 36. Miscellany
	Interactive and non-interactive shells and scripts
	Shell Wrappers
	Tests and Comparisons: Alternatives
	Recursion: a script calling itself
	“Colorizing” Scripts
	Optimizations
	Assorted Tips
	Ideas for more powerful scripts
	Widgets

	Security Issues
	Infected Shell Scripts
	Hiding Shell Script Source
	Writing Secure Shell Scripts

	Portability Issues
	A Test Suite

	Shell Scripting Under Windows

	Chapter 37. Bash, versions 2, 3, and 4
	Bash, version 2
	Bash, version 3
	Bash, version 3.1
	Bash, version 3.2

	Bash, version 4
	Bash, version 4.1
	Bash, version 4.2

	Chapter 38. Endnotes
	Author's Note
	About the Author
	Where to Go For Help
	Tools Used to Produce This Book
	Hardware
	Software and Printware

	Credits
	Disclaimer

	Bibliography
	Appendix A. Contributed Scripts
	Appendix B. Reference Cards
	Appendix C. A Sed and Awk Micro-Primer
	Sed
	Awk

	Appendix D. Parsing and Managing Pathnames
	Appendix E. Exit Codes With Special Meanings
	Appendix F. A Detailed Introduction to I/O and I/O Redirection
	Appendix G. Command-Line Options
	Standard Command-Line Options
	Bash Command-Line Options

	Appendix H. Important Files
	Appendix I. Important System Directories
	Appendix J. An Introduction to Programmable Completion
	Appendix K. Localization
	Appendix L. History Commands
	Appendix M. Sample .bashrc and .bash_profile Files
	Appendix N. Converting DOS Batch Files to Shell Scripts
	Appendix O. Exercises
	Analyzing Scripts
	Writing Scripts

	Appendix P. Revision History
	Appendix Q. Download and Mirror Sites
	Appendix R. To Do List
	Appendix S. Copyright
	Appendix T. ASCII Table
	Index

